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Abstract

We aimed to study the association between mortality and trajectory of serum albumin
levels (g/dL) in peritoneal dialysis patients via a joint modeling approach. Joint modeling
is a statistical method used to evaluate the relationship between longitudinal and time-to-
event processes by fitting both sub-models simultaneously. A comprehensive simulation
study was conducted to evaluate model performances and generalize the findings to more
general scenarios. Model performances and prediction accuracies were evaluated using the
time-dependent ROC area under the curve (AUC) and Brier score (BS). According to the
real-life dataset results, the trajectory of serum albumin levels was inversely associated
with mortality increasing the risk of death 2.21 times (p=0.003). The simulation results
showed that the model performances increased with sample size. However, the model
complexity had increased as more repeated measurements were taken from patients and
resulted in lower prediction accuracy unless the sample size was increased. In conclusion,
using the trajectory of risk predictors rather than baseline (or averaged) values provided
better predictive accuracy and prevented biased results. Finally, the study design (e.g.,
number of samples and repeated measurements) should be carefully defined since it played
an important role in model performances.
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1. Introduction
Recently, in follow-up clinical studies, personalized medicine became popular in the

monitoring and treating of chronic diseases since it considered subject-specific features
rather than the overall characteristics of a study group [17]. From a statistical perspective,
subject-specific statistical models might be preferred instead of marginal (i.e., overall)
models when there is significant variability between patients. These models are crucial in
personalized medicine because they focus on the subjects’ characteristics and aim to obtain
patient-specific estimations [5]. Figure 1 shows an example of overall and personalized
trajectories of serum albumin levels in a follow-up study. Figure 1a shows the overall
trend in serum albumin levels for each subset (alive and dead) of peritoneal dialysis (PD)
patients. While serum albumin levels in the censored group are constant in time and
higher than dead patient, it increases and decreases in time for dead patients. However,
the overall trajectory of serum albumin levels is not representative for all patients because
its pattern is very different between patients. Figure 1b shows the trajectories of serum
albumin levels for randomly selected patients in each subgroup.

(a) (b)

Figure 1. Trajectory of serum albumin levels (a) all patients, (b) randomly
selected 5 patients in each group.

One purpose of a follow-up study is to analyze the survival data of patients and explore
possible risk factors associated with mortality. In such studies, the survival and longitu-
dinal data are collected simultaneously from patients. However, these two processes are
generally analyzed independently of each other. This strategy ignores the relationship
between two processes (i.e., longitudinal and time-to-event) and leads to information loss
and bias because each submodel evaluates a portion of collected information [22]. There-
fore, the relationship between mortality and a longitudinal biomarker should be analyzed
simultaneously, and the longitudinal nature of a biomarker should be considered while
analyzing time-to-event data. In the literature, Sir David Cox [3] published the first study
that aimed to evaluate two processes jointly. In this study, the longitudinal data was
introduced into the survival sub-model as a time-dependent predictor of mortality. This
modeling strategy assumes that the longitudinal covariate was measured without error,
which was not realistic. Schluchter [25] considered a joint model approach which consists
of two sub-models: (i) a mixed effect model for the longitudinal data and (ii) a parametric
survival model for the time-to-event data, and the model parameters were simultane-
ously estimated. However, this approach required distributional assumptions in model
fitting, e.g., specifying an underlying distribution for baseline hazard, survival outcome,
etc. Faucett and Thomas [6] extended Schluchter’s proposal by setting baseline hazard
function unspecified, unlike the parametric approach. There is an increasing interest in



902 M. Basol, D. Goksuluk, M. Sipahioglu, E. Karaagaoglu

joint modeling in clinical studies due to its several advantages, these are: (i) dealing with
the missing data that arose from both processes (i.e., miss the appointment or censoring,
etc.), (ii) providing subject-specific and dynamic risk predictions; hence, approaching to
survival data analysis from the perspective of personalized medicine [18, 21], (iii) and fi-
nally requiring fewer samples and achieving higher power compared to time-to-event data
[12]. There are some review articles for more details about joint modeling [8, 16,28,30].

In this study, we aimed to extend the survival model to repeated (i.e., time-dependent
biomarkers) measurements using the joint modeling approach to explore the relationship
between the trajectory of serum albumin level and mortality in peritoneal dialysis (PD)
patients. We evaluated the performances of built joint models via a comprehensive sim-
ulation study and on a real-life dataset. We considered several factors in the simulation
study to generalize the findings under different scenarios (e.g., sample size and length of
the longitudinal period). The predictive ability of built models was evaluated using the
time-dependent ROC area under the curve (AUC) and the Brier score (BS). The current
study is, to the authors best knowledge, the first study that examined the joint mod-
eling approach on PD patients in Turkey, and among few studies published worldwide
[2, 9, 13,31].

2. Material and methods
2.1. Joint modeling approach

Let Ti and Ci denote the true event time and right censoring time of the i-th patient,
respectively. The observed event time is defined as T̃i = min(Ti, Ci) and the main event
as δi = I(Ti < Ci) where the indicator function I(.) equals 1 when observed event time is
equal to the true event time and 0 otherwise, i.e., the event is observed before censoring
time. The follow-up time is generally modeled by using the Cox proportional hazard model
[22] as given in Equation (2.1).

hi (t | Y ∗
i (t), wi) = h0 (t) exp

(
γT wi + αy∗

i (t)
)

(2.1)

Here, wi is(are) a baseline covariate(s) with regression coefficient γ and is independent of
the time. {Y ∗

i (t) = yi(s), 0 ≤ s < t} is the predicted history of longitudinal outcome up to
time point t, and y∗

i (t) is the predicted value of longitudinal outcome included in the model
as a time-dependent predictor of the event. The regression coefficient, α, corresponds
to the relationship between longitudinal response and survival times. If the α is not
statistically significant (p > 0.05), that means there is no relationship between longitudinal
response and time-to-event data, then both processes can be analyzed separately. The
baseline hazard function, h0(t), can be used as unspecified, parametric (Weibull, log-
normal, etc.) or more flexible methods such as piecewise-constant and B-spline basis
functions for cubic splines [22].

Longitudinal data are generally fitted to mixed-effects models [10] as in Equation (2.2).
yi(t) = y∗

i (t) + εi(t) = Xi(t)β + Zi(t)bi + εi(t) (2.2)
Here, yi(t) is the longitudinal outcome for the i-th subject at time t. Xi(t) and Zi(t) are
the vectors of fixed and random effect with regression parameters β and bi, respectively.
εi(t) is a time-dependent error term that is assumed to be normally distributed with mean
zero and a constant variance σ2. It is also independent of random effects, which are
assumed to follow a multivariate normal distribution with mean zero and inter-subject
variance-covariance matrix Σ.

As seen in Equation (2.1), the relationship between two processes is based on the current
value of longitudinal biomarker at time t. However, the current value approach may not
be sufficient in practice for explaining the relationship between longitudinal and survival
processes. Andrinopoulou et al. [1] indicated that selecting the correct parameterization is
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crucial in model fitting and provides unbiased results. There are several parameterization
alternatives to the association structure specified in Equation (2.1). These alternatives
[22] are given in Equations (2.3)–(2.5).

Time-dependent slopes parameterization.

hi (t) =h0 (t) exp
(
γT wi + α1y∗

i (t) + α2y∗′
i (t)

)
y∗′

i (t) = d

dt
, y∗

i (t) = d

dt

(
xT

i (t) β + zT
i (t) bi

)
(2.3)

Cumulative effects parameterization.

hi (t) = h0 (t) exp
(

γT wi + α

∫ t

0
y∗

i (s) ds

)
(2.4)

Random effects parameterization.

hi (t) = h0 (t) exp
(
γT wi + αT bi

)
(2.5)

2.2. Parameter estimation of joint modeling
Two popular approaches are available to jointly estimate model parameters, i.e., max-

imum likelihood estimation (MLE) [11, 34] and the Bayesian approach [6]. These two
methods should not be confused with a two-stage estimation technique [24, 33] that se-
quentially estimates model parameters for each sub-model. In this study, we used an
MLE approach and estimated model parameters from the joint likelihood function. The
log-likelihood function of the model for the i-th patient is given in Equation (2.6) [22].

log p (Ti, δi, yi; θ) = log
∫

p (Ti, δi, yi, bi; θ) dbi

= log
∫

p (Ti, δi | bi; θt) (yi | bi; θy) p (bi; θb) dbi (2.6)

Let θ =
(
θT

t , θT
y , θT

b

)T
denote the full parameter vector of the joint model. Here, θT

t and
θT

y represent parameter vectors of survival and longitudinal sub-model, respectively. θT
b is

the parameter of the random-effects covariance matrix. p(bi; θb) represents the probability
density function of random effects, which is assumed to be distributed multivariate normal
with mean zero and inter-subject variance-covariance matrix Σ. The likelihood of joint
longitudinal part, with random effects in Equation (2.6), is defined as Equation (2.7),
clearly.

p (yi | bi; θy) p(bi; θb) =
∏
j

p (yi(tij) | bi; θy) p (bi; θy)

= (2πσ2)−ni/2 exp
(
−∥yi − Xiβ − Zibi∥2/2σ2

)
× (2π)−qb/2 det(Σ)−1/2 exp

(
−bT

i Σ−1bi/2
)

(2.7)

Here, qb is the length of the random effects vector and ∥.∥ is the Euclidean norm. The
probability density function of the survival part, which is conditional on random effects,
is defined as in Equation (2.8).
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p (Ti, δi | bi; θt) = hi (Ti | Y ∗
i (Ti); θt)δi Si (Ti | Y ∗

i (Ti); θt)

=
[
h0(Ti) exp(γT wi + αy∗

i (Ti))
]δi

× exp
(

−
∫ Ti

0
h0(s) exp(γT wi + αy∗

i (s)ds

)
(2.8)

Maximization of the likelihood function is done using the expectation-maximization
(EM) algorithm [34] or Newton-Raphson algorithm [14]. The computational complexity
of integrals can be overcome using 7-point or 15-point Gauss-Kronrod rule [22], quadrature
rule [11,34], Monte Carlo sampling, or Laplace approximations [22].

2.3. Measuring predictive accuracy
Joint modeling plays an important role in the development of personalized medicine

[17, 23]. It provides dynamic risk predictions during the follow-up period, which helps
the physicians to decide about patients treatment, such as quitting or continuing a new
drug, collecting additional data, etc. The dynamically predicted survivals in future time
points are obtained using all the longitudinal information collected up to time point, i.e.,
yi(s) = {yij ; 0 ≤ tij ≤ s}, s ≥ 0. Hence, the conditional survival probability of the i-th
subject at horizon s + t is obtained as in Equation (2.9) [22].

πi (s + t | s) = P
(
T̃i ≥ s + t | T̃i > s, yi (s) ; θ

)
, t > 0 (2.9)

The conditional survival probability can be predicted using Monte Carlo simulation
or numerical integrations [18, 21]. In this study, we used the Monte Carlo approach to
obtain predicted survivals along with 95% confidence intervals. Predictive accuracy of
dynamic predictions was evaluated using time-dependent AUC and Brier score (BS) as
discrimination and calibration measures, respectively.

Brier score, also known as prediction error, is the difference between actual status and
predicted survival probability. Using the longitudinal data up to time point s, the BS of
the fitted joint model at horizon time s + t is calculated as [26]

B̂S (s + t | s) = 1∑N
i=1 I

(
T̃i > t

) N∑
i=1

Ŵi (s, t)
(
Ĝi(s, t) − π̂i (s + t | s)

)2
, (2.10)

where Ĝi(s, t) = I(T̃i > s + t) is an indicator function of surviving status that equals 1
if observed event time is larger than s + t and 0 otherwise. Note that the true status
of a patient at time point s + t is unknown if this patient was censored within the in-
terval (s, s + t]. Hence, an Inverse Probability of Censoring Weights (IPCW) is used to
adjust the calibration of the fitted model for censored patients [7]. Censored patients were
assumed to be alive with a probability of π̂i

(
T̃i + t | T̃i

)
and dead with a probability of

1 − π̂i

(
T̃i + t | T̃i

)
. Hence, censored patients contributed to both dead and alive subsets

with corresponding weights. For dead and alive patients, on the other hand, the weights
equal 1.

The time-dependent ROC AUC is used to measure how well the fitted model discrim-
inates a randomly selected pair with a low (j-th) and high risk (i-th) of death in the
interval (s, s + t]. This measure was extended to dynamic predictions [21] and adjusted
for censored patients using IPCW [4] as similar to BS. The estimated AUC is obtained as
in Equation (2.11).
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ÂUC (s + t | s) =
∑N

i=1

∑N

j=1 I(π̂i(s+t | s)<π̂j(s+t | s))Ĝj(s,t)(1−Ĝi(s,t))Ŵi(s,t)Ŵj(s,t)∑N

i=1

∑N

j=1 Ĝj(s,t)(1−Ĝi(s,t))Ŵi(s,t)Ŵj(s,t)
(2.11)

The higher values of AUC and the lower values of BS indicated better predictive accu-
racy of the fitted joint model.

2.4. Real-life dataset
We used the data from the previously published paper by [27]. This dataset was ret-

rospectively collected from medical records. It consisted of 511 patients undergoing PD
between the years 1995 and 2007 at Erciyes University Nephrology Department. PD is a
frequent and developing therapy for end-stage renal diseases (ESRD). In Turkey, five-year
survival rates in adults were estimated as 68.8% by [27] and as 65% by [29]. These values
were higher than other regions reported by [15]. Four hundred seventeen patients were
included in the study according to exclusion criteria originally described in [27]. Patients
having no measured data in longitudinal response were also excluded. In this study, pa-
tients’ data including demographic (age at onset, body mass index, gender, cause of ESRD,
existence of comorbid diseases, dialysis history, the transport property of peritoneal mem-
brane (low or high), number of illnesses, and peritonitis rate) and clinical/biochemical
variables (serum albumin levels) were collected from medical records. Data were collected
from each patient every two months. However, data at 6-month intervals up to 5-years
of follow-up were considered in the statistical analyses. Patients that died during the PD
process or 3-months after transferring to HD were considered as PD-related deaths and
censored otherwise.

2.5. Simulation scenarios
In addition to real data application, we conducted a comprehensive simulation study to

generalize the performance of joint models under different scenarios. In this context, we
generated data using all the combinations of

• Sample size n = 100, 400, and 800 as small, medium and large, and
• Length of longitudinal period as 60 and 120 months.

Four hundred data sets were generated in each scenario and equally split into two parts,
200 samples each, as train and test sets. Generated data were fitted to two joint models,
named true (M1) and wrong (M2) models. The true model included the predictors given
in Table 2. The wrong model, on the other hand, included a random intercept LME
sub-model and a Cox proportional hazard sub-model, and adjusted for gender which was
found insignificant predictor in real-life data analysis. The model performances in the
simulation study were evaluated using the differences in AUCs and BS in two models as
(M1 M2). In joint modeling, we used an R package [20] which was specifically developed
for joint modeling of longitudinal and survival processes.

2.6. Availability of computer programs and source codes
We performed real-life data analysis and simulations in the R programming language

environment [19]. We mainly used R packages JM [20] and ggplot2 [32] to fit a Joint
Model and draw figures, respectively. All the source codes are freely available through the
GitHub† network.

†https://github.com/basolmerve/JMArticleSupplementary

https://github.com/basolmerve/JMArticleSupplementary


906 M. Basol, D. Goksuluk, M. Sipahioglu, E. Karaagaoglu

3. Results
During the follow-up period, 86 (20.6%) of 417 patients died due to PD-related causes.

The median follow-up period of the study was 30 months (range: 3 to 137). We presented
the descriptive statistics for demographic and clinical variables in Table 1 for total and
survival subgroups. Males were higher in the entire group (%57.1); however, the distri-
bution of gender was similar in dead and censored subgroups. When the causes of ESRD
were examined, we found that 145 (34.8%) patients had diabetes, followed by 62 (14.9%)
patients with hypertension and 38 (9.1%) patients with glomerulonephritis. Fifty (12.0%)
patients received hemodialysis (HD) before PD. The average age of starting PD was 45.92
± 14.33 years.

Table 1. Biochemical, clinical and demographic findings of study group (n=417).

Characteristic Total (n: 417) Dead (n: 86) Censored (n: 331)

Age 45.92 ± 14.33 50.3 ± 13.76 44.78 ± 14.27
BMI 23.61 ± 4.09 24.1 ± 4.15 23.49 ± 4.08
Gender (female) 179 (42.9) 36 (41.9) 143 (32.0)
Cause of ESRD†

Diabetes mellitus (DM) 145 (34.8) 39 (45.4) 106 (32.0)
Glomerulonephritis 38 (9.1) 6 (10.5) 32 (9.7)
Hypertension 62 (14.9) 9 (10.5) 53 (16.0)
PKD 19 (4.6) 6 (7.0) 13 (3.9)
Other 41 (9.8) 9 (10.5) 32 (9.7)
Unknown 112 (27.1) 16 (18.6) 96 (29.0)

Comorbidity
Cardiovascular disease 92 (22.1) 35 (40.7) 57 (17.2)
Lung disease 13 (3.1) 6 (7.0) 7 (2.1)
Hepatitis 60 (14.4) 27 (31.4) 33 (9.9)

PD history (present) 50 (12.0) 20 (23.3) 30 (9.1)
TPPM (High) 208 (49.9) 45 (52.3) 163 (49.2)
Number of illness 1 [0 − 5] 2 [0 − 5] 1 [0 − 4]
Peritonitis rate
(episodes/patient-year)

0.32 [0 − 5.33] 0.57 [0 − 3] 0.25 [0 − 5.33]

* Summarized using mean ± standard deviation, frequency (percentage) or median [minimum, maxi-
mum] where appropriate.
PKD: Polycystic kidney disease, BMI: Body Mass Index(kg/m2), PD: Peritoneal Dialysis,
TPPM: Transport Property of Peritoneal Membrane, ESRD: end stage renal diseases
† Patients might have more than one disease causing ESRD.

The longitudinal sub-model was fitted to serum albumin trajectories using a random
slope and random intercept linear mixed model as given in Equation (3.1). We determined
the explanatory variables associated with the longitudinal trajectory of serum albumin
level using a univariate mixed-effect model. Finally, we adjusted the serum albumin tra-
jectories for significant confounders, i.e., baseline age (p<0.001), the transport property
of peritoneal membrane (TPPM) (p<0.001), and peritonitis rate (PR) (p=0.012) (Table
(2).

ALBi (t) = β0 + β1age + β2TPPM + β3PR + β4time
+ bi0 + bi1time + ϵi (t)

= y∗
i (t) + ϵi (t) (3.1)
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In the survival sub-model, the explanatory variables were specified using a univariate
Cox proportional hazard regression model. The hazard of death was adjusted for age onset
(p<0.001), history of PD (p=0.031), number of illness/comorbid diseases (NI) (p<0.001),
and peritonitis rate (PR) (p<0.001) (Table (2). Finally, the fitted trajectory of serum
albumin was included in the survival sub-model considering different parameterization as
Equation (3.2).

Model 1 : hi (t) = h0 (t) exp (γ1age + γ2PD history + γ3NI + γ4PR + α1y∗
i (t))

Model 2 : hi (t) = h0 (t) exp
(
γ1age + γ2PD history + γ3NI + γ4Pr + α1y∗

i (t) + α2y∗′
i (t)

)
Model 3 : hi (t) = h0 (t) exp

(
γ1age + γ2PD history + γ3NI + γ4PR + α1

∫ t

0
y∗

i (s) ds

)
Model 4 : hi (t) = h0 (t) exp (γ1age + γ2PD history + γ3NI + γ4PR + α1bi) (3.2)

Joint modeling results are presented in Table 2. The model parameters were iteratively
estimated using the EM algorithm. The iterations history was given in the Appendix
section with Supplementary Figures A1 and A2. We observed that survival times were
not associated with subject-specific slopes of serum albumin level according to Model 4
(p=0.201). Model 1 3 show that changes in the adjusted serum albumin levels were
negatively and significantly associated with the risk of death (p=0.003, p<0.001, and
p=0.005, respectively). A unit decrease in serum albumin levels at a time point t resulted
in 2.21 times higher risk of death (95% CI: 1.30 to 3.74) for Model 1. Baseline age, HD
history, number of diseases, and peritonitis rate were positively associated with the risk
of death. Moreover, serum albumin levels were negatively affected by baseline age of PD,
transportation characteristics of the membrane, and peritonitis rate for all models.

When we evaluated the overall predictive performance of all models, we could say that
Model 1 was better according to deviance information criteria (DIC). We also compared
the dynamic predictive performance of all models using a 5-fold and 10-repeat cross-
validation. Cross-validated AUC and BS were given in Figure 2. The horizon time (t)
was six months regarding the clinical significance. For example, the AUC value estimated
at the 48-th month corresponded to the prediction accuracy of the model at the 54-th
month. All models except Model 4 performed similarly with AUC values between 0.65
and 0.90 in time (Figure 2a). We could say that there was an increasing trend in the
discrimination performance, AUC, as more data were available from patients. However,
decreasing the sample size (or increasing the failure event cumulative incidence) in time
resulted in increased prediction error (Figure 2b).

(a) (b)

Figure 2. Dynamic prediction performance of the models (5-fold and 10-repeat
cross-validation) – (a) time-dependent AUC, (b) Brier Score.
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Table 2. The results of joint models with different parameterizations (n = 417).

Model 1 Model 2

Longitudinal Sub-model
%95 C.I. %95 C.I.

Coefficient Lower Upper p Coefficient Lower Upper p

Age −0.006 −0.009 −0.003 0.001 −0.006 −0.009 −0.003 < 0.001
TPPM (High) −0.353 −0.439 −0.267 < 0.001 −0.350 −0.436 −0.264 < 0.001

PR −0.069 −0.129 −0.010 0.023 −0.070 −0.129 −0.010 0.002

σ 0.352 0.351

Survival Sub-model
%95 C.I. %95 C.I.

Coefficient Lower Upper p Coefficient Lower Upper p

Age 0.031 0.014 0.049 0.001 0.039 0.020 0.056 < 0.001
PD history (Yes) 0.877 0.337 1.418 0.002 0.824 0.273 1.376 0.003

NI 0.439 0.129 0.689 0.001 0.499 0.244 0.756 < 0.001
PR 0.608 0.267 0.949 0.001 0.616 0.260 0.970 < 0.001
α1 −0.791 −1.319 −0.262 0.003 −0.981 −1.547 −0.414 < 0.001
α2 0.439 0.071 0.807 0.019

BIC 3818.852 3819.002

Model 3 Model 4

Longitudinal sub-model
%95 C.I. %95 C.I.

Coefficient Lower Upper p Coeficient Lower Upper p

Age −0.006 −0.009 −0.003 < 0.001 −0.006 −0.011 −0.003 < 0.001
TPPM (High) −0.354 −0.439 −0.268 < 0.001 −0.349 −0.356 −0.179 < 0.001

PR −0.069 −0.129 −0.010 0.023 −0.070 −0.311 −0.087 0.002

σ 0.352 0.352

Survival sub-model
%95 C.I. %95 C.I.

Coefficient Lower Upper p Coefficient Lower Upper p

Age 0.032 0.015 0.050 < 0.001 0.038 0.021 0.068 < 0.001
PD history (Yes) 0.880 0.340 1.420 0.001 0.896 0.106 0.641 < 0.001

NI 0.448 0.199 0.697 < 0.001 0.518 0.854 0.668 < 0.001
PR 0.613 0.272 0.952 < 0.001 0.672 −1.180 −0.129 < 0.001
α1 −1.435 −2.434 −0.437 0.005 0.247 −0.847 1.253 0.201

BIC 3819.831 3826.744
TPPM: Transport Property of Peritoneal Membrane, PR: Peritonitis rate, PD: Peritoneal dialiysis
NI: Number of diseases, BIC: Bayesian information criteria, C.I.: Confidence intervals

We evaluated the effect of sample size and the number of repeated measurements
through simulation work. Since models 1 – 3 had similar predictive performance, we
conducted a simulation study using the model parameters from Model 1, which had less
model complexity than other models. Figures 3 and 4 show the model performances ob-
tained from the simulation study (sample sizes in the columns and number of replications
in the rows). The discrimination ability of the true model (M1) was generally better than
the wrong model (M2) and increased as more samples were available. Although increasing
sample size contributed to the model performances, the true model performed slightly
better than the wrong model after 84-months when the length of the longitudinal period
was 120 months (Figure 3). Calibration results showed that the amount of prediction error
of the true model was not affected by the sample size (first row in Figure 4). However,
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it was slightly lower when the length of the longitudinal process was 60 months. There
was a very slight difference between true and wrong models (M1 M2) when the sample
size was small and the length of the follow-up period was 120 months. Both models had a
similar prediction error after the 84-th month likely the discrimination ability of the fitted
models.

Figure 3. Simulation results Difference in AUCs from true (M1) and wrong
(M2) models, i.e. (M1 M2).

Figure 4. Simulation results Difference in Brier Score from true (M1) and wrong
(M2) models, i.e. (M1 M2).
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4. Discussion
Modeling time-to-event data via Cox proportional hazard model and/or Kaplan-Meier

method is a simple and easy way when time-dependent covariates do not exist. In such
cases, baseline or averaged values of multiple measurements are preferred as the predictor
of the main event (i.e., mortality). However, this strategy might be appropriate when not
the changes in a biomarker but its averaged or baseline values are related to the main
event. Otherwise, omitting the longitudinal nature of biomarkers may lead to information
loss and incorrect conclusions when the longitudinal and time-to-event data are collected
simultaneously. Joint modeling is one of the appropriate methodologies that can be used
in such situations. It models longitudinal and time-to-event data simultaneously and takes
repeated measurements of a biomarker into account while fitting time-to-event data to Cox
proportional hazard model.

In this study, we studied the applicability of the joint modeling approach on a real-
life dataset and generalized the findings through a comprehensive simulation study. We
were able to adjust longitudinal and time-to-event responses using common or different
predictors through sub-models of the joint model. An important finding was that the
averaged serum albumin levels were not associated with mortality; however, its change in
time was significantly and reversely associated with mortality increasing the risk of death
2.21 times (95% CI: 1.30 3.74). Results were similar in the previously published studies
[13, 31]. This finding clearly showed the importance of using repeated measurements in
the risk estimations rather than baseline or averaged values.

Joint modeling may have a crucial role in personalized medicine, in which treatment
will be assigned to a patient while monitoring chronic diseases. We fitted the longitudinal
data to a linear mixed-effect model and obtained patient-specific model parameters. It
enabled us to consider patients individually and to get risk predictions based on a patients
characteristics. Serum albumin changes were monitored during the follow-up, and survival
predictions in future time points were dynamically estimated using the longitudinal data
at hand. Dynamic predictions helped us in two ways: (i) it was possible to see the trend
in the longitudinal biomarkers and detect instant increases and/or decreases, and (ii) risk
predictions in future time points were dynamically updated during the follow-up period.
Therefore, personalized and dynamic risk predictions might help physicians decide about
patients treatment, such as quitting or continuing a new drug, collecting additional data,
etc. This study showed the importance of using longitudinal biomarkers and accounting
for patient variability. It was clear from the findings that risk predictions were significantly
changed when the longitudinal data were preferred instead of baseline or averaged values.

It is crucial to generalize findings since real-life data analysis may not reflect the model
performances in a wider perspective. This study provided comprehensive simulation results
to show the model performances under different scenarios. It also revealed two significant
findings from the simulation study. First, as expected, model performances increased,
and the variability in the estimations was decreased as the sample size increased. Second,
the model performances decreased as the number of repeated measurements increased. It
might be due to the increasing complexity of the model and the decreasing sample size
in time due to censoring and death. However, increasing the sample size along with the
number of repeated measurements provided better model performances. Therefore, it is
possible to say that increasing the number of repeats without increasing the sample size
will not (or barely) contribute to the model performances. For small samples, using fewer
repeats might be reasonable to fit less complicated joint models. When the follow-up
period is long, and the biomarker is measured at many time points, one should include
more samples in the study to better fit the underlying longitudinal structure or use a
subset of repeated measurements to decrease model complexity.
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In conclusion, the joint modeling approach provided better and patient-specific risk
predictions. It used a comprehensive modeling strategy by considering the longitudinal
and time-to-event data simultaneously. Therefore, we may say that it was a flexible
and interpretable model. Furthermore, using subject-specific risk predictions might be
beneficial for monitoring patients and taking patient-specific actions during the follow-up
period.
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APPENDIX
We provided the convergence information for Model 1 in Table 2. The iteration histories

of model parameters of the longitudinal and survival sub-models were given in Figures A1
and A2, respectively. The EM estimations were converged at iteration 48.
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Figure A1. Iteration history of model parameters – Linear mixed effect sub-
model of Model 1 given in Table 2.

Figure A2. Iteration history of model parameters and log-likelihood of the model
– Survival sub-model of Model 1 given in Table 2.


