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Abstract
It is important to recognize that the dynamics of each country are different. There-
fore, the SARS-CoV-2 (COVID-19) pandemic necessitates each country to act locally,
but keep thinking globally. Governments have a responsibility to manage their limited
resources optimally while struggling with this pandemic. Managing the trade-offs re-
garding these dynamics requires some sophisticated models. “Agent-based simulation”
is a powerful tool to create such kind of models. Correspondingly, this study addresses
the spread of COVID-19 employing an interaction-oriented multi-agent SIR (Susceptible-
Infected-Recovered) model. This model is based on the scale-free networks (incorporat-
ing 10, 000 nodes) and it runs some experimental scenarios to analyze the main effects
and the interactions of “average-node-degree”, “initial-outbreak-size”, “spread-chance”,
“recovery-chance”, and “gain-resistance” factors on “average-duration (of the pandemic
last)”, “average-percentage of infected”, “maximum-percentage of infected”, and “the ex-
pected peak-time”. Obtained results from this work can assist determining the correct
tactical responses of partial lockdown.
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1. Introduction
Although it is known that life after the COVID-19 pandemic will not continue where

it left off, it is still a matter of debate when (and how) the outbreak will end. Preparing
for life during and after this pandemic has the highest priority in the to-do list of each
country. The dynamics of each country (e.g. economic, political, social, and cultural
dynamics) are different and therefore this uncharted territory necessitates them to act
locally, but keep thinking globally. “COVID-19 Act Local Think Global” concept needs
learning from the (global) experiences and doing some (local) trial-and-error (and then
observing the reactions).
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Modeling this pandemic by using some sophisticated methods may be vital while ex-
ecuting these trial-and-error processes. Understanding the spreading mechanism of this
pandemic is the main prerequisite for these modeling works. Modeling these spread pro-
cess by dividing the population into distinct compartments indicating the status is known
as “compartmental modeling” in the literature. One of the simplest and earliest contri-
butions to these modeling attempts is Kermack and McKendrick [16] model, which is the
“SIR (Susceptible-Infected-Recovered) model”, and yields important results for epidemics
[13]. This model consists of three compartments as “Susceptible”, “Infected”, and “Re-
covered”. The transition process in the SIR model is illustrated in Figure 1. While S(t) is
the compartment of “Susceptible” individuals, I(t) and R(t) are the compartments of “In-
fected” and “Recovered” individuals, respectively. The initial state includes one (or more)
“infected” individual. The disease spreads from any “infected” individual to any “suscep-
tible” individual by contact infection. The individuals of the “recovered” compartment
were “infected” in their previous states, and their actual status is either “gain-resistant”
or “removed/dead”.

Figure 1. The transitions in the SIR model.

An extension of this simple SIR model is the SEIR (Susceptible-Exposed-Infected-
Recovered) model [9, 26]. It includes an additional compartment so-called Exposed. This
compartment covers infected individuals who are not infectious. This simple SIR model
can also be extended by considering birth, mortality, and vaccination rate. QSEIR, which
is proposed by [19], can be used to consider the unprecedented strict QSEIR (Quarantine-
Susceptible-Exposed-Infected-Recovered) measures.

The basic reproduction number (Ro) is the expected number of secondary cases pro-
duced, in a completely susceptible population, by a typical infective individual [11]. Fur-
ther discussions corresponding to its computation can be found in [6, 8, 11]. General
compartmental disease transmissions have been modelled by a system of ordinary dif-
ferential equations by using this reproduction number. Early analytical approaches for
modeling these transitions among compartmental states are some mathematical models
involving ordinary differential equations and nonlinear analysis [9, 13, 16, 20, 26]. The use
of differential equations and nonlinear analysis (commonly known as EBM - Equations-
Based Modeling in the literature) is still a common way in epidemiology. There are also
many works trying to model the spread of this new coronavirus (SARS-CoV-2) by using
differential equations (e.g. [5, 14,19,29]).

Parker and Epstein [24] claim that EBM is ill-suited to representing complex modern
social networks and contacts between distinct individuals, interacting with another (not in
a well-mixed population) as they move about spatially, adapting their behaviors-perhaps
irrationally-based on disease prevalence. The EBM focuses on the overall system behavior
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instead of the individuals. Focusing on the individual level of behavior necessitates the use
of more advanced modeling approaches such as Agent-Based Modeling (ABM). According
to Parunak et al. [25], the ABM and the EBM differ in two ways; the fundamental
relationships among entities that they model, and the level at which they focus their
attention. While EBM uses some equations derived from system level of observables
(measurable characteristics of interest), the ABM focuses the observables of the individuals
(so-called; “agents”), supporting the system-level information.

The effect of contact pattern [23] and the network structure of contacts [3, 10, 22] on
the disease spreading are also considered in the epidemiology literature. A Network-
Based compartmental model (NB-SEIR) is proposed and implemented for the spread of
“Whooping Coughby” in Nebraska by [1]. According to the findings of this study, the
NB-SEIR model shows a good improvement on the standard SEIR model, and can also
find the peak of infection of disease successfully in the demonstrated case studies. Recent
advances in network modeling make it possible to model of epidemic spread. Statistical
network analysis is especially useful to guide policies regarding partial lockdown and design
of sufficient contact tracing programs. In a recent study, Loyal and Chen [21] reviews the
network modeling techniques and their applications to the SARS-CoV-2.

Two ABM approaches are discussed in the literature; task-centric modeling (also known
as content-centric) and interaction-oriented modeling [4]. While the task-centric modeling
approach focuses on the task of agents and the data required, the interaction-oriented ap-
proach focuses on the interactions in multi-agent environments. The interaction-oriented
ABM approach models each behavior as a part of an interaction. Kubera et al. [17]
propose IODA (Interaction Oriented Design of Agent simulations) for modeling the influ-
ences and the interactions between the entities of an ABM. In this model, interactions can
be modeled independently and an interaction matrix is used to assign all interactions to
the agents. Representing these interactions by using graph theory and network analysis
enables conceptualizing their frequency, strength, etc. Although the use of the ABM ap-
proach has been studied by several authors in the literature of epidemiology (e.g. [15,24]),
according to the authors best knowledge, no previous research has investigated the use of
interaction-oriented ABM approach for the spread of this new coronavirus. Correspond-
ingly, this study presents an experimental analysis of the spread of SARS-CoV-2 by using
an interaction-oriented multi-agent SIR model. This study analyzes the main effects and
the interaction effects of “average-node-degree”, “initial-outbreak-size”, “spread-chance”,
“recovery-chance”, and “gain-resistance” factors on “average-duration (of the pandemic
last)”, “average-percentage of infected”, “maximum-percentage of infected”, and “the ex-
pected peak-time”. The ultimate goal of this study is to provide an in-depth understanding
of the spread and to produce knowledge that may help policy makers to plan the degree of
partial lockdowns, to design sufficient contact tracing programs, and to determine effective
vaccination strategies.

The rest of the paper is organized as follows. Section 2 describes the methodology
in more detail. The results of the experiments are provided in Section 3. Finally, the
conclusion is given in Section 4.

2. Methodology
2.1. Network design for the interactions

This study simulates the spread of SARS-CoV-2 by using an interaction-oriented ABM.
This model uses a network structure to model the interactions among individuals of dif-
ferent compartments. The chosen network structure is important while modeling the
interactions among individuals of different compartments.

The SIR consists of three compartments as, “Susceptible”, “Infected”, and “Recov-
ered”. The transition process in the SIR model is illustrated in Figure 1. While S(t) is
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the compartment of Susceptible individuals, I(t) and R(t) are the compartments of “In-
fected” and “Recovered” individuals, respectively. The initial state includes one (or more)
“infected” individual. The disease spreads from any “infected” individual to any “suscep-
tible” individual by contact infection. The individuals of the “recovered” compartment
were “infected” in their previous states, and their actual status is either “gain-resistant”
or “removed/dead”.

The SIR model provides a theoretical framework to investigate a pandemic spread within
a community [7]. The disease dynamics equations for standard SIR Model are given as
follows based on [2]. Further details of the SIR model can be found in [27].

dS/dt = β(S.I/N) (2.1)

dI/dt = β(S.I/N) − v.I (2.2)

dR/dt = v.I (2.3)
where, N stands for the total number of people in the population. β implies the rate of
spread of infection by an infected person per day when he/she interacts with the susceptible
population. The number of people recovering is indicated by the rate of recovery v.

Solé and Valverde [28] define three relevant characteristics of complex networks. These
characteristics are “randomness”, “heterogeneity”, and “modularity”. “Randomness rep-
resents the degree of randomness of the network building process. “Heterogeneity” is the
measure for the diversity of the degree distribution. “Modularity” is the measure of the
strength of division into clusters/groups/compartments.

The design of a network indicating how individuals contact each other during this pan-
demic is crucial. Standard compartmental models consider that people are homogeneously
mixed. For this reason, in these models, any pair of individuals has equal chance to in-
teract. This assumption does not reflect the real-life routine. However, network models
provide a powerful tool for understanding the spread of disease in the presence of heteroge-
neous mixing by coding heterogeneous contact patterns [21]. Moreover, in a recent study,
a stochastic cellular automata approach has also been employed to evaluate the presence
of superspreaders in COVID-19 infection scenarios with reduced mobility [18].

Mossong et al. [23] provide an analysis of population-based contact patterns aiming to
help inform the structure and parameterization for close-contact infectious diseases. They
record approximately 100, 000 contacts with different persons. They observe that mean of
the daily contacts is 13.4 per individual. While the German participants have the fewest
daily number of contacts with mean 7.95, Italians have the highest number with mean
19.77. As it is stated in [5], Turkey and Italy are the two countries that have a similar
collective life typical of the Mediterranean region. While modeling the initial phase of the
spread of an epidemic disease, considering these levels of contact is reasonable. Loyal and
Chen [21] simulate an SEIR epidemic on a mathematical network model developed for the
SARS-CoV-2 spread. They chose the parameters of this model that the networks roughly
shared an average degree of 6. However, our initial screening design findings indicate that
it is possible to struggle with SARS-CoV-2 without infecting all individuals if the daily
number of the contact is less than 5 per individual.

It should be noted here that this work considers the interactions as they are “contacts”,
transmitting the virus by depending on the virus-spread chance. An interaction may occur
through direct, indirect, or close contact in real environment. However, while modeling
these interactions, this study does not differentiate them, just concerns whether an in-
teraction exists. As it is stated in [23], many issues regarding contact patterns remain
unexplored in the literature. Above mentioned contact rates are based on epidemiolog-
ically relevant social contact patterns. They are useful data to assess how an emerging
infection could spread by the social contacts.
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The definition of a complex network also involves patterns of “decentralized autonomous
interactions” [12]. Since the ABMs are inherently dynamic and they permit the desired
richness of behaviors, these decentralized autonomous interactions can easily be modelled
through the agent-based approaches. Correspondingly, traditional network analysis has
been enhanced by cross-fertilization with ABM. NetLogo is one of the well-known agent-
based modeling environments and it is well suited for modeling complex systems. NetLogo
Virus on a Network Model [30] demonstrates the spread of a virus through network. This
study employs and extends this agent-based network model to assess the spread of SARS-
CoV-2. Further details regarding the multi-agent system’s structure can be found in [30].

This study generates the networks by randomly chosen a node and connecting the
nearest neighbor node that is not already connected. This process repeats until the average
node degree satisfied. It is believed that such a network may represent the interactions
during disease. Figure 2 illustrates the generated networks for the average-node-degree
are 1 and 4 with the population size is 10, 000.

Figure 2. The generated networks with population size 10, 000 and average-node-
degree are 1 (Figure 2a) and 4 (Figure 2b).

2.2. The spreading mechanism
The behavior of the individuals specifies their subsequent states. In the spread model

under consideration, when there exists an interaction between a “susceptible” individual
and an “infected” individual, the “susceptible” transforms into the “infected” one or stays
“susceptible” by depending on the “virus-spread-chance”. Figure 3 illustrates this inter-
action. An interaction between “susceptible” individual and recovered” individual does
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not change their status. Similarly, an interaction between an “infected” individual and a
“recovered” individual does not change their states. On the one hand, the “infected” indi-
viduals transform into a “recovered” one or stay still in the state of “infected” depending
on the “recovery-chance”. Additionally, the “gain-resistance-chance” specifies the states of
“recovered” individuals as “susceptible” or still “recovered”. These new subsequent states
of each individual are updated in the network with a period of 14 days (the incubation
period of the COVID-19).

Transition from the initial states to the subsequent states depends on the assumptions
of the spreading on a network summarized as the followings:

• Transmission from an infectious node to a susceptible node occurs across an edge
as a Poisson process with the infection rate, the virus-spread-chance.

• An infectious node recovers as a Poisson process with the recovery-chance.
• By depending on the gain-resistance-chance, transmission from a recovered node

to a susceptible node occurs across an edge as a Poisson process.

Figure 3. The interaction between a “susceptible” individual and an “infected”
individual.

2.3. Design of the experiments
This study aims to analyze the main effects and their interactions of five decisive fac-

tors on the duration of the pandemic last and the spectrum of the infected individuals
during this disease period. While some of these factors are controllable, some of them are
considered because of their uncertain conditions to see the results of what-if scenarios.

The first factor under consideration is “average-node-degree”. It represents the mean
of the daily contacts per individual. It greatly depends on the partial lockdown tactics
regulated by countries. This factor has four levels as 0.5, 1, 2, and 4 in this study. The
second factor is initial-break-size. It indicates the percentage of the total “infected” indi-
viduals in the population. The amount of the infected compartment is generally uncertain
in practice. Four levels of this factor (as 3%, 5%, 10%, and 20%) are considered to see dif-
ferent scenarios. The third one is “spread-chance”. This is chance of contracting virus per
contagious interaction. It is around 3%, but to analyze its effect, 2.8% is also considered
in this study. Another factor under consideration is the “recovery-chance”. Its two levels
(90% and 95%) are taken into account in this study. The last factor is gain-resistance. It
is also uncertain in practice. If there is no gain-resistance, its level can be considered as
about 3% because of the mortality rate. To analyze the effect of the gain-resistance factor,
its 50% level, and the 80% level are considered as well. By considering these factors and
their levels, a full factorial experiment has designed. 240 different experiments have been
executed with 5 replications. Factors and level of design experiment are given in Table 1.



1554 K. Altun, S. Altuntas, T. Dereli

Table 1. The considered factors and their levels.

Factors Number of levels Level 1 Level 2 Level 3 Level 4
Average-node-degree 4 0.5 1 2 4
Initial-break-size 4 3% 5% 10% 20%
Spread-chance 2 3% 2.8% NA NA
Recovery-chance 2 90% 95% NA NA
Gain-resistance 3 3% 50% 80% NA

3. Results
This section summarizes and discusses the main findings of the work. The main effects

and the interactions of these factors on “average duration (of the pandemic last)”, “average-
percentage of infected”, “maximum-percentage of infected”, and “the expected peak-time”
are examined in detail. The main effect plots and the interaction plots are given in Figure
4-7. The main effect plots illustrate the mean response of each level factors. Having a
horizontal trend means there is no main effect present. The greater magnitude of the main
effect exists when there is a steeper slope. The interaction plots can help to understand
the interactions among factors under consideration. Parallel lines indicate that there is no
interaction effect.

Figure 4. Data means of the main effects (a) and the interaction effects (b) for
the “average-duration”.
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Figure 5. Data means of the main effects (a) and the interaction effects (b) for
the “average-percentage of the infected individuals”.

Based on the results, we make the following observations.

• As seen in Figure 4, one of the key findings is that the “average-node-degree”
(representing the daily average number of contacts per individual) has the highest
main effect on the average-duration. It is pretty obvious that the “average-node-
degree” is more influential than the “initial-outbreak-size”.

• If community immunity is 3% (gain-resistance) and the “average-node-degree” is
4, the end time of the pandemic reaches the highest value. Therefore, it can be
concluded that these factors are very critical factors that determine the duration
of the pandemic.

• It is also obvious (see Figure 5) that “initial-outbreak-size” is the factor with the
greatest effect on the “average-percentage of the infected individuals”. “Recovery-
chance” is the least variable factor affecting the average number of people infected.

• The average percentage of infected individuals reaches the highest level if the
number of individuals interacting is 3 and initial-outbreak-size is 20%.

• The average percentage of infected people is at the lowest level if “initial-outbreak-
size” is 20% and the gain-resistance value is 3%.

• The effect of variability in “virus-spread-chance”, “recovery-chance” and “gain-
resistance” factors on “maximum-percentage of the infected individuals” and “the
expected peak-time” is extremely limited (see Figure 6 and Figure 7).
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• One of the interesting results is that if the “average-node-degree” changes from 3
to 4, “the day of the highest infected person” is delayed quite a lot.

• As it can be seen from Figure 4b, the effect of “average-node-degree” is not con-
sistent across all the remaining factors for the “average-percentage of the infected
individuals”.

• It should be noted that there is no interaction between “initial-outbreak-size” and
the remaining factors at all levels for the “maximum-percentage of the infected
individuals”. Additionally, there is no interaction between “virus-spread-chance”
and “recovery-chance” and is between “virus-spread-chance” and “gain-resistance”
for the “expected peak-time as well.

• The effect of “virus-spread-chance” on “recovery-chance” at all levels is consistent
for the “expected peak-time”.

Figure 6. Data means of the main effects (a) and the interaction effects (b) for
the “maximum-percentage of the infected individuals”.

4. Conclusion
This study provides a network understanding of the spread of SARS-CoV-2 by using an

interaction-oriented multi-agent SIR model (with the NetLogo environment). The main
results obtained from this agent-based simulation should be considered to minimize the
potential negative effects of this disease in practice. One limitation of this work is that it
generates a model with the population size 10, 000. This is because of the limitations of
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our modeling environment. Although, this size is reasonable to assess the dynamics when
considered the previous small-world cases as in [21], it is intrinsically true that higher
population is better. Future work can address this issue as to be more realistic.

Interaction-oriented models are required to determine correct tactical responses of par-
tial lockdown. The ranges of the considered factor levels are reasonably large, and there-
fore what-if scenarios can be executed by using the result of these experiments. Obtained
main effect plots may be helpful for decision-makers and policymakers. If other realistic
factors affecting the spread of COVID-19 disease are identified, the number of factors to
be considered in future studies can be increased. Vaccines and some specific anti-viral
treatment are currently available for COVID-19 disease. Future works can consider these
advancements as a new compartment as well.

Figure 7. Data means of the main effects (a) and the interaction effects (b) for
the “expected peak-time”.
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