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Abstract
In the present paper, we have studied the curvature tensors of (k,µ)-paracontact metric manifold satisfying
the conditions Z̃(X ,Y ) ·R = 0, Z̃(X ,Y ) · Z̃ = 0, R(X ,Y ) · Z̃ = 0 and R(X ,Y ) ·R = 0. According the cases, we have
classified (k,µ)-paracontact metric manifolds.
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1. Introduction
The notion of paracontact geometry was introduced by Kaneyuki and Williams in 1985 [6]. A systematic study of paracontact
metric manifolds and their subclasses was carried out by Zamkovoy [15]. Several geometers studied paracontact metric
manifolds and obtain various important properties of these manifolds.

[5] introduced a new type of paracontact geometry, so called paracontact metric (k,µ)-spaces, where k and µ are real
constants. Such manifolds are known as (k,µ)-paracontact metric manifolds. The class of (k,µ)-paracontact metric manifolds
contains para-Sasakian manifolds.

As a generalization of locally symmetric spaces, many authors have studied semi-symmetric spaces. A semi-Riemannian
manifold (M2n+1,g), n≥ 1, is said to be semi-symmetric if its curvature tensor R satisfies R(X ,Y ) ·R = 0, where R(X ,Y ) is
considered to be a derivation of the tensor algebra at each point of the manifold for the tangent vectors X ,Y [9, 7]. A manifold
is said to be Ricci semisymmetric if R(X ,Y ) ·S = 0 where S denotes the Ricci tensor of type (0,2). A general classification of
these manifolds has been worked out by Mirzoyan [8].

The concept of locally φ -symmetric was introduced by Takahashi [10] in Sasakian geometry as a weaker version of locally
symmetric manifolds. Atçeken M. [2]. studied generalized Sasakian space form satisfying certain conditions on the concircular
curvature tensor. Arslan et. al. produced the works on contact manifold curvature tensor [1].

Motivated by the studies of the above authors, in this paper we classify (k,µ)-paracontact manifolds, which satisfy the
curvature conditions Z̃(X ,Y ) · Z̃ = 0, Z̃(X ,Y ) ·R = 0, R(X ,Y ) · Z̃ = 0 and R(X ,Y ) ·R = 0 where Z̃ is the concircular curvature
tensor, R is the Riemannian curvature tensor.

2. Preliminaries
A contact manifold is a C∞− (2n+1)manifold M2n+1equipped with a global 1-form η such that η ∧ (dη)n 6= 0 everywhere on
M2n+1. Given such a form η , it is well known that there exists a unique vector field ξ , called the characteristic vector field,
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such that η(ξ ) = 1 and dη(X ,ξ ) = 0 for every vector field X on M2n+1. A Riemannian metric g is said to be associated metric
if there exists a tensor field φ of type (1,1) such that

φ
2X = X−η(X)ξ , η(ξ ) = 1, η ◦φ = 0, φξ = 0, (1)

g(φX ,φY ) =−g(X ,Y )+η(X)η(Y ), g(X ,ξ ) = η(X) (2)

for all vector fields X ,Y on M. Then the structure (φ ,ξ ,η ,g) on M is called a paracontact metric structure and the manifold
equipped with such a structure is called a almost paracontact metric manifold [15].

We now define a (1,1) tensor field h by h = 1
2 Lξ φ , where L denotes the Lie derivative, then h is symmetric and satisfies

[15].

hφ =−φh, hξ = 0, Tr.h = Tr.φh = 0. (3)

If ∇ denotes the Levi-Civita connection of g, then we have the following relation

∇X ξ =−φX +φhX (4)

for all X ∈ χ(M) [15]. For a paracontact metric manifold M2n+1(φ ,ξ ,η ,g), if ξ is a killing vector field or equivalently, h = 0
it is called a K-paracontact manifold.

A paracontact metric structure (φ ,ξ ,η ,g) is normal, that is, satisfies [φ ,φ ]+2dη⊗ξ = 0, which is equivalent to

(∇X φ)Y =−g(X ,Y )ξ +η(Y )X

for any X ,Y ∈ χ(M) [15]. If an almost paracontact metric manifold is normal, than it called paracontact metric manifold.
Any para-Sasakian manifold is K-paracontact, and the converse holds when n = 1, that is, for 3-dimensional spaces. Any
para-Sasakian manifold satisfies

R(X ,Y )ξ =−(η(Y )X−η(X)Y ) (5)

for any X ,Y ∈ χ(M), but this is not a sufficient condition for a paracontact manifold to be para-Sasakian. It is clear that every
para-Sasakian manifold is K-paracontact, but the converse is not always true [4].

A paracontact manifold M is said to be η-Einstein if its Ricci tensor S of type (0,2) is of the from S(X ,Y ) = ag(X ,Y )+
bη(X)η(Y ), where a,b are smooth functions on M. If b = 0, then the manifold is also called Einstein [11].

A paracontact metric manifold is said to be a (k,µ)- paracontact manifold if the curvature tensor R satisfies

R̃(X ,Y )ξ = k [η(Y )X−η(X)Y ]+µ [η(Y )hX−η(X)hY ] (6)

for all X ,Y ∈ χ(M) and k,µ are real constants.
This class is very wide containing the para-Sasakian manifolds as well as the paracontact metric manifolds satisfying

R(X ,Y )ξ = 0 [16].
In particular, if µ = 0, then the paracontact metric (k,µ)-manifold is called paracontact metric N(k)-manifold . Thus for a

paracontact metric N(k)-manifold the curvature tensor satisfies the following relation

R(X ,Y )ξ = k(η(Y )X−η(X)Y ) (7)

for all X ,Y ∈ χ(M). Though the geometric behavior of paracontact metric (k,µ)-spaces is different according as k <−1, or
k >−1, but there are also some common results for k <−1 and k >−1.

Lemma 1. There does not exist any paracontact (k,µ)-manifold of dimension greater than 3 with k >−1 which is Einstein
whereas there exits such manifolds for k <−1 [5].

In a paracontact metric (k,µ)-manifold (M2n+1φ ,ξ ,η ,g), n > 1, the following relations hold:

h2 = (k+1)φ 2, (8)
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(∇̃X φ)Y =−g(X−hX ,Y )ξ +η(Y )(X−hX), for k 6=−1, (9)

S(X ,Y ) = [2(1−n)+nµ]g(X ,Y )+ [2(n−1)+µ]g(hX ,Y )+ [2(n−1)+n(2k−µ)]η(X)η(Y ), (10)

S(X ,ξ ) = 2nkη(X), (11)

QY = [2(1−n)+nµ]Y +[2(n−1)+µ]hY +[2(n−1)+n(2k−µ)]η(Y )ξ , (12)

Qξ = 2nkξ , (13)

Qφ −φQ = 2[2(n−1)+µ]hφ (14)

for any vector fields X ,Y on M2n+1 , where Q and S denotes the Ricci operator and Ricci tensor of (M2n+1,g), respectively [5].

Let (M,g) be an (2n+1)-dimensional Riemanian manifold. Then the concircular curvature tensor Z̃ is defined by

Z̃(X ,Y )Z = R(X ,Y )Z− τ

2n(2n+1)
{g(Y,Z)X−g(X ,Z)Y}, (15)

for all X ,Y,Z ∈ χ(M) , where r is the scalar curvature of M and where R denotes the Riemannian curvature tensor of M and Q
is the Ricci operator given by g(QX ,Y ) = S(X ,Y ) [11].

3. A (k,µ)- Paracontact Metric Manifold Satisfying Certain Curvature Tensor Conditions

In this section, we will give the main results for this paper.

Let M be (2n+1)-dimensional (k,µ)-paracontact metric manifold and we denote the Riemannian curvature tensor of R,
then from (6), we have

R(ξ ,Y )Z = k(g(Y,Z)ξ −η(Z)Y )+µ(g(hY,Z)ξ −η(Z)hY ). (16)

In (6), choosing Y = ξ , we obtain

R(X ,ξ )ξ = k(X−η(X)ξ )+µhX . (17)

Also from (16), we get

η(R(ξ ,Y )Z) = k(g(Y,Z)−η(Y )η(Z))+µg(hY,Z) (18)

from which (15), we have

Z̃(ξ ,Y )Z = (k− r
2n(2n+1)

)(g(Y,Z)ξ −η(Z)Y )+µ(g(hY,Z)ξ −η(Z)hY ) (19)

and

Z̃(ξ ,Y )ξ = (k− r
2n(2n+1)

)(η(Y )ξ −Y )−µhY. (20)
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Theorem 2. Let M be a (2n+1)-dimensional (k,µ)-paracontact manifold. Then R(X ,Y ) · Z̃ = 0 if and only if M is an Einstein
manifold.

Proof. Suppose that R(X ,Y ) · Z̃ = 0. Then X = ξ , we have

(R(ξ ,Y )Z̃)(U,W )Z = R(ξ ,Y )Z̃(U,W )Z− Z̃(R(ξ ,Y )U,W )Z

−Z̃(U,R(ξ ,Y )W )Z− Z̃(U,W )R(ξ ,Y )Z = 0, (21)

for any Y,U,W,Z ∈ χ(M). Using (16), (19), Z = ξ in (21) and set k− r
2n(2n+1) = A, we obtain

(R(ξ ,Y )Z̃)(U,W )ξ = R(ξ ,Y )(A(η(W )−η(U))+µ(η(W )hU−η(U)hW )

−Z̃(k(g(Y,U)ξ −η(U)Y )+µ(g(hY,U)ξ −η(U)hY ),W )ξ

−Z̃(U,k(g(Y,W )ξ −η(W )Y )+µ(g(hY,W )ξ −η(W )hY )ξ

−Z̃(U,W )(k(η(Y )ξ −Y )−µhY ) = 0. (22)

Here setting by using (17), (6) and inner product both sides of (22) by V ∈ χ(M), we obtain

kg(Z̃(U,W )Y,V )+µg(Z̃(U,W )hY,V )

+kµη(W )η(V )g(Y,hU)+µ
2(k+1)η(W )η(V )g(Y,U)

−kµη(U)η(V )g(Y,hW )−µ
2(k+1)η(U)η(V )g(Y,W )

+Akg(Y,U)g(W,V )+ kµg(Y,U)g(hW,V )

+Aµg(hY,U)g(W,V )+µ
2g(hY,U)g(hW,V )

−Akg(Y,W )g(U,V )− kµg(Y,W )g(hU,V )

−Aµg(hY,W )g(U,V )−µ
2g(hY,W )g(hU,V ) = 0. (23)

Using the equations (1), (8) and choosing U =V = ei, ξ , in (23), 1≤ i≤ n, for orthonormal basis of χ(M), we arrive

kS(W,Y )+µS(W,hY )−2nk2g(W,Y )−2nkµg(W,hY ) = 0. (24)

In (24), using (15) and replacing hY of Y, we get

kS(W,hY )+µ(1+ k)S(W,Y )−2nk2g(W,hY )−2nkµ(1+ k)g(W,Y ) = 0. (25)

Also from (24) and (25), we conclude

S(Y,W ) = 2nkg(Y,W ).

So, M is an Einstein manifold. Conversely, let M2n+1(φ ,ξ ,η ,g) be an Einstein manifold i.e. S(Y,W ) = 2nkg(Y,W ), then from
(25), (24), (23), (22) and (21), we have R(X ,Y ) · Z̃ = 0. �

Theorem 3. Let M be a (2n+ 1)-dimensional (k,µ)-paracontact manifold. Then, Z̃(X ,Y ) · Z̃ = 0 if and only if M is an
Einstein manifold.

Proof. Suppose that Z̃(X ,Y ) · Z̃ = 0. Then we have,

(Z̃(X ,Y )Z̃)(U,W )Z = Z̃(X ,Y )Z̃(U,W )Z− Z̃(Z̃(X ,Y )U,W )Z

−Z̃(U, Z̃(X ,Y )W )Z− Z̃(U,W )Z̃(X ,Y )Z = 0 (26)

for any X ,Y,U,W,Z ∈ χ(M). Using (19), (20) and X = Z = ξ in (26), for k− r
2n(2n+1) = A, we obtain

(Z̃(ξ ,Y )Z̃)(U,W )ξ = Z̃(ξ ,Y )(A(η(W )−η(U))+µ(η(W )hU−η(U)hW )

−Z̃(A(g(Y,U)ξ −η(U)Y )+µ(g(hY,U)ξ −η(U)hY ),W )ξ

−Z̃(U,A(g(Y,W )ξ −η(W )Y )+µ(g(hY,W )ξ −η(W )hY )ξ

−Z̃(U,W )(A(η(Y )ξ −Y )−µhY ) = 0. (27)
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Here setting by using (19) and inner product both sides of (27) by V ∈ χ(M), we get

Ag(Z̃(U,W )Y,V )+µg(Z̃(U,W )hY,V )+Aµ(η(W )η(V )g(Y,hU)

−η(U)η(V )g(Y,hW ))+µ
2(k+1)(η(W )η(V )g(Y,U)

−η(U)η(V )g(Y,W ))+Akg(Y,U)g(W,V )+Aµ(g(Y,U)g(hW,V )

+g(hY,U)g(W,V ))+µ
2(g(hY,U)g(hW,V )−g(hY,W )g(hU,V ))

−A2g(Y,W )g(U,V )−Aµ(g(Y,W )g(hU,V )+g(hY,W )g(U,V )) = 0. (28)

Using the equations (1), (8), (15) and taking U =V = ei, ξ in (28), 1≤ i≤ n, for orthonormal basis of χ(M), we have

AS(W,Y )+µS(W,hY )−2nkAg(W,Y )−2nkµg(W,hY ) = 0. (29)

In (29), replacing hY of Y, we arrive

AS(W,hY )+µ(1+ k)S(W,Y )−2nkAg(W,hY )−2nkµ(1+ k)g(W,Y ) = 0. (30)

From (29) and (30), we conclude

S(W,Y ) = 2nkg(W,Y ).

Thus, M is an Einstein manifold. Conversely, let M2n+1(φ ,ξ ,η ,g) be an Einstein manifold i.e. S(Y,W ) = 2nkg(Y,W ), then
from (30), (29), (28), (27) and (26), we have Z̃(X ,Y ) · Z̃ = 0. �

Theorem 4. Let M be a (2n+1)-dimensional (k,µ)-paracontact manifold. Then, M is semisymetric if and only if M is an
η-Einstein manifold.

Proof. Suppose that M is semisymetric. Then we have,

(R(X ,Y )R)(U,W )Z = R(X ,Y )R(U,W )Z−R(R(X ,Y )U,W )Z−R(U,R(X ,Y )W )Z−R(U,W )R(X ,Y )Z = 0, (31)

for any X ,Y,U,W,Z ∈ χ(M). Using (16) and X = Z = ξ in (31), we obtain

(R(ξ ,Y )R)(U,W )ξ = R(ξ ,Y )(k(η(W )−η(U))+µ(η(W )hU−η(U)hW )

−R(k(g(Y,U)ξ −η(U)Y )+µ(g(hY,U)ξ −η(U)hY ),W )ξ

−R(U,k(g(Y,W )ξ −η(W )Y )+µ(g(hY,W )ξ −η(W )hY )ξ

−R(U,W )(k(η(Y )ξ −Y )−µhY ) = 0. (32)

By using (16), (6) and inner product both sides of (32) by V ∈ χ(M), we get

kg(R(U,W )Y,V )+µg(R(U,W )hY,V )+ kµ(η(W )η(V )g(Y,hU)

−g(hY,W )g(U,V ))+µ
2(1+ k)(η(U)η(V )g(Y,hU)

−η(U)η(V )g(Y,W ))+ k2(g(U,Y )g(V,W )−g(U,V )g(V,W ))

+kµ(g(Y,U)g(hW,V )−η(U)η(V )g(Y,hW ))+ kµ(g(hY,U)g(W,V )

−g(Y,W )g(hU,V ))+µ
2(g(hY,U)g(hW,V )−g(hY,W )g(hU,V )) = 0. (33)

Making use of (1), (11) and choosing U =V = ei, ξ in (33), 1≤ i≤ n, for orthonormal basis of χ(M), we have

kS(W,Y )+µS(W,hY )−2nk2g(W,Y )−2nkµg(hY,W )+ kµη(W )η(Y ) = 0. (34)

In (34) using (8) and replacing hY of Y , we get

kS(W,hY )+µ(1+ k)S(W,Y )−2nk2g(W,hY )−2nkµ(1+ k)g(U,V ) = 0. (35)

From (34) and (35), we obtain

S(W,Y ) = 2nkg(W,Y )− k2µ

(k2−µ2)(1+ k)
η(W )η(Y ).

Thus, M is an η-Einstein manifold. Conversely, let M2n+1(φ ,ξ ,η ,g) be an η-Einstein manifold i.e.
S(W,Y ) = 2nkg(W,Y )− k2µ

(k2−µ2)(1+k)η(W )η(Y ), then from (35), (34), (33), (32) and (31), we have R(X ,Y ) ·R = 0. �
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Theorem 5. Let M be (2n+ 1)-dimensional a (k,µ)-paracontact manifold. Then, Z̃(X ,Y ) ·R = 0 if and only if M is an
Einstein manifold.

Proof. Suppose that Z̃(X ,Y ) ·R = 0. Then we have,

(Z̃(X ,Y )R)(U,W )Z = R(X ,Y )R(U,W )Z−R(Z̃(X ,Y )U,W )Z

−R(U, Z̃(X ,Y )W )Z−R(U,W )Z̃(X ,Y )Z = 0, (36)

for any X ,Y,U,W,Z ∈ χ(M). Using (16), (20) and X = Z = ξ in (36) for k− r
2n(2n+1) = A, we obtain

(Z̃(ξ ,Y )R)(U,W )ξ = Z̃(ξ ,Y )(k(η(W )−η(U))+µ(η(W )hU−η(U)hW )

−R(A(g(Y,U)ξ −η(U)Y )+µ(g(hY,U)ξ −η(U)hY ),W )ξ

−R(U,A(g(Y,W )ξ −η(W )Y )+µ(g(hY,W )ξ −η(W )hY )ξ

−R(U,W )(A(η(Y )ξ −Y )−µhY ) = 0. (37)

By using (19), (8) and inner product both sides of (37) by V ∈ χ(M), we obtain

Ag(R(U,W )Y,V )+µg(R(U,W )hY,V )+Aµη(W )η(V )g(Y,hU)

+µ
2(k+1)η(W )η(V )g(Y,U)−Aµη(U)η(V )g(Y,hW )

−µ
2
η(U)η(V )g(Y,W )+Akg(Y,U)g(W,V )+Aµg(Y,U)g(hW,V )

+kµg(hY,U)g(W,V )+µ
2g(hY,U)g(hW,V )−Akg(Y,W )g(U,V )

−Aµg(Y,W )g(hU,V )− kµg(hY,W )g(U,V )−µ
2g(hY,W )g(hU,V ) = 0. (38)

Using the equations (1), (11) and choosing U =V = ei, ξ in (38), 1≤ i≤ n, for orthonormal basis of χ(M), we have

AS(W,Y )+µS(W,hY )−2nAkg(W,Y )−2nkµg(W,hY ) = 0. (39)

In (39), using the equations (8) and replacing hY of Y, we get

AS(W,hY )+µ(1+ k)S(W,Y )−2nkAg(W,hY )−2nkµ(1+ k)g(W,Y ) = 0. (40)

Also from (39) and (40), we conclude

S(W,Y ) = 2nkg(W,Y ).

Thus, M is an Einstein manifold. Conversely, let M2n+1(φ ,ξ ,η ,g) be an Einstein manifold i.e. S(W,Y ) = 2nkg(W,Y ), then
from (40), (39), (38), (37) and (36), we have Z̃(X ,Y ) ·R = 0. �

4. Conclusion
The methods we apply in this article can be applied to other manifolds as well. In general the results can be interpreted
geometrically.
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