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Abstract
This article presents two approaches to extend classical MANOVA tests to the unequal
covariances case. The first approach is illustrated by extending the classical Wilks test,
which is valid only when covariances are equal. Such tests will be based on exact prob-
abilities of certain extreme regions. We will also show how tests numerically equivalent
to the parametric bootstrap tests could be easily obtained without using any bootstrap
sampling arguments, so that resulting p-values are also based on exact probabilities of well
defined extreme regions. Being systematic approaches, by taking similar approaches, re-
searchers should be able to derive generalized tests in MANCOVA, higher-way MANOVA,
and in RM MANOVA under heteroscedasticity, in which the parametric bootstrap type
approaches run into difficulties.
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1. Introduction
MANOVA problems arise in a variety of applications ranging from Biometrics to studies

of Public Health. When there are number of populations/treatments involving more than
one response variable, one needs to first conduct MANOVA before proceeding to pairwise
comparisons. In this article we propose two sets of solutions to MANOVA under unequal
covariances, which are based on exact probabilities of certain extreme regions. The first
set deals with the problem extending classical tests valid under equal covariances, and
the second set deals with tests involving Bootstrap samples, which provide no interpreta-
tion concerning extreme regions of underlying sample spaces. Moreover, the parametric
bootstrap (PB) approach may run into difficulties when good point estimators are not
available, as the case in dealing with lifetime distributions and mixed effects models.

Although we do not address the [5] test due to using Lawley-Hotelling’s type chi-squared
approximations, we do utilize their approach in the generalized Wilks test presented in
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the next section. We will also derive a generalized tests that are numerically equivalent to
the parametric bootstrap tests proposed by [8] and [21]. We will also not directly address
the multivariate Behrence-Fisher problem.

A reader interested in that particular case is referred to the generalized tests discussed
by [5] and [15], which has the advantage of being numerically equivalent to the Bayesian
solution derived by [6] under the widely used non-informative prior.

Although there is no clear winner in the case of MANOVA under equal covariances, it
seems that the Wilks test is preferred by many practitioners. Moreover, Wilks test statistic
has exact distributional results as discussed by [7]. Therefore, that is the first test we will
extend to the unequal covariances case using [5] arguments. Although we provide details
of generalized Wilks test, we will also briefly discuss the approach researchers can take to
generalize other classical tests such as the Roy’s largest root test, the Lawley-Hotelling’s
test, and the Bartlett-Nanda-Pillai test.

By taking the two approaches proposed in this article, researchers are encouraged to de-
rive generalized tests in higher-way MANOVA problems under heteroscedasticity, in Mixed
Effects applications, and applications involving non-normal distributions (e.g. Lifetime
distributions such as Weibull and Gamma), where the PB approach run into difficulties.

1.1. About our approach
Each of the two systematic approaches we propose in this article should pave the way

for researchers to extend the classical tests to higher-way MANOVA, MANCOVA, and
repeated measuare (RM) MANOVA. For example, the approach we propose in extending
the Wilks test (GW1 test and GW2 test) to the case of unequal covariances, researchers
should find useful in extending their favorite MANOVA tests such as Roy’s largest root
test, Lawley-Hotelling’s test, and Bartlett-Nanda-Pillai test to case of unequal covariances.

The generalized parametric bootstrap (GPB) approach we introduce in this article also
has a number of advantages over the PB approach. For example, the GPB approach
does not require one to have good point estimators such as MLEsmaximum likelihood
estimates (MLEs) of parameters to start with. This will make inferences such as RM
MANOVA in mixed effects models possible by employing distribution theory developed
by [20]. Moreover, extensions to non-normal distributions such as the Weibull, Lognormal,
and Gamma that arise in lifetime distributions will also become possible. Moreover, all
generalized tests have the advantage that they are based on exact probabilities of well
defined extreme regions of the underlying sample spaces.

1.2. About generalized inference
There are multiple solutions to the MANOVA problem, as is the case with classical

ANOVA under unequal variances. Here we present a particular class of solutions, which
are all based on the generalized inference approach introduced by [14,16,17]. In one-liner,
generalized tests are based on random quantities called Generalized Test Variables (GTV)
that are functions of (i) observable random variables, (ii) their observed values, and (iii)
unknown parameters, defined in such a way that

(a) the distribution of GTV is free of unknown parameters, and
(b) at the observed sample points, the observed value of GTV will have no unknown

parameters under the null hypothesis. If the GTV is also monotonic for deviations from the
null hypothesis, then it can be employed to define extreme regions, on which generalized
p-values can be based.

Weerahandi [17] defined the notion of Generalized Pivotal Quantities, abbreviated as
GPQs. In one-liner, a GPQ of a certain parameter is also a function of (i) observable
random variables, (ii) their observed values, and (iii) unknown parameters, defined in
such a way that
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(a) its distribution does not depend on nuisance parameters, and
(b) at the observed sample points, its observed value become equal to the parameter,

or a function of the parameter.
Weerahandi [15,17] argued that the practitioners should do the best with data at hand

like Bayesians do and that generalized p-values are exact probabilities of well defined ex-
treme regions. For the benefits of practitioners who insist on frequent properties, Roy and
Bose [11] studied the small and large sample coverage of generalized confidence intervals,
and proposed improvements for the former.

In ANOVA and MANOVA type problems, the underlying GTVs and GPQs are not
unique, and so there are multiple extreme regions yielding exact probabilities, on which
one can base tests. As pointed out by [19], what the authors present as generalized fiducial
tests (e.g. [10]) and PB tests (e.g. [8]), can be derived by GTV/GPQ approach, but the
converse is not true. To be specific, in its numerical form, the fiducial tests are a sub-
set of generalized tests based on regular probability arguments. Moreover, while the PB
approach can solve many parametric problems, that approach runs into difficulty in such
problems as Mixed Effects models and those involving such distributions as lifetime distri-
butions such as the Weibull and Gamma, where there are not even good point estimators
having known distributions for the PB approach to work.

1.3. Notations
In this article, we will use bold face letters such as Y to denote a multivariate random

vector representing a population of interest. The observed value of Y is denoted as y.
If the random vector Y has p components, then its components are denoted as: Y =
(Y1 Y2 · · · Yp)′ . The mean vector of a population will be denoted by lowercase Greek
letters such as µ and the covariance matrix by uppercase Greek letters such as Σ. If µ
represents the mean vector of a random vector Y, then it is defined as µ = E(Y). The
covariance matrix of Y is defined as:

Σ = Var(Y) = E(Y − µ)(Y − µ)′,

respectively.
When we have a random sample of size n, we use the notation Y to denote the unbiased

estimator of µ and S to denote the unbiased estimator of the covariance matrix defined as

S = W/(n − 1), where W =
∑

(Yj − Y)(Yj − Y)′. (1.1)

In the sequel below, for convenience of presentation, derivations involving square roots,
and reading we assume that covariance matrices we deal with are positive definite. We can
easily relax that assumption using Cholesky decomposition in palace of the square roots.

2. Solutions to heteroscedastic MANOVA
Consider the heteroscedastic MANOVA problem involving I populations, each of which

is p dimensional,

Yij ∼ Np(µi, Σi); i = 1, . . . , I; j = 1, . . . , ni,

and consider the null hypothesis

H0 : µ1 = µ2 = . . . = µI . (2.1)

We will assume all population and sample covariance matrices to be positive definite. As
in [5], consider the transformed data matrix Xij = g(s)−1/2Yij ∼ Np(θ, niΛi), where θ =
g(s)−1/2µ, g(s) is a positive definite matrix such as the identity matrix g = I, or g(s) =
s1/n1 + s2/n2 + · · · + sI/nI , the one used by [5] for the p = 2 case.

Next, we present two approaches to obtain generalized tests to validate H0, namely
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1. Use the form of the desired classical test when covariances are known and handle
then them by their GPQs,

2. Apply a suitable (as described below) scale invariant transformation to the original
data and obtain a GTV.

2.1. Approach 1 illustrated by two generalized Wilks tests
In this section we introduce an approach that should work in extending classical MANOVA

tests such as Roy’s largest root test, Lawley-Hotelling’s test, Bartlett-Nanda-Pillai test,
and Wilk’s test to the case of unequal covariances. The approach one should be able to
extend for higher-way MANOVA as well. This approach basically starts out with any
classical test when the covariances are known, and then tackling the covariances by the
GPQs of the type suggested by the following proposition:

Proposition 2.1. Suppose the random vector V has a Wishart distribution of the form

V ∼ W (m, Λ),

and v be its observed value. If Λ is positive definite, then,

Λ̃ = v1/2
(
(v−1/2Λv−1/2)1/2(v1/2V−1v1/2)(v−1/2Λv−1/2)1/2

)
v1/2 (2.2)

is a GPQ for Λ distributed as Λ̃ = v1/2U−1v1/2, where U ∼ W(m, I).

Proof. From properties of the Wishart distribution it follows that

v−1/2Vv−1/2 ∼ W (m, v−1/2Λv−1/2) and hence (2.3)
U = (v−1/2Λv−1/2)−1/2(v−1/2Vv−1/2)(v−1/2Λv−1/2)−1/2 ∼ W (m, I)

thus implying the distribution of Λ̃, which is distributed free of unknown parameters.
Moreover, at the observed v of V, Λ̃ becomes equal to Λ, thus proving the proposition. □

Now in order to utilize Proposition 2.1 in extending the classical tests such as the Wilks
to the unequal covariances case, define

Λi = g(s)−1/2 Σi

ni
g(s)−1/2, i = 1, 2 . . . , I.

Testing of the hypothesis (2.1) can be based on the independent random variables

Xi ∼ N(θ, Λi), under H0 (2.4)

and
Vi = (ni − 1)g(s)−1/2 Si

ni
g(s)−1/2 ∼ Wp(ni − 1, Λi).

If covariances were known, one could establish a testing procedures by considering a
between group of weighted sum of cross products of the form

T̃(X; Λ) =
I∑

i=1
(Xi − X̃)Wi(Xi − X̃)′, (2.5)

where Wi is a suitable weight function and X̃ = θ̂ is an estimate the common mean vector
θ under H0 obtained as

X̃ =
(

I∑
i=1

Λ−1
i

)−1( I∑
i=1

Λ−1
i Xi

)
. (2.6)
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Two suitable weight functions are

Wi = Λ−1
i and Wi = UiU

′
i, where Ui =

(
I∑

i=1
Λi

)
Λ−1

i . (2.7)

Gamage et al. [5] suggested using weights of the former set of weights, but that choice
does not reduce to their generalized test for the Behrence-Fisher problem when p = 2. We
will denote the generalized Wilks test developed below with that weight as GW1. The
test based on the alternative second set of weights in (2.7) having that property is denoted
as GW2.

We will denote the generalized Wilks test developed below with the second set of weights
as GW2.

If covariances were known, we can indeed employ (2.5) to obtain classical type test
statistics since the common mean term in the expression Xi ∼ θ + Λ1/2

i Zi cancels out
under H0, and since ∆i = (Xi − X̃) can then be expressed as

∆(Z, Λ)i = X(Z, Λ)i − X(Z, Λ), where X(Z, Λ)i = Λ1/2
i Zi, (2.8)

X(Z, Λ) =
(

I∑
i=1

Λ−1
i

)−1( I∑
i=1

Λ−1
i X(Z, Λ)i

)
, and Zi ∼ N(0, Ip).

When the covariances are unknown it is tempting to obtain a test by replacing Λi

by an estimate, but that will lead to a test statistic having an unknown distribution.
Nevertheless, any desired classical test, including the Wilks test, can be obtained by
replacing Λi by its GPQ derived by Proposition 2.1, namely Λ̃i.

Corollary 2.2. The random quantity

T̃(X(Z, Λ̃); Λ̃) =
I∑

i=1
∆(Z, Λ̃)iWi(Λ̃)∆(Z, Λ̃)′

i, (2.9)

is a GTV suitable for testing H0.

Proof. Since Λ̃i is GPQ for Λi,
1. its distribution does not have any unknown parameters,
2. at the observed sample point it reduces to

t̃ = T̃obs =
I∑

i=1
(xi − x̃)Wi(Λ̃)(xi − x̃)′,

a quantity involving no unknown parameters. Moreover, it tends to take greater values for
greater deviations from the null hypothesis. Therefore T̃(X(Z, Λ̃); Λ̃) is indeed generalized
test variable. □

For example, if one is interested in extending the classical Lawley-Hostelings test, one
would use the sum of Eigen values of T̃ and t̃. Of particular interest in this article is the
generalized Wilks tests GW1 and GW2 tests based on the p-value

p = Pr(|Ip + T̃| ≥ |Ip + t̃|). (2.10)

The p-value based on T̃ can be computed by the Monte Carlo simulation method. This
is accomplished by simulating the Wishart random matrices using independent standard
normal random variates and the well known result:

If Zj ∼ N(0, Ip), j = 1, 2, . . . , J , then
∑

ZjZ′
j ∼ Wp(J, Ip).

The simulation is then carried out in the following steps:
1. Generate a large sample of random numbers from Zi = Λ−1/2

i (Xi − θ) ∼ N(0, I) and
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a large sample from each of the distributions of Ri ∼ Wp(ni − 1, Ip) based on sets of
independent standard normal random numbers.
2. Specify the weight function from alternatives in (2.7) depending on generalized Wilks
test GW1 or GW2 is desired.
3. For each set of simulated samples from Ri, i = 1, 2, . . . , I, replace Λi by the simulated
value of Λ̃i = v1/2

i R−1
i v1/2

i , and compute

t̃ =
I∑

i=1
(xi − x̃)W(Λ̃)i(xi − x̃)′, (2.11)

where xi = g(s)−1/2yi is computed using the actual data.
4. For each set of simulated samples from Ri, Zi; i = 1, 2, . . . , I, also compute

T̃ =
I∑

i=1
∆(Z, Λ̃)iWi(Λ̃)∆(Z, Λ̃)′

i.

5. Repeat the above steps for a large set of simulated samples and compute the p-value
based on the fraction of pairs for which (|Ip + T̃| ≥ |Ip + t̃|).

Then, one can also carry out multiple comparisons and compute confidence intervals
for the desired differences in mean vectors as described by [5].

2.2. Approach 2 illustrated by generalized PB test for MANOVA
In this article, however we confine our attention to normal-theory based MANOVA, PB

approach works, as derived by [9] and [22], followed by [19], who showed that bootstrap
arguments are not needed to obtain such tests. In that regard, in this section we will
derive a second generalized test without using any bootstrap notations or arguments. Al-
though our derivation and formulas look different from that of [8], (i) they are numerically
equivalent, (ii) one should find our approach easier in extending results to higher-way
MANOVA. This approach simply apply an invariant scale transformation to raw data so
that the resulting between group sum of cross products can be tackled by GPQs as we did
in the previous section. In this section, for the ease of presentation, we will use matrix
notations without subscript i to stand for the set of all terms involving the subscript.

To obtain such tests, consider the between group sum of cross products,

T (Y; Σ̃) =
I∑

i=1
((Yi − µi) − Y0(Y))′Σ̃−1

i ((Yi − µi) − Y0(Y) (2.12)

=
I∑

i=1
gi(Y, Σ̃)′Σ̃−1

i gi(Y, Σ̃),

where Σ̃i = Σi/ni, gi(Y, Σ̃) = (Yi − µi) − Y0(Y; µ, Σ̃), and

Y0(Y) = Y0(Y; µ, Σ̃) =
(

I∑
i=1

Σ̃−1
i

)−1( I∑
i=1

Σ̃−1
i (Yi − µi)

)
, (2.13)

a weighted difference between the population and sample means to play the role in the
second term of the typical decomposition of between group sum of cross products. It is
possible to decompose T (Y; Σ̃) as a difference of two terms, as in [8], but doing so will
make the extension of results to higher-way MANOVA cumbersome.

Lemma 2.3. Let ti be the square root of the matrix s̃i (more generally ti is obtained
from the Cholesky decomposition s̃i = tit′

i). Then, application of the scale transformation
tiΣ̃−1/2

i to summary statistics (or raw data) will transform
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1. Yi − µi to tiΣ̃−1/2
i (Yi − µi) = tiZi

2. S̃i to sUi = tiΣ̃−1/2
i S̃iΣ̃−1/2

i t′
i = tiUit′

i/(ni − 1),
3. the observed value s̃i of S̃i to s̃i itself, and
4. the observed value (yi − µi) of (Yi − µi) to (yi − µi) itself,
where S̃i = Si/ni, Σ̃i = Σi/ni, Zi ∼ N(0, Ip), and Ui ∼ Wp (ni − 1, Ip).

Proof. The distribution Yi − µi ∼ N(0, Σ̃i) implies Σ̃−1/2
i (Yi − µi) ∼ N(0, Ip), and

hence assertion 1 of Lemma follows. The distribution (ni −1)S̃i ∼ Wp

(
ni − 1, Σ̃i

)
implies

Σ̃−1/2
i S̃iΣ̃−1/2

i ∼ Wp (ni − 1, Ip), and hence assertion 2 follows.
Moreover, the above scale transformation transforms S̃i to tiΣ̃−1/2

i S̃iΣ̃−1/2
i t′

i and so its
observed value is tiΣ̃−1/2

i s̃iΣ̃−1/2
i t′

i, thus implying that the transformation does not affect
the observed value of Si, because the transformation does not involve random variables.
The same argument works for the observed value (yi−µi) of (Yi−µi), and hence assertion
4 follows. □

Now we are in a position to derive a GTV for testing H0. In the classical approach
to inference, one may wish to replace Σ̃i by s̃i, the observed value of S̃i, and µi by yi,
the observed sample means, but the result would lead to an approximate test with an
unknown distribution. In generalized fiducial approach, one also replaces Σ̃i by s̃i, and
replaces µi by its GPQ, which indeed leads to a GTV having a distribution free of unknown
parameters. In both cases, under H0, the observed value of T reduces to

Tobs =
I∑

i=1
(yi − y0)′s̃−1

i (yi − y0) (2.14)

at the observed y of Y, where y0 =
(

I∑
i=1

s̃−1
i

)−1(
I∑

i=1
s̃−1

i yi

)
.

But in ANOVA type problems, there are multiple generalized tests satisfying the re-
quired conditions (cf. [15]) of a GTV. We can do better (cf. [1]), by considering the
between group sum of cross products that does not replace S̃i by s̃i as the fiducial ap-
proach does, but rather tackling Λ̃i by S̃i, and considering

T (Y; S) =
I∑

i=1
((Yi − µi) − Y0(Y))′S̃−1

i ((Yi − µi) − Y0(Y) (2.15)

=
I∑

i=1
gi(Y, S̃)′S̃−1

i gi(Y, S̃),

where gi(Y, S̃) = (Yi − µi) − Y0(Y; µ, S̃), and

Y0(Y) = Y0(Y; µ, S̃) =
(

I∑
i=1

S̃−1
i

)−1( I∑
i=1

S̃−1
i (Yi − µi)

)
, (2.16)

and then by deriving a GPQ/GTV for T (Y; S) itself, as follows.

Proposition 2.4. The scale transformation of data as in Lemma 2.3 transforms T (Y; S)
to

T̃ (Y; S̃, s̃) =
I∑

i=1
(ni − 1)g̃i(Y, S̃, s̃)′ (tiUit′

i

)−1
g̃i(Y, S̃, s̃)), (2.17)

a GTV appropriate for testing H0, where g̃i(Y, S̃, s̃)) = tiZi − Y0Z , and

Y0Z =
(

I∑
i=1

s−1
Ui

)−1( I∑
i=1

s−1
Ui tiZi

)
.
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Proof. The scale transformation of data as in Lemma 2.3 transforms S̃i terms appearing
in T (Y; S) to sUi = tiUit′

i/(ni−1), and (Yi−µi) terms to tiZi, which are both distributed
free of unknown parameters. Hence, T̃ (Y; S̃, s̃) is distributed free of unknown parameters.

Moreover, under H0, µi terms in (2.15) and (2.16) cancel out, the observed value of
Y0(Y; µ, S̃) reduces to

Y0(y; 0, s̃) =
(

I∑
i=1

s̃−1
i

)−1( I∑
i=1

s̃−1
i yi

)
,

and thus the observed value of T̃ (Y; S̃, s̃) becomes equal to the same tobs given by (2.14).
Since, deviations of individual population means from the null hypothesis of equal means
tend to increase the between group sum of squares, T̃ (Y; S̃, s̃) is indeed a GTV appropriate
for testing H0. □

The generalized p-value based on the GTV suggested by Proposition 2.4 is computed
as

p = Pr(T̃ (Y; S̃, s̃) ≥ Tobs). (2.18)
The p-value given by (2.18) can be computed by Monte Carlo method as follows:
1. Generate a large sample of size M random numbers for the set of random variables
Zi ∼ N(0, Ip) for i = 1, · · · , I .
2. Generate a large sample of M random numbers from the set of standard Wishart
distributions Ui appearing in the formula (2.17)
3. compute M simulated samples of T̃ (Y; S̃, s̃) using the formula (2.17)
4. Estimate the p-value of (2.18) by the fraction of times the inequality T̃ (Y; S̃, s̃) ≥ Tobs

satisfied.

2.3. A case for extending GPV test to MANOVA
The main advantage of the GPB over PB, is that, being a systematic approach, the for-

mer approach one can easily extending results to the higher-way MANOVA, MANCOVA,
and especially RM MANOVA, in which PB approach fails due to poor small sample prop-
erties of MLEs in Mixed Effects models. Moreover, the same drawback of PB arises with
non-normal distributions such as those used in lifetime distributions.

Moreover, the approach we took in developing GPB should also suggest how researchers
could extend the generalized p-value (GPV) method introduced by [12]. The GPV test
currently available for ANOVA under heteroscedasticity is not only as good as the PB
test, but also has the added advantage that it never exceeds the intended type-I error.
The GPV test is also a test based on GTVs, but overcome the drawbacks of the GF
test (Generalized F-test; cf. [15]) by reformulating the ANOVA problem as an equivalent
problem involving pairwise contrasts.

3. Approach 2 illustrated by two-way MANOVA
In the context of multivariate analysis, it is beyond the scope of this article introducing

generalized tests based on exact probabilities to develop tests for higher-way heteroscedas-
tic two-way MANOVA. Nevertheless, we do so just for the fully cross classified two-way
MANOVA to show how easy it is to do so. There are exact and approximate tests (un-
necessarily) available for fully cross classified designs and nested designs. For example,
the test developed in [23] is an approximate degrees of freedom solution of the Hotelling
T-Squared type. Of course there is nothing wrong employing approximate tests if they
do not have serious Type-I error issues. But the in-depth simulation study reported by
[8] clearly demonstrated the serious type-I error issues of approximate tests even when
the assumption of normality is satisfied. Therefore, with the aid of the second illustration
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we outline below, we encourage researchers to develop higher-way MANOVA and RM
MANOVA under heteroscedasticity.

3.1. Dealing with weights in two-way MANOVA
In two-way ANOVA and beyond, one must use a set of suitable weights to make the

parameters of the model identifiable, as pointed out by [2] and [4]. But for the mathe-
matical tractability and for the convenience of handling main effects, the weights used by
[23], such as the constant weights and weights that depend only on sample sizes, but do
not depend on covariances.

Of course that does not make any difference in testing interactions of the model, but
appropriate weights do matter in testing the main effects. Proper handling of weights is
required to assure tests are affine invariant since the testing problem is affine invariant.
The weights used by [23] does not make the sum of between group cross products scale
invariant. Of course that is fine when we compare a test statistic against its observed
value. However, if a researcher wishes to develop an approximate test to avoid Monte
Carlo integration, it is desirable to make the test statistic itself scale invariant as the case
with all classical tests involving mixtures of Normal, Chi-squared, and F random variables,
which are all scale free.

3.2. Two-way MANOVA under unequal covariances
To further illustrate Approach 2 to develop tests in higher-way MANOVA, consider the

two-way MANOVA problem

Yijk = θij + ϵijk = µ0 + αi + βj + γij + ϵijk, (3.1)

where µ0 is the grand mean vector, αi (i=1,2,...,a) is the effect vector of the ith level
of factor A, βj (j=1,2,...,b) is the effect vector of the jth level of factor B, and γij

is the interaction effect of the factor level Ai and the factor level Bj . Let a p-variare
random sample of size nij is available from (i, j)th cell, i = 1, . . . , a; j = 1, . . . , b.
Then Yijk, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , nij represent these random vectors.
The sample mean vector and the sample covariance matrix of the (i, j)th cell are de-
noted by Yij = Σnij

k=1Yijk/nij and Sij = Σnij

k=1

(
Yijk − Yij

) (
Yijk − Yij

)′

/(nij − 1),
i = 1, . . . , a; j = 1, . . . , b. Furthermore, let yij and sij be the observed values of Yij and
Sij , i = 1, . . . , a; j = 1, . . . , b.

In order to assure µ0, αi, βj , and γij are uniquely defined, additional constraints are
necessary. Let u1, . . . , ua, and v1, . . . , vb, be non-negative weights imposing constraints

a∑
i=1

uiαi = 0,
b∑

j=1
vjβj = 0,

a∑
i=1

uiγij = 0,
b∑

j=1
vjγij = 0, i = 1, . . . , a, j = 1, . . . , b.

(3.2)

3.2.1. Testing interactions. Consider the problem of testing the interaction effects

H0AB : γij = 0 for i = 1, . . . , a, j = 1, . . . , b. (3.3)
In testing the interactions, the testing procedure does not depend on the chosen weights

[21] . Under the null hypothesis H0AB, Xu [21] showed that the minimum of
a∑

i=1

b∑
j=1

(Yij −

µ0 − αi − βj)′Σ̃−1
ij (Yij − µ0 − αi − βj) occures at
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T̂ (Ȳ; Σ̃) =
a∑

i=1

b∑
j=1

(Yij − µ̂0 − α̂i − β̂j)′Σ̃−1
ij (Yij − µ̂0 − α̂i − β̂j) (3.4)

= (Ȳ − Xη̂)′Σ̃−1(Ȳ − Xη̂),

where nijΣ̃ij = Σij , Σ̃ =diag
(
n−1

11 Σ11, n−1
12 Σ12, ..., n−1

ab Σab

)
with

η̂ = (µ̂′
0, α̂

′
1, . . . , α

′
a, β̂

′

1, . . . , β̂
′

b)
′ =

(
X′Σ̃−1X + L′L

)−1
X′Σ̃−1Ȳ.

Here X = (1a ⊗1b, Ia ⊗1b, 1a ⊗Ib)⊗Ip, L = (L′
∗1, L′

∗2)′, L∗1 = (0, u1, . . . , uI , 0, ..., 0)⊗Ip,

L∗2 = (0, 0, ..., 0, v1, . . . , vb) ⊗ Ip, and Ȳ =
(
Ȳ′

11, Ȳ′
12, ..., Ȳ′

1b, ..., Ȳ′
a1, ..., Ȳ′

ab

)′

.
Furthermore, Xu [21] showed that this interaction sum of squares given in (3.4) can be

written as

T̂ (Ȳ; Σ̃) = Ȳ′Σ̃−1/2
[
Iabp − Σ̃−1/2X(X′Σ̃−1X + L′L)−1X′Σ̃−1/2

]
Σ̃−1/2Ȳ. (3.5)

In order to obtain a test taking Approach 2, here we first present a lemma similar to the
one in the previous section, but in terms of the sufficient statistics in two-way MANOVA.

Lemma 3.1. Let tij be the square root of the matrix s̃ij (more generally tij is obtained
from the Cholesky decomposition s̃ij = tijt′

ij. Then, application of the scale transformation
tijΣ̃−1/2

ij to summary statistics (or raw data) will transform:
1. Yij − θij to tijΣ̃−1/2

ij (Yij − θij) = tijZij,
2. S̃ij to SUij = tijΣ̃−1/2

ij S̃ijΣ̃−1/2
ij t′

ij = tijUijt′
ij/(nij − 1),

3. the observed value (ȳij − θij , s̃ij) of
(
Yij − θij , S̃ij

)
to (ȳij − θij , s̃ij) itself, where

S̃ij = Sij/nij, Σ̃ij = Σij/nij, Zij ∼ N(0, Ip), and Uij ∼ Wp (nij − 1, Ip) .

Proof. As before, the random variables appearing in the first two assertions of the above
Lemma can be standardized as

Zij = Σ̃−1/2
ij (Yij − θij) ∼ N(0, Ip), and (3.6)

Uij = (nij − 1)Σ̃−1/2
ij S̃ijΣ̃−1/2

ij ∼ Wp (nij − 1, Ip) .

Hence, the transformation tijΣ̃−1/2
ij applied to the above random quantities will transform

Yij − θij to tijΣ̃−1/2
ij (Yij − θij) = tijZij

and S̃ij to SUij = tiΣ̃−1/2
ij S̃ijΣ̃−1/2

i t′
ij = tijUijt′

ij/(nij − 1), thus proving the first two
assertions of Lemma 3.1. The proof of assertion 3 of the lemma is similar to that in Lemma
2.3, because the transformation does not involve random variables. □

As in the one-way MANOVA, tackling Σ̃ij by S̃ij , consider the potential test variable

T1(Y; S) =
a∑

i=1

b∑
j=1

(Yij − µ0 − αi − βj − Y0(Y))′S̃−1
ij

(Yij − µ0 − αi − βj − Y0(Y))

=
a∑

i=1

b∑
j=1

gij(Y, Σ̃)′S̃−1
ij gij(Y, Σ̃), (3.7)
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where S̃ij = Sij/nij , gij(Y, S̃) = (Yij − µ0 − αi − βj) − Y0(Y; η, S̃), and

Y0(Y) = Y0(Y; η, S̃) =

 a∑
i=1

b∑
j=1

S̃−1
ij

−1 a∑
i=1

b∑
j=1

S̃−1
ij (Yij − µ0 − αi − βj)

 . (3.8)

Now we are in a position obtain a GPQ (a GTV for testing the hypothesis of no interac-
tions) for T1(Y; S) as follows.

Theorem 3.2. The scale transformation of data in Lemma 3.1 transforms T1(Y; S) to

T̃ (Y; S, s) = (YZ − XθZ)′S−1
U (YZ − XθZ), (3.9)

a GTV appropriate for testing H0AB, where

YZ =
(
(t11Z11)

′
, (t12Z12)

′
, ..., (t1bZ1b)

′
, ..., (ta1Za1)

′
, ..., (tabZab)

′)′

SU = diag(t11U11t′
11/(n11 − 1), t12U12t′

12/(n12 − 1), ..., t1bU1bt′
1b/(n1b − 1), ...,

ta1Ua1t′
a1/(na1 − 1), ..., tabUabt′

ab/(nab − 1))
θZ =

(
X′S−1

U X + L′L
)−1

X′S−1
U YZ .

Proof. Clearly, the distribution of T̃ is free of unknown parameters. Furthermore, by
design, T̃ is location and scale invariant, and under the null hypothesis specified in (3.3) ,

the quantity T̃ will reduce to T̂ (Ȳ; Σ̃) given in (3.5), which is free of unknown parameters.

Therefore, the p-value to test the interaction hypothesis (3.3) is given by

p = Pr(T̃ ≥ Tobs), (3.10)
where Tobs is the observed value of (3.5) which is given by

Tobs = ȳ′s−1/2
[
Iabp − s−1/2X(X′s−1X + L′L)−1X′s−1/2

]
s−1/2ȳ. (3.11)

Here ȳ =
(
ȳ′

11, ȳ′
12, ..., ȳ′

1b, ..., ȳ′
a1, ..., ȳ′

ab

)′

and s = diag(̃s11, s̃12, ..., s̃1b, ..., s̃a1, ..., s̃ab).
□

As in one-way MANOVA, this p-value can be computed by generating large number
of random samples from the normal and Wishart distributions given in Lemma 3.1 and
using the Monte Carlo method to estimate the p-value.

Remark : Oversight in two-way MANOVA
Since the result is independent of the chosen weights, Xu [21] presented the above results
using the generalized inverse notation (X′Σ̃−1X )− without the term L′L. However, in
implementing the parametric bootstrap procedure, this is a misleading statement. Since
bootstrapping is done numerically, if one ignores the term L′L and replace it with zero, the
computer will give a p-value which is not the intended p-value. In the case of univariate
two-way ANOVA, this has been demonstrated in [1].

Actually dropping of the L′L term is an oversight originated from [3]. Therefore, to help
practitioners avoid wrong formulas, we have published an R package, named "twowaytests",
on CRAN. The plans are underway to include tests for two-way MANOVA to facilitate
the computations, while keeping the missing term L′L.
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3.2.2. Testing the main effects. Testing the main effects with the two-way MANOVA
can be extended in a similar fashion. Unlike the interaction effects, testing the main effects
does depend on the chosen weights. Furthermore, there is no agreement on how to test
the main effect in the presence of the interaction effects. Therefore, here we demonstrate
the new approach for testing the hypothesis:

H0A : αi + γij = 0 for i = 1, . . . , a, j = 1, . . . , b. (3.12)

Xu (2015) showed that under the null hypothesis H0A, the minimum of
a∑

i=1

b∑
j=1

(Yij −

µ0 − βj)′Σ̃−1
ij (Yij − µ0 − βj) occurs at

TA(Ȳ; Σ̃) = (Ȳ − X 1̂θ1)′Σ̃−1(Ȳ − X1θ̂1), (3.13)

where nijΣ̃ij = Σij , Σ̃ =diag
(
n−1

11 Σ11, n−1
12 Σ12, ..., n−1

ab Σab

)
,

θ̂1 = (µ̂′
0, β̂

′

1, . . . , β̂
′

b)
′ =

(
X′

1Σ̃−1X1 + L′
1L1

)−1
X′

1Σ̃−1Ȳ., (3.14)

where X1 = (1a ⊗ 1b, 1a ⊗ Ib) ⊗ Ip, L1 = (0, 0, ..., 0, v1, . . . , vb) ⊗ Ip,

and Ȳ =
(
Ȳ′

11, Ȳ′
12, ..., Ȳ′

1b, ..., Ȳ′
a1, ..., Ȳ′

ab

)′

.
As the case with two-way interaction, the between group sum of squares of cross product

given by (3.13) is equal to

TA(Ȳ; Σ̃) = Ȳ′Σ̃−1/2
[
Iabp − Σ̃−1/2X1(X′

1Σ̃−1X1 + L′
1L1)−1X′

1Σ̃−1/2
]

Σ̃−1/2Ȳ, (3.15)

and under the null hypothesis H0A, the observed value of the above test variable TA(Ȳ; Σ̃)
will reduce to

T ∗
obs = ȳ′s−1/2

[
Iabp − s−1/2X1(X′

1s−1X1 + L′
1L1)−1X′

1s−1/2
]

s−1/2ȳ, (3.16)

where ȳ =
(
ȳ′

11, ȳ′
12, ..., ȳ′

1b, ..., ȳ′
a1, ..., ȳ′

ab

)′

is the observed value of Ȳ, and
s = diag(̃s11, s̃12, ..., s̃1b, ..., s̃a1, ..., s̃ab) .

In view of the above results, tackling Σ̃ij by S̃ij ,, as in previous sections consider the
potential GTV

TA(Ȳ; S) =
a∑

i=1

b∑
j=1

(Yij − µ0 − βj − Y0(Y))′S̃−1
ij

(Yij − µ0 − βj − Y0(Y))

=
a∑

i=1

b∑
j=1

gij(Y, Σ̃)′S̃−1
ij gij(Y, Σ̃), (3.17)

where S̃ij = Sij/nij , gij(Y, S̃) = (Yij − µ0 − βj) − Y0(Y; η, S̃), and

Y0(Y) = Y0(Y; η, S̃) =

 a∑
i=1

b∑
j=1

S̃−1
ij

−1 a∑
i=1

b∑
j=1

S̃−1
ij (Yij − µ0 − βj)

 . (3.18)

Then, the desired GPQ for TA(Y; S) for testing the null hypothesis of equal main effects
can be obtained with the aid of the following Proposition.
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Theorem 3.3. The scale transformation of data as in Lemma 3.1 transforms TA(Y; S)
to

T̃A(Y; S, s) = (YZ − X1θZ1)′S−1
U (YZ − X1θZ1), (3.19)

a GTV appropriate for testing H0A. Here

YZ =
(
(t11Z11)

′
, (t12Z12)

′
, ..., (t1bZ1b)

′
, ..., (ta1Za1)

′
, ..., (tabZab)

′)′

SU = diag(t11U11t′
11/(n11 − 1), t12U12t′

12/(n12 − 1), ..., t1bU1bt′
1b/(n1b − 1), ...,

ta1Ua1t′
a1/(na1 − 1), ..., tabUabt′

ab/(nab − 1))
θZ1 =

(
X′

1S−1
U X1 + L′

1L1
)−1

X′
1S−1

U YZ .

Proof. Clearly, the distribution of T̃A is free of unknown parameters, and under the null
hypothesis specified in (3.12) , the quantity T̃A will reduce to TA(Ȳ; Σ̃) given in (3.13),
which is free of unknown parameters. □

Therefore, the p-value to test the hypothesis (3.12) is given by
p = Pr(T̃A ≥ T ∗

obs), (3.20)
where T ∗

obs is the observed value of T̃A which is given in (3.16). As with the case of inter-
action effects, this p-value can also be computed by generating large number of random
samples from the normal and Wishart distributions given in Lemma 3.1 and employing
the Monte Carlo method to estimate the p-value.

4. Numerical results
In this section, we use the same example that Krishnamoorthy and Lu [8] used to il-

lustrate the parametric bootstrap procedure. The data set originally discussed in [13]
contains five skull samples from the early pre-dynastic period, the late pre-dynastic pe-
riod, the 12th and 13th dynasties period, the Ptolemaic period, and the Roman period;
are abbreviated as C. 4000 BC, C. 3300 BC, C. 1850 BC, C. 200 BC, and C. AD 150
respectively. Each of the above samples contain measurements from thirty skulls. Four
measurements are available for each skull.

Krishnamoorthy and Lu [8] used a subset of this data set, by picking only the first four
groups, namely the periods C. 4000 BC, C. 3300 BC, C. 1850 BC, and C. 200 BC, and
used only the first fifteen observations from each group. In our illustration we use exactly
the same subset used by [8], which contains fifteen observations from each population, and
each observation involves 4 measurements. For testing the equality of the mean vector of
these 4 populations, Krishnamoorthy and Lu [8] showed that the parametric bootstrap
approach yielded a p-value of 0.041. This method is analytically equivalent to the method
we described in section 2.2.

We analyzed data by the classical Wilk’s test, the two generalized Wilk’s tests that were
introduced in section 2.1 (GW1 and GW2 tests), and the PillaiBartlett test available from
the CRAN package "manova" (abbreviated as MAN). The resulting p-values are given in
Table 1.

Table 1. The p-values for testing the mean vector of skull measurements

Method WL GW1 GW2 GPB MAN
p-values 0.028 0.016 0.030 0.041 0.033
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It is evident from Table 1 that the p-values given by each of the five methods lead
to the same conclusion that mean vector of measurements is not the same for the four
populations. The p-value of the GW2 test is almost the same as that of the MAN test.
Of course this is not the same in other scenarios, as we now study via simulated data sets.

4.1. Simulation study
Since the introduction of two approaches to handle heteroscedastc MANOVA models

has been the primary purpose of this article, providing an in-depth simulation study is
beyond the scope of this paper. Readers interested in such a study is referred to [8]. While
undertaking a subset of parameter scenarios considered by [8], in our comparison of Type I
Error rates of competing tests, in addition to the two generalized Wilks tests, abbreviated
as GW1 and GW2, we also included the classical Wilks Lambda test (abbreviated as
WL), since many practitioners simply apply the classical tests for convenience, despite
that they are valid only when the covariances are equal. Also included in the comparison
is the default PillaiBartlett test available from the CRAN package "manova" (abbreviated
as MAN).

The scenarios on the covariance matrices and sample sizes, are as specified in Table
2 below. A preliminary study suggested that the computation of Type-I error requires
a greater number of replications compared to the computation of p-values by the GW
methods and the GPB method. Therefore, to evaluate the Type I error of competing tests,
under each scenario we generated 10,000 samples of simulated data. For each simulated set
of data, the p-values of the three generalized tests, GW1, GW2, and GPB were computed
using 1,000 Monte Carlo samples. When estimated Type-I error we got was substantially
different from what is reported by [8], Monte Carlo sample size is increased to 5,000. The
classical tests, the Wilks test and the Pillai-Bartlett test do not require such Monte Carlo
samples. At the intended size of 0.05, the estimated Type-I error rates are reported in
Table 2 below.

Table 2. Monte Carlo estimates of Type-I error rates

k = 3, p = 2,
∑

1 = I2,
∑

2 = diag(λ1, λ2) ,
∑

3 =
(

1 ρ3
ρ3 1

)
(n1, n2, n3) (λ1, λ2, ρ3) WL GW1 GW2 GPB MAN
(7, 7, 7) (0.2, 0.6, 0.5) 0.062 0.052 0.042 0.053 0.052
(7, 10, 20) (1, 0.1, 0.3) 0.071 0.056 0.045 0.058 0.043
(10, 10, 10) (1, 0.5, 0.2) 0.053 0.048 0.042 0.051 0.049
(10, 10, 40) (0.9, 0.9, 0.6) 0.142 0.054 0.047 0.067 0.076
(10, 10, 40) (0.7, 0.8, −0.2) 0.088 0.051 0.041 0.059 0.036
(25, 20, 20) (1, 0.5, 0.2) 0.049 0.051 0.049 0.048 0.045

k = 5, p = 2,
∑

1 = I2,
∑

2 = diag(λ1, λ2) ,
∑

i =
(

1 ρi

ρi 1

)
, i = 3, 4, 5

(n1, n2, n3) (λ1, λ2, ρ1, ρ2, ρ3) WL GW1 GW2 GPB MAN
(7, 7, 7, 7, 7) (0.1, 0.9, 0.1, 0.4, 0.9) 0.063 0.102 0.133 0.051 0.053
(7, 7, 7, 7, 7) (0.1, 0.3, −0.1, 0.1, 0.9) 0.067 0.104 0.128 0.051 0.059
(12, 12, 12, 12, 12) (0.1, 0.7, 0, 0, 0) 0.060 0.079 0.095 0.055 0.056
(15, 20, 10, 32, 7) (0.1, 0.9, 0.1, 0.4, 0.9) 0.091 0.078 0.088 0.057 0.066
(15, 20, 10, 32, 7) ((0.9, 0.9, −0.4, 0.6, 0.9) 0.091 0.076 0.085 0.049 0.068
(15, 20, 10, 32, 7) (0.1, 0.1, 0.3, 0.3, 0.3) 0.107 0.090 0.104 0.079 0.076
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From the results of our simulation study, we can guide the practitioners as follows.

(1) When there are 3 populations of interest, GW1 is the preferred choice when one
wishes to be close to the intended Type I error,

(2) When there are 3 populations of interest, GW2 is the preferred choice when one
wishes to stay under the the intended Type I error,

(3) When there are a large number of populations, GPB is the preferred choice when
one wishes to be close to the intended Type I error,

(4) The PillaiBartlett test, which is the default test available from the manova (MAN)
available from CRAN, is better than the classical Wilks Lambda (WL) test pre-
ferred by many practitioners,

(5) When the models are balanced in terms of sample sizes, the MAN test is fairly
good and easier to compute, though not as good as the GPB test.

In view of the last two findings, we encourage researchers to extend the PillaiBartlett test
to the unequal covariances case by taking Approach 1 proposed in this article.

5. Discussion
In this article we proposed two approaches to extending classical MANOVA tests to

avoid the classical assumption of equal error covariances and the assumption of equal cell
frequencies. The approaches are illustrated by deriving two types of generalized Wilks
tests and PB like tests without any bootstrap argument. The p-values of all four tests
are exact probabilities of well defined extreme regions of the sample space, a property PB
type tests lack. Weerahandi [17] argued that practitioners need to to the best with the
sample at hand as Bayesians do, and that arguments of repeated sampling is not something
practically useful. Nevertheless, until researchers develop alternative methods to compare
competing tests, one needs to rely on repeated sampling based methods when there are
alternative tests. Therefore, we compared each of the generalized test for MANOVA
against each other and against widely used approximate tests.

The advantage of the two approaches proposed in this article is that one can easily apply
them in extending results to higher-way MANOVA, MANCOVA, and RM MANOVA.
Moreover, the approach we took in extending the Wilks type tests (GW tests) to the case
of unequal covariances, researchers can take in extending their favorite tests such as Roy’s
largest root test, Lawley-Hotelling’s test, and Bartlett-Nanda-Pillai test.

The GPB approach also has a number of advantages over the PB approach. For example,
the former does not require good point estimators such as MLEs of parameters to start
with, thus making inferences such as RM MANOVA in mixed effects models possible by
employing distribution theory developed by [20].

Moreover, the approach we took in developing GPB should also suggest how researchers
could extend the GPV method introduced by [12]. In the ANOVA case, while the GPV
test is practically as good as the PB test, it has the added advantage that its size does
not exceed the intended Type-I error.
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