
 
 

CMJ Review                                                June 2021, Volume: 43, Number: 2 
 

Cumhuriyet Medical Journal                                                                                                            100-116 

http://dx.doi.org/10.7197/cmj.939856 

Quercetin in the treatment and prevention of 

COVID-19 

COVID-19 tedavi ve profilaksisinde Quercetin  

Şeyma Taştemur1, Hilmi Ataseven2  

1 Department of Internal Medicine, Sivas Numune Hospital, Sivas, Turkey  
2 Department of Internal Medicine, Discipline of Gastroenterology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey 

Corresponding author: Şeyma Taştemur, MD., Department of Internal Medicine, Sivas Numune Hospital, Sivas, Turkey 
E-mail: yaman_seyma@yahoo.com 

Received/Accepted: May 20, 2021 / July 01, 2021 

Conflict of interest: There is not a conflict of interest. 

 

 

SUMMARY 

Coronavirus Disease-19 ( COVID-19) is a disease that started at the end 

of 2019 and continues to affect all the world as a pandemic. There is no 

definitive cure for COVID-19 yet. The disease is characterized by 

excessive immune activity, inflammation and coagulopathy. Many agents 

have been tried for treatment and prevention. Flavonoids are valuable 

natural food components with antioxidant, anti-inflammatory and 

anticoagulant properties. Quercetin, the best known flavonoid, is one of 

the most studied and beneficial one. Quercetin, which has been shown to 

be effective in many viral diseases, is mainly used in diseases such as 

cardiovascular disease and diabetes, which are associated with chronic 

inflammation. it is an important candidate for the treatment and 

prophylaxis of COVID-19, thanks to its powerful anti-inflammatory, 

antioxidant and immune-modulating effects. 
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ÖZET 

Coronavirüs Hastalığı-19 (COVID-19), 2019 yılının sonlarında başlayan ve pandemi olarak tüm dünyayı etkisi altına 

almaya devam eden bir hastalıktır. Henüz COVID-19 için kesin bir tedavi yoktur. Hastalık aşırı immünite aktivitesi, 

inflamasyon ve koagülopati ile karakterizedir. Tedavi ve profilaksi için birçok ajan denenmiştir. Flavonoidler, 

antioksidan, antienflamatuar ve antikoagülan özelliklere sahip değerli doğal gıda bileşenleridir. En iyi bilinen flavonoid 

olan Quercetin, en çok çalışılan ve faydası görülenlerden biridir. Birçok viral hastalıkta etkili olduğu gösterilen Quersetin, 

ağırlıklı olarak kardiyovasküler hastalık ve diyabet gibi kronik inflamasyonla ilişkili hastalıklarda kullanılmaktadır. Güçlü 

antienflamatuar, antioksidan ve immünmodülatör etkileri sayesinde COVID-19 tedavisi ve profilaksisi için önemli bir 

adaydır. 

Anahtar sözcükler: Quercetin, COVID-19, tedavi 

 

INTRODUCTION 

After their discovery in the 1960s, Coronaviruses 

were associated with the outbreaks; Severe Acute 

Respiratory Syndrome (SARS) in 2003 and Middle 

East Respiratory Syndrome (MERS) in 2012 (1, 2). 

They came to the fore again with the cases of viral 

pneumonia with unexplained and severe illness in 

December 2019, in Wuhan, China. This new type 

of coronavirus was named as novel coronavirus-19 

(nCoV19) by the World Health Organization 

(WHO) on January 12, 2020. On February 11, 

2020, the disease was named as COVID-19 (3). 

WHO declared a pandemic on March 11, 2020, as 

a result of the disease that spread in China and then 

all over the world within a month (4). This date is 

also the date when the first case was seen in 

Turkey. 

https://orcid.org/0000-0001-5458-509X
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Currently, there is no definitive treatment for this 

disease, whose vaccination applications continue. 

However, many agents are being tested and 

evaluated in the treatment and prophylaxis of 

COVID-19. Quercetin, a well known flavonoid, 

which has been proven in powerful anti-

inflammatory, antioxidant and antiviral activities, 

seems promising as an anti-COVID-19 treatment 

option in the light of the data obtained. 

SARS-CoV2 

Coronaviruses are enveloped, positively polarized, 

single-stranded RNA viruses (5). When the virus 

enters the host cell, viral RNA reaches the nucleus 

for replication. Viral mRNA is used for the 

biosynthesis of viral proteins. Later, new viral 

structures are created. Coronaviruses consist of 

spike protein, membrane, envelope and 

nucleocapsid (6). Spike protein is responsible for 

binding to host cell receptors and the cell 

membrane. SARS-CoV2 is structurally very 

similar to SARS-CoV. Angiotensin converting 

enzyme 2 (ACE2) has been defined as the receptor 

for SARS-CoV2 (7). Tissues with ACE2 

expression are at high risk for COVID-19 (8). This 

diversity of distribution also explains the multiple 

organ failure that may develop during the course of 

the disease (9). Since ACE2 expression is higher in 

the lung epithelial cells in the alveolar space, the 

entry and damage of the virus is significant in lungs 

(10,11). 

Flavonoids 

Flavonoids are natural herbal metabolites 

containing benzopyrone ring in polyphenolic 

structure, which are generally found in fruits, 

vegetables and various beverages (12,13). In nature 

flavonoids function as UV filters, signal molecules, 

phytoalexins, and detoxifying/antimicrobial agents 

for the plants and protect them from all 

biotic/abiotic stresses (14). 

Most flavonoids are known as flower pigments. 

However, their presence in nature is not limited to 

flowers, they are obtained from many parts of 

plants (15). Basically, fruits, leaf stems, roots, 

grains, nuts, vegetables, flowers and seeds are rich 

sources of flavonoids. More than 10,000 flavonoid 

compounds have been isolated and identified 

(16,17). 

Flavonoids are associated with positive health 

effects and are essential ingredients in a variety of 

dietary, pharmaceutical, medical, and cosmetic 

applications (18). These flavonoids, which are very 

valuable dietary components known to have many 

beneficial biochemical and antioxidant effects, are 

used in the treatment of many diseases such as 

cancer, Alzheimer's disease, and atherosclerosis 

(19,20). They are therapeutic agents with 

anticancer, antioxidant, antibacterial, antiviral, 

antiangogenic, antimalarial, neuroprotective and 

antiproliferative activities. (21-25). They have 

become particularly popular by preventing 

cardiometabolic diseases and slowing down the 

decline in cognitive performance due to aging 

process (26,27). 

Quercetin 

Flavonoids are subdivided into flavones, flavonols, 

isoflavones, and anthocyanidins. These subgroups 

are quite common in nature (28). For example, 

narigenin and hesperetin are found in citrus fruits 

and grapes, while anthocyanidins and quercetin are 

found in mulberry (29,30). 

The most studied flavonols are kaempferol, 

quercetin, myricetin and fisetin. Onions, cabbage, 

lettuce, tomatoes, apples, grapes, and some other 

fruits are rich sources of flavonols. Besides fruits 

and vegetables, tea and red wine are also sources of 

flavonols. Flavonols are the most common dietary 

group of flavonoids, and quercetin can be shown as 

the best example of this group (31). Quercetin is 

most commonly found in berry fruits, but also in 

buckwheat, onion, kale, broccoli, apple, orange, 

black tea, and green tea (32). 

Flavonoids are mostly obtained from the 

consumption of fruits, vegetables and tea. Daily 

intake is known to range from 5 to 100 mg / day. 

Quercetin and glycosides are about 75% of dietary 

flavonoids (33).  

In nature, quercetin is found predominantly in O-

glycosidic form. Apart from this form, a 

monosaccharide such as glucose / galactose / 

rhamnose or a disaccharide, which is usually 

rutinose, can also be found attached to the 3,7 and 

4 'positions. Although the sugar part is usually O-

glycosidically bound, it can sometimes be found as 

C-glycosidic. Quercetin glycosides are most 

frequently seen as 4'-O-glycosides in onions (34). 

Epidemiological studies show that a diet rich in 

flavonoids is closely related to a reduction in the 

incidence of various diseases associated with aging 

(35). As a dietary ingredient, quercetin has unique 

biological properties that improve mental and 

physical performance and reduce the risk of 

infection (36). 

Quercetin, like other flavonoids, is known to 

inhibit lipid peroxidation, platelet aggregation, 

capillary permeability and stimulate mitochondrial 

biogenesis in addition to showing anticancer, anti-

inflammatory, antiallergic, antioxidant, 
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antidiabetic, vasoprotective, antihypertensive, 

hypolipidemic, antithrombotic activities (37-42). 

Effects of Quercetin on SARS-CoV2 

1. Viral Features 

There is a large literature supporting the antiviral 

properties of quercetin, both in-vitro and in-vivo. 

Initial in-vivo studies, a positive effect was 

observed with treatment with quercetin in 

immunocompetent mice infected with Mengo virus 

(43). 

In-silico and in-vitro studies have shown that 

quercetin can interfere with various stages of 

coronavirus entry and replication cycle, such as 

papain-like protease (PLpro), 3C-like protease 

(3CLpro) and nucleoside-triphosphatase (NTPase) 

/ helicase. Combination of quercetin with vitamin 

D and vitamin C is known to exert synergistic 

antiviral and immunomodulatory effects (44). 

Effects on many respiratory system viruses were 

observed in other cell culture studies. It suppresses 

cytopathic effects caused by rhinovirus, ecovirus 

(types 7, 11, 12 and 19), coxacivirus (A21 and B1), 

and polioviruses (type 1 Sabin) (45,46). 

In rhinovirus infected mice, quercetin treatment 

reduces viral replication and alleviates virus-

induced airway cholinergic hypersensitivity (47). 

In a randomized, double-blind, placebo-controlled 

study evaluating individuals over the age of 40 who 

received 1000 mg of quercetin, it was found that 

the quercetin group had a 36% lower severity of 

upper respiratory tract infection (URTI) compared 

to the control group, and the duration of URTI was 

31% shorter. (48). 

Quercetin stops viral binding and penetration into 

the host cell and prevents infection with herpes 

simplex virus 1,2 (HSV-1, HSV-2) and acyclovir-

resistant HSV-1 by suppressing NF-jB activation 

required for HSV gene expression (49,50). 

It has been shown that athletes taking quercetin 

supplements are protected against stress-induced 

URTI (51). 

In-vitro data revealed that quercetin halts 

endocytosis by inhibiting phosphatidyl inositol 3-

kinase (PI3K), suppresses transcription and 

translation, and enhances viral clearance by 

stimulating the mitochondrial antiviral response. 

Thus, it has been shown that quercetin can inhibit 

viral replication of influenza virus by interfering 

with the 3 stages of viral replication (52). 

Quercetin; Since it inhibits polymerase, protease, 

reverse transcriptase, DNA gyrase and binds viral 

capsid proteins, it has been tested on various types 

and models in many studies (53,54). 

The use of vitamin C and quercetin has been found 

effective in COVID-19 for both prophylaxis and 

treatment in high risk individuals. (55). 

One of the first studies investigating the effect of 

quercetin on coronaviruses was conducted in 1990, 

and it was shown that the infectivity of human and 

bovine coronaviruses decreased by 50% with a 

dose of 60 µg / mL quercetin (56). 

Luteolin and quercetin have been shown to prevent 

the entry of SARS-CoV into host Vero cells (57). 

SARS-CoV, defined in 2003, is a single-stranded 

RNA virus that uses ribosome regions to encode 2 

replicase glycoproteins, polyprotein 1a (PP1a) and 

polyprotein 1b (PP1b), which mediate viral 

replication (58). Once these precursor 

glycoproteins are produced, the process of 

protease-mediated lysis begins (59).  

The inhibitory effects of quercetin isolated from a 

yeast species named Pichia pastoris on 3CLpro 

have been demonstrated. Quercetin-3-O-β-

galactoside binds to 3CLpro of SARS-CoV and 

inhibits its proteolytic activity (60). The binding 

sites of SARS-CoV2 and SARS-CoV 3CL 

proteases with quercetin are the same (61). In 

addition, it has been shown that quercetin binds 

more strongly to spike protein, ACE2, RNA-

dependent RNA polimerase (RdRp) and PLpro 

than 3CLpro (62). In these contexts, it is predicted 

that quercetin has a protective and therapeutic role 

against COVID-19 as well as its known antioxidant 

and anti-inflammatory properties.  

Quercetin also modulates the cellular unfolded 

protein response (UPR). Since coronaviruses can 

use UPR to complete all replication cycles, 

Quercetin can exhibit antiviral activity by 

modulating this pathway (63). 

Coronaviruses are sensitive to the inhibitory effects 

of zinc, which can prevent viral entry into cells and 

reduce coronavirus virulence. Quercetin also 

functions as a zinc ionophore and has been shown 

to facilitate transport of zinc across lipid 

membranes. This could theoretically increase the 

antiviral effects of zinc (64-67). 

3CLpro is also essential for MERS-CoV 

replication and as in SARS-CoV and SARS-CoV2 

Quercetin inhibits MERS-CoV’s 3CLpro (68). 

In a study in which in-silico modelling of the 

interaction between SARS-CoV2 spike protein and 

ACE2 protein was performed, quercetin was 

identified as one of the 5 most effective compounds 
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among drugs, metabolites and natural products that 

suppress the initial stage of infection (69). In a 

study conducted in the light of this hypothesis, 

quercetin demonstrated an anti-infection effect in a 

cell-virus model. Besides, it inhibited 3CLpro of 

SARS-CoV in-vitro (70). 

As a genomic structure, it can be said that SARS-

CoV2 is 79% identical to SARS-CoV (71). 

Therefore, it is not surprising that quercetin shows 

similar activity in SARS-CoV2. 

In evaluations using gene set enrichment assays 

(GSEA), vitamin D and quercetin have been 

identified as mitigating agents for COVID-19. 

Quercetin affects the functions of 85% of the target 

proteins by making 30% change in the human 

protein gene coding targeted by SARS-CoV2. 

Similarly, vitamin D provides a 70% modification 

in these proteins with the 25% change made in the 

genes of the SARS-CoV2 target proteins. The 

target protein change in vitamin D use with 

quercetin was observed at a rate of 93% (72). 

In a clinical study conducted with COVID-19 

patients, in combined use of quercetin, zinc, 

bromelain and vitamin C, positive effects were 

observed (73). 

Quercetin has low bioavailability and therefore 

requires special formulations to achieve effective 

blood levels. A clinical trial is being conducted 

using the phytosomal form of quercetin (74). 

Considering the bioavailability problem, it is 

thought that the use of diluted quercetin in low 

doses as nasal spray in its early stages may prevent 

viral entry into the cell and provide less disease 

progression and hence hospitalization rate (75). 

Quercetin, with its well-known pharmacokinetics, 

absorption, distribution and metabolism properties, 

is a potential agent for antiviral therapies based on 

viral protease inhibition, as it effectively 

suppresses enzymes essential for replication in 

coronaviruses. 

2. Immunity and Inflammation 

The main elements of innate immunity in the 

respiratory tract are epithelial cells, alveolar 

macrophages and dendritic cells. (76). T cell 

mediated immune response occurs as a result of 

antigen presentation of dendritic cells and 

macrophages. The cells involved in the response 

are CD8 + and CD4 + T cells. CD4 + T 

lymphocytes activate B lymphocytes and provide 

virus-specific antibody production, while CD8 + T 

lymphocytes kill virus-infected cells (77). 

Cytokine release from these cells also has an 

important role in the immune response and thus the 

severity of the disease. Studies Studies have 

revealed an increase in plasma levels of 

interleukin-1β (IL-1β), interleukin-1 receptor 

antagonist (IL-1RA), interleukin-2 (IL-2), 

interleukin-7 (IL-7), interleukin-8 (IL-8), 

interleukin-10 (IL-10), interferon-ɣ (IFN-ɣ), 

monocyte chemoattractant peptide-1 (MCP-1), 

macrophage inflammatory protein-1A (MIP-1A), 

macrophage inflammatory protein-1B (MIP-1B), 

granulocyte colony stimulating factor (G-CSF) and 

tumor necrosis factor-α (TNF-α) in COVID-19 

patients. These levels were found to be 

significantly higher in patients followed up in the 

intensive care unit compared to other inpatients. 

(78). In particular, interleukin-6 (IL-6) has been 

shown to be the dominant cytokine in macrophage 

activation syndrome (MAS) and cytokine storm 

(79). Again, involvement of more than 50% of the 

lung parenchyma in patients with acute respiratory 

distress syndrome (ARDS), was found to be 

associated with high IL-6 (80). 

Quercetin has been reported as a substance known 

to have potent and long-lasting anti-inflammatory 

capacity (81). Quercetin has anti-inflammatory 

potential that can be observed in different cell types 

in both animal and human models (82-89). 

In-vitro studies using various cell lines have show 

that quercetin suppresses lipopolysaccharide (LPS) 

-induced TNF-α production in macrophages and 

LPS-induced IL-8 production in lung A549 cells 

(83). Moreover, it has been shown that quercetin 

may decrease the mRNA levels of LPS-induced 

TNF-α and interleukin-1α (IL-1α) in glial cells 

(84). 

Quercetin suppresses the production of 

inflammation-producing enzymes cyclooxygenase 

(COX) and lipoxygenase (LOX) (85,86). 

Proinflammatory cytonkines have also been shown 

to reduce the release of tryptase and histamine (87). 

In a study, anti-inflammatory activity was 

demonstrated through a decrease in the expression 

of vascular cell adhesion molecule-1 (VCAM-1) 

and CD80 (88). The immunomodulatory and 

immunosuppressive effects of quercetin, on 

dendritic cell functions have been shown (89). 

Quercetin dose-dependently decreases messenger 

RNA, intracellular adhesion molecule-1 (ICAM-

1), IL-6, IL-8 and MCP-1 levels (90). 

While increasing the production of IFN-γ, it 

decreases the production of interleukin-4 (IL-4). 

With these properties, it can be said that quercetin 

is a valuable flavonid with beneficial 

immunomodulatory effects (91). 
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Quercetin prevents TNF-α from activating signal 

transmission pathways such as nuclear factor-κB 

(NF-κB), which are powerful triggers of 

inflammation and cytokine storm observed in 

COVID-19. Quercetin also increases the 

peroxisome proliferator-activated receptor γ 

(PPARγ) activity, which is antagonist with NF-κB. 

This is one of its indirect anti-inflammatory effects. 

Thanks to these two mechanisms, TNF-α-mediated 

activation of inflammation cascades is prevented 

(92,93). 

It is known that SARS-CoV2 activates NOD-, 

LRR- and protein containing pyrin domain 3 

(NLRP3) inflammasome (94,95). Among many 

flavonoids, quercetin differs in-vitro by reducing 

the NLRP3 inflammatory signaling pathway and 

gene expression of NF-kB, TNF-α, IL-6, IL- 1β and 

interleukin-18 (IL-18) (96). 

It has been shown in obese individuals, that genes 

related to interferon-mediated antiviral activity are 

expressed more with the use of an herbal 

supplement containing 1000 mg of quercetin (97). 

In another study conducted with obese patients 

with iron deficiency anemia, quercetin; It has been 

shown to reduce the level of IL-6, which is an 

inflammatory marker (98). 

25 μM quercetin suppressed the release of IL-1β, 

IL-6, IFN-γ and TNF-α in human whole blood 

treated with LPS. Its demonstration of inhibiting 

proinflammatory cytokines is important for the 

treatment of many viral diseases. TNF-α serum 

levels significantly decreased in individuals who 

received a treatment / support regimen of 150 mg 

quercetin daily for 6 weeks (37). 

Animal coronavirus models have shown that mast 

cells located in the respiratory submucosa may play 

a mixed role, including the generation of T helper 

2 (Th2) proinflammatory cytokines under the 

influence of viral stimulation and the release of 

immunoglobulin E, a type of antibody associated 

with a Th2-type immune reaction (99). 

It has been clinically demonstrated that quercetin 

regulates human mast cell degranulation and 

restricts the release of cytokines from these cells, 

which may be beneficial in cytokine storm 

(100,101).  

Quercetin has antioxidant and anti-inflammatory 

roles, modulating signal pathways associated with 

post-transcriptional modulators affecting postviral 

recovery (102). 

 

 

3. Oxidative Stress and Mitochondrial 

Damage 

Helicases of SARS-CoV2 contribute to replication 

with ATP hydrolysis that can occur in the presence 

of iron. Sufficient amount of iron must be present 

in host cells for viral replication. The immune 

system creates a response by reducing the 

bioavailability of this iron to restrict viral 

replication. Therefore, reducing the iron of the cell 

will create an antiviral effect. Hyperferritinemia 

seen in COVID-19 is a biomarker for cytokine 

storm. The main role of ferritin during infections is 

to reduce its cellular level by storing iron. In 

addition, the increase in ferritin results in 

macrophage activation and secretion of various 

inflammatory cytokines. The process of 

ferroptosis, a kind of programmed non-apoptotic 

cell death that develops due to this iron 

accumulation, has been recently described (103). 

Ferroptosis causes an irreversible change in 

mitochondrial morphology. Mitochondria are the 

basis of cellular oxidative homeostasis. Irregularity 

in iron metabolism triggers the formation of 

reactive oxygen radicals and increases oxidative 

stress. Increased inflammatory / oxidative stress 

can lead to mitochondrial dysfunction, leading to 

ferroptosis, platelet damage and eventually multi-

organ failure (104). 

Extracellular mitochondria, especially platelet 

mitochondria, are mediators associated with 

thrombosis formation. Moreover, a mitochondria 

that has lost its functionality will increase the 

production of free oxygen radicals by causing iron 

accumulation. Increased oxygen radicals will cause 

mitochondrial damage, microbiota dysbiosis and 

platelet dysfunction (105). Since mitochondria can 

regulate the immune system in stressful conditions 

such as viral infections, they can increase 

inflammation. This imbalanced immune response 

causes microbiota dysbiosis. Mitochondria are also 

known to alter the microbiota by modifying 

intestinal immune cells, epithelial cells and 

enterochromaffin cells (104). Both thrombosis and 

dysbiosis are important issues in the pathogenesis 

of COVID-19 and since these issues need to be 

addressed in more detail, they will be discussed in 

separate sections. 

SARS-CoV2, like other RNA viruses, can trigger 

oxidative stress (106). This can be controlled by 

detecting oxidative stress markers from the blood 

of patients diagnosed with COVID-19, as was 

previously seen in HIV samples (107). 

It is possible to talk about an oxidative storm in 

addition to the cytokine storm seen in patients with 
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COVID-19. The destructive effects of large 

amounts of free oxygen radicals contribute to lipid 

peroxidation and protein oxidation, damage to 

pulmonary alveolar membranes and hyalinization 

(108). 

The elderly, diabetic, or those with cardiovascular 

disease are already under a certain oxidative stress. 

Viral infections increase this stress even more. This 

gives us an idea of why the risk of disease severity 

increases in elderly and / or those ith comorbidities 

in COVID-19 (109). 

In a study in which the level of free oxygen radicals 

in sputum samples was determined with a real-time 

electrochemical diagnosis system with 

biochemical sensitivity, it was found that this level 

increased in patients with COVID-19 with 

extensive lung involvement (110). 

In addition to supplements such as N-acetyl 

cysteine, vitamin C, vitamin E, zinc and selenium; 

polyphenols are also recommended to reduce 

oxidative stress caused by COVID-19 and to 

minimize damage (111). 

IL-6 and TNF-α increase superoxide production in 

neutrophils, and hydrogen peroxide stimulates the 

release of IL-6 (112-114). 

Free oxygen radicals, which are the products of 

cytokine storm elements, are among the important 

responsible for tissue and organ damage (115). 

Although the most commonly used antioxidant 

supplements today are vitamin C and vitamin E, the 

antioxidant activity of flavonoids is more 

pronounced than those of these two vitamins (116). 

When quercetin is present in the blood, it 

contributes to vascular health and its conjugated 

form reduces the risk of cardiovascular diseases. 

Quercetin and its derivatives provide protection 

against stroke by preventing thrombosis (117). 

Dihydro-quercetin, a dihydroxyflavone, has been 

observed to reduce free oxygen radical production 

and lipid peroxidation, and increase the biological 

functions of antioxidant enzymes in animal models 

(118). 

Quercetin is a potent antioxidant that works as a 

free radical scavenger by donating 2 electrons 

through o-quinone / quinone methide in bothin-

vitro and in-vivo (119, 120) studies. 

In an animal experiment on influenza (H3N2), 

onset of infection; catalase has been associated 

with decreased concentrations of glutathione and 

superoxide dismutase (antioxidants) in the lung. 

Quercetin supplementation given concurrently 

with virus inoculation provided significant 

increases in pulmonary levels of these antioxidants 

(121). 

The onion species named Allium cepa has a rich 

content of quercetin derivatives and has both 

antioxidant and antidiabetic effects due to its 

inhibitory effect on protein tyrosine phosphatase 

1B (PTP1B) and its effects that increase glucose 

uptake (122-124). 

4. Thrombosis 

COVID-19 is a disease in which procoagulant 

factors and thus coagulability increase and 

thromboembolism can be seen. In a study that 

revealed the relationship of coagulation with 

ARDS pathogenesis, tissue factor and plasminogen 

activator inhibitor-1 levels were found to be 

significantly higher in patients with ARDS than 

those without ARDS (125). 

The significant increase in D-dimers is thought to 

be due to intense inflammation inducing intrinsic 

fibrinolysis in the lung. This bi-directional 

immuno-thrombosis model reveals that heparin 

shows both anticoagulant and anti-inflammatory 

activity by inhibiting thrombin (126). 

Many cytokines secreted in COVID-19 are 

prothrombotic. In particular, interleukin-6 (IL-6) 

has been found to be associated with increased 

fibrinogen levels (127, 128). 

In in-vitro human models of SARS-CoV, infected 

mononuclear cells expressed high levels of 

procoagulant genes, including fibrinogen, serine 

protease inhibitors, tissue factor, and factor II and 

factor X (129, 130). The cells also promote effects 

such as platelet activation and aggregation, 

endothelial dysfunction and vasoconstriction by 

increasing gene expression for Toll-like receptor 9 

and thromboxane synthase. Other platelet 

activation mechanisms such as decreased serum 

platelet factor 4 and increased beta 

thromboglobulin have been found to be associated 

with poor prognosis (131). 

Viral infections and sepsis generally trigger innate 

mechanisms such as activation of tissue factor, 

complement system C3a and C5a, and von 

Willebrand factor (132-134). 

Activation in the complement cascade activates 

leukocytes and the increased regional release of 

proinflammatory cytokines IL-1, IL-6, IL-8, and 

IFN-ɣ leads to microvascular damage. In animal 

models of sepsis, inhibition of the complement 

system has been shown to improve coagulopathy 

and endothelial dysfunction (135). 
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The strong antiplatelet and antithrombotic 

properties of quercetin known since the 1980s are 

mainly due to its inhibitory effects on 

cyclooxygenase and lipoxygenase activity in 

platelets. Lipid peroxides and superoxide anions 

inhibit prostacyclin and endothelium-derived 

relaxing factor (EDRF), which have antithrombotic 

effects. Quercetin shows antithrombotic and 

vasoprtective effects by increasing the local 

prostacyclin level and extending the half-life of 

EDRF (136). 

In-vitro studies have shown that quercetin 

glycosides support thrombin inhibition by 

activating heparin cofactor II. A quercetin 

glycoside, quercetin 3,7,3′,4′-tetrasulfate (QTS) 

has been shown to interact with thromboxane A2 to 

inhibit platelet aggregation, in-vivo. In addition, 

QTS has been observed to act as a fibrinolytic agent 

by inhibiting tissue factor expression in human 

monocyte cell culture. It was observed that QTS at 

25 mg/ kg/i.p  had the same efficacy as  acetyl 

salisilic asid used at  50 mg/kg/i.p. (137,138). 

A study done with biochemical and cytometric 

processes; demonstrated that quercetin and its 

metabolites suppressed platelet activation, dense 

granule secretion, fibrinogen binding to platelets 

via integrin αIIbβ3, and suppressed all thrombotic 

effects of platelets and thrombus formation by 

changing the intracellular ratio of calcium (139). 

In another study in which the antiplatelet activity 

of quercetin was evaluated, it was demonstrated 

that platelet aggregation, granule secretion, ATP 

release and P-selectin expression were suppressed, 

platelet cAMP level and vasodilator-stimulated-

phosphoprotein phosphorylation were increased. It 

has been observed to inhibit collagen, ADP and 

thrombin-induced platelet aggregation. It 

significantly attenuate thrombin evoked [Ca2+] 

mobilization (140). 

In a study with mice given 200 mg / kg 

isoquercetin, antithrombotic effects were 

demonstrated in-vivo over a period of 48 hours 

(141). 

It was considered as a potential thrombin inhibitor 

in an in-vitro study in which 30 flavonoids, 

including quercetin, were evaluated for their 

antithrombin effects (142). 

 It is shown that quercetin reduces fibrinogen 

binding to activated integrin αIIbβ3. Integrin 

αIIbβ3 is directly related with adhesion and platelet 

activation. Quercetin is also known as an inhibitor 

of PI3K. PI3K plays a crucial role in platelet 

function such as activation, adhesion and 

aggregation, with Akt, the main target of PI3K 

signaling (143).  

5. Gut Microbiome and Dysbiosis 

High levels of proinflammatory cytokines 

secondary to viral infections can alter the intestinal 

microbiota and disrupt intestinal integrity. A small 

dysfunction in the small intestine activates a 

multifaceted mechanism, including the immune 

system, which results in microbiota changes and 

inflammation. Inflammation in the intestines 

causes an intestinal permeability that allows 

bacterial antigens and other toxins to pass into the 

systemic circulation, which may worsen the 

condition of patients diagnosed with COVID-19 in 

the septic picture. 

Immune responses that develop in response to viral 

infections such as influenza can lead to 

consequences such as dysbiosis and increased 

intestinal permeability (144). 

Secondary infections follow the microbial passage 

that develops due to permeability. Bacterial 

translocation from the intestine to the lungs has 

been reported in cases of sepsis and ARDS (145). 

It is known that the intestines and lungs are 

interrelated to regulate the immune response and 

dysbiosis in the intestinal microbiota contributes to 

the pathogenesis of lung infections (146). 

Detection of SARS-CoV2 RNA in fecal sampes 

may support this transition (147). 

In a study in which autopsy series of individuals 

infected with SARS-CoV were examined, 

pathological modifications were also observed in 

the digestive tract, indicating that virus-infected 

immune cells entered the circulation and damaged 

enteric cells (148). 

These data suggest that coronaviruses can migrate 

from the lung tissue into the systemic circulation 

and migrate into intestinal cells through the 

circulation and lymphatic system. 

Flavonoids have regulating and healing effects on 

microbiota. They suppress inflammation in the 

intestine. Flavonoids are metabolized by bacteria in 

the intestinal flora. Its regulatory effects on the 

intestinal immune system are also known (149). 

It has been shown that quercetin supplementation 

has positive effects on microbiota biodiversity in 

mice whose microbiota has been modified by 

antbiotics. Their contributions to intestinal barrier 

property, villi length and mucosal thickness were 

also found to be statistically significant. This study 

demonstrated the healing power and prebiotic 

effect of quercetin on microbiota (150). 
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The effect of trans-resveratrol and quercetin on 

intestinal microbiota was investigated in a study 

conducted on mice on a high fat / sucrose diet. With 

the addition of quercetin to the diet, positive 

changes were observed in the microbiota in 

addition to changes in the intestinal epithelial level. 

Quercetin produced an increase in the Firmicutes / 

Bacteroidetes ratio and some other positive 

changes in the gut microbiota in mice fed this high 

fat / sucrose diet. One of these changes is the 

significant reduction of Erysipelotrichaceae and 

Bacillus species, which are associated with 

western-type diets and obesity (151). 

CONCLUSION 

Quercetin may have beneficial effects by acting 

directly or indirectly on many parts of COVID-19 

pathogenesis. It has been observed in many studies 

that it has anti-inflammatory, antioxidant, 

antithrombotic and immunoregulatory and 

microbiota-regulatory effects in COVID-19 as in 

some other viral diseases previously reviewed. 

Quercetin appears to be an important potentially 

powerful agent for both the treatment and 

prevention of COVID-19. Its properties to improve 

the immune system and mitochondrial functions 

make this valuable flavonoid an important 

alternative treatment option for COVID-19 

alongside all the other candidate  drugs. Further 

studies are needed not only on its efficacy but also 

on some properties such as dosage, duration of use, 

and which form to use. 
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