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Abstract 

 

 In this study, a boundary value problem is investigated for the Sturm-Liouville equation defined in 

the interval [0, L]. The problem with [0, L] corresponds to the small vibrations of a fixed-end straight 

rope. In these problems, the necessary and sufficient conditions for the unique determination of the 

potential by only one spectrum at certain parameters of the boundary conditions are investigated. In 

the inverse problem, it is possible with a spectrum to describe the potential of the problem, hence the 

intensity of the array. Taking this into consideration and using the Leray-Schauder fixed point theorem 

in Banach space, the existence and uniqueness results of the problem are proved. 

 

 Keywords: Sturm-Liouville problem, boundary conditions, Leray–Schauder, eigenvalue, spectrum. 

 

Ters Sturm-Liouville Problemlerinde Çözümlerin Varlık ve Teklik Durumları  
 

Özet 

 

Bu çalışmada, [0, L] aralığında tanımlanan Sturm-Liouville denklemi için bir sınır değer problemi 

incelenmiştir. [0, L] ile ilgili problem, sabit uçlu düz bir halatın küçük titreşimlerine karşılık gelir. Bu 

problemlerde, sınır koşullarının belirli parametrelerinde sadece bir spektrum tarafından potansiyelin 

benzersiz olarak belirlenmesi için gerekli ve yeterli koşullar araştırılır. Ters problemde, problemin 

potansiyelini, dolayısıyla dizinin yoğunluğunu tanımlamak bir spektrumla mümkündür. Bu durum 

dikkate alınarak Banach uzayında Leray-Schauder sabit nokta teoremi kullanılarak problemin varlığı 

ve tekliği sonuçları ispatlanmıştır. 

      Anahtar Kelimeler: Sturm-Liouville problemi, sınır koşulları, Leray–Schauder, özdeğer, spektrum 

 

1. Introduction 
 

The eigenvalues and structures of operators with a discrete spectrum in quantum mechanics are 

interesting. The spectral theory, especially for second-order operators, is called the Sturm-Liouville 

theory. One of the most important recent studies in this field belongs to Birkoff, examines the 

properties and eigenvalues of ordinary differential operators in a finite range depending on boundary 

conditions. The first spectral studies on singular operators were made by H. Weyl. Later studies in 

this field were carried out by F. Riesz, J. Von Neumann, the general spectral theory of symmetric 

and self-congruent operators belongs to Friedrichs and other scientists. 
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Spectral theory of differential operators in different singular cases, asymptotics of eigenvalues, 

eigenfunctions and their completeness have been studied by researchers such as Courant, Salamyak, 

Birman, Maslov, and Keldish. 

In general, a relationship is established between the solutions of two different Sturm-Liouville 

equations. Levitan is one of the first founders of the transformation operator in this field. The 

transformation operator for any Sturm-Liouville equation is worked out by Povzner. He used these 

operators in his inverse problem theory. 

Boundary value problems for nonlinear equations have become very interesting in recent years. In 

these problems, many methods have been used, mainly topological crossover [1], Apart from these, 

upper solution method [2], The Lyapunov-Schmidt procedure for O-epi maps and the continum 

theory [3], are the main subjects studied. Marchenko [4] and Carlson [5] obtained two spectra with 

potential and boundary conditions certain. Levitan [6], Gasymov [7] and Zhornitskaya [8] also 

performed similar studies, demonstrating the uniqueness of the solution with potential boundary 

conditions and two spectra. The results found were supported by Borg [9] and Hochstadt [10], and 

the existence and uniqueness of these problems and the availability of solutions have been further 

improved by different methods with recent studies [11]- [18]. According to the results obtained, the 

smallest of the eigenvalues from the spectra can be ignored. Given the boundary conditions and a 

single spectrum, it is possible to obtain the potential provided the function is in the middle of the 

range. In the theory of differential equations, it is an important issue to investigate under which 

conditions the equation has a solution and is unique without solving the equation. Existence and 

uniqueness theorems have been developed for such problems. If the existence and uniqueness of the 

solution of the equation are known, a solution can be revealed with appropriate solution methods. 

Therefore, knowing the existence and uniqueness of the solution of an equation is more important 

than solving the equation. While investigating the existence and uniqueness of the solutions of 

equations, a system of integral equations of a certain type emerges. The existence and uniqueness of 

the solution of this system is determined with the help of fixed point theorems is being examined. 

Therefore Leray-Schauder fixed point theorem in Banach space take an important place in practice. 

Now, in this study, we will take the last case and examine a supportive result in a different way. 

Although some of the results to be obtained are similar to others, existence has been proven with a 

newer technique using the method applied by Leray Schauder. 

In spectral theory, inverse problems appear as follows, eigenvalue sequences and norming constants 

or spectrum are used to calculate the potential. It has been shown that when a single spectrum is 

taken, necessary and sufficient conditions are created for it, thereby uniquely determining the 

potential and thus the intensity of the array. 
Now let's take the problem, 

                           ( ( ) ) ( , ( ))y q t y f t y t− + − = ,         0 ≤ t ≤ L 

                                    𝑦(0) = 𝑦(𝐿),  𝑦′(0) = 𝑦′(𝐿).                                                                  

𝑞(𝑡), let be a continuous real function satisfying the condition 𝑞(𝐿 − 𝑡)  =  𝑞(𝑡). 

Let 𝐿 > 0 and  휀 = {𝑦: 𝑦𝐶1(0, 𝐿) ∩ 𝐶2(0, 𝐿), )(ty > 0 𝑓𝑜𝑟 𝑡 ∈ (0, 𝐿)}. Here  ≥ 0 is a constant 

and 0))(,( tytf  on a suitable subset of (0, 𝐿) × (0, ∞) × 𝑅. 

𝑓: (0, 𝐿)𝑥𝑅 → 𝑅 is a 𝜙 ∈ 𝐿1-Caratheodory function, for every  𝑅 > 0 there are 𝜙 𝐿1 (0, 𝐿) and 

                                             | ),( xtf | ≤  𝜙(𝑡) ,  
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 for  𝑡 ∈ (0, 𝐿) and all 𝑥𝜖𝑅,  with |𝑥| ≤ 𝑅. 

Here, 𝐶(0, 𝐿)  denotes the continuous subspace of 𝐴𝐶(0, 𝐿) absolute continuous functions. 

The norm of 𝑦 ∈ 𝐶(0, 𝐿) is 

                                               ‖𝑦‖0 = 𝑠𝑢𝑝|𝑦(𝑡)|. 

If we consider the point partial ordering defined in the 𝐶(0, 𝐿) space, we determine the interval as 

follows 

                                            [𝑦, 𝑤] = {𝑦 ∈ 𝐶(0, 𝐿): v ≤ y ≤ w}. 

Let 𝑓(𝑡) be a vector function with period L. Using the definition of Euclidean norms for vectors and 

matrices, let's define two norms for this function as follows,  

                                   ‖𝑓‖𝑞 = [
1

𝐿
∫ ‖𝑓(𝑡)‖2𝐿

0
𝑑𝑡]

1

2
  and   ‖𝑓‖𝑛 = 𝑚𝑎𝑥‖𝑓(𝑡)‖ .   

Let's take 𝑦 ∈ 𝐴𝐶(0, 𝐿) as a solution of (1), with 𝑦: 𝐶(0, 𝐿) → 𝑅. 

 

2. Materials and Methods 

 

In this study, the existence and uniqueness of the solutions in the case of a single spectrum of the 

Sturm-Liouville equation were examined using the Leray-Schauder method. 
 

2.1. Statement of the Main Results 

 

        Basic Existence Theory 

 

Let 𝜆 ∈ 𝑅, 𝐹: (0, 𝐿)𝑥𝑅 → 𝑅 a 𝐿1-Caratheodory function and let's deal with the problem 

 

                       ( ( ) ) ( , ( ))y q t y F t y t− + − = ,           0 ≤ t ≤ L 

                     𝑦(0) = 𝑦(𝐿),    𝑦′(0) = 𝑦′(𝐿),                                                                                 (1)  

and 𝑞(𝐿 − 𝑡) =  𝑞(𝑡) that evidently if += ),(),( ytfytF 𝜆𝑦 and 𝑦 is a solution to (1)  then 𝑦 is a 

solution to problem. It is also 𝑦 ∈ 𝐶(0, 𝐿)  for 𝑦 = 𝐴𝑦. 

𝐴 = 𝐶(0, 𝐿) → 𝐶(0, 𝐿), the following equation is written 

                        (𝐴𝑦)(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝐹(𝑠, 𝑦(𝑠))𝑑𝑠
𝐿

0
,                                 (2) 

where 𝐺 is the Green’s function 

                          𝐺(𝑡, 𝑠) = {

𝑒𝜆(𝑇−𝑡+𝑠)

𝑒𝜆𝑇+1
,     0 ≤ 𝑠 ≤ 𝑡 ≤  𝐿,

𝑒𝜆(−𝑡+𝑠)

𝑒𝜆𝑇+1
,    0 ≤ 𝑡 ≤ 𝑠 ≤  𝐿 .  

 

Problem (1) is linear for each 𝜆 ∈ 𝑅 and has a solution, and the y function satisfies the equation (2). 

Now we construct two nonlinear existence principles for (1) while applying the Leray-Schauder 

alternative.  

Let us explain the principle of the Leray-Schauder alternative with the that theorem. 

 

Theorem 2.1. Let C be the locally convex and fully convex subset of the topological space 𝐸 and U 
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the open subset of C with 𝑝 ∈ 𝑈. Also, let 𝐹: �̅� → 𝐶 be a continuous, compact transformation, in 

which case either 

A1) F contains a fixed point at 𝑈 ̅, or,  

A2) With 𝑦 = 𝜇𝐹(𝑦) + (1 − 𝜇)𝑝, there is a a 𝑦 ∈ 𝜕𝑈 and 𝜇𝜖(0, 𝐿). 

 

Theorem 2.2. Let 𝑀 be a constant, ‖𝑢‖0 ≠ 𝑀,  independent of μ and for any solution function 𝑦 ∈

 𝐴𝐶(0, 𝐿) to 
−𝑦″ + (𝑞(𝑡) − 𝜆)𝑦 = 𝜇𝐹(𝑡, 𝑦(𝑡)),  𝑡 ∈ (0, 𝐿)

𝑦(0) = 𝑦(𝐿),  𝑦′(0) = 𝑦′(𝐿).
                                                  (3) 

In this case, problem (3) has at least one solution in 𝐴𝐶(0, 𝐿). for every 𝜇 𝜖(0, 𝐿). 

 

Proof.  A function 𝑦 ∈ 𝐶(0, 𝐿) is a solution to (3) if and only if 𝑦 = µ𝐴𝑦  where 𝐴 is defined in (2),  

(𝐴𝑦)(𝑡) = 𝑒−𝜆𝑡 ∫ 𝑒𝜆𝑠𝐹(𝑠, 𝑦(𝑠))𝑑𝑠
𝐿

0

+
𝑒−𝜆𝐿

1 + 𝑒−𝜆𝐿
𝑒−𝜆𝑡 ∫ 𝑒𝜆𝑠𝐹(𝑠, 𝑦(𝑠))𝑑𝑠

𝐿

0

 

Since 𝐹 is 𝐿1-Caratheodory the continuity of A is easily shown. 
Let's take  𝑈 = {𝑦 ∈ 𝐶(0, 𝐿): ‖𝑦‖0 < 𝑀}, 𝐶 = 𝐸 = 𝐶(0, 𝐿), 𝑝 = 0 and apply Theorem 2.1. 

Theorem 2.3.  Let 𝜑: [0, ∞) → (0, ∞) be a continuous and undiminished function and 𝑞 ∈

𝐿1(0, 𝐿) are provided for 𝑡 ∈ 𝐶(0, 𝐿) and all 𝑦 ∈ 𝑅, 
                                                  | ),( ytF | ≤ 𝑞(𝑡)𝜑(|𝑦|). 

In addition suppose that 

                                                  𝑠𝑢𝑝
𝑐

𝜑(𝑐)
> 𝑘0 ,                                                                                         (4) 

with          

                                              𝑘0 = 𝑠𝑢𝑝 ∫ |𝑔(𝑡, 𝑠)|
𝐿

0
𝑞(𝑠)𝑑𝑠. 

So (1) has at least one solution at 𝐴𝐶(0, 𝐿). 
Proof.  From (4) there exists 𝑀 > 0 with 

                                                
𝑀

𝜑(𝑀)
> 𝑘0 ,                                                                                                       (5) 

for 𝜇 ∈ )1,0( . Let y be a solution of (3). Then for 𝑡 ∈ 𝐶(0, 𝐿), 

                                𝑦(𝑡) = 𝜇 ∫ 𝑔(𝑡, 𝑠)𝐹(𝑠, 𝑦(𝑠))𝑑𝑠
𝐿

0
, 

and so 

                  |𝑦(𝑡)| ≤  𝜇 ∫ 𝑔(𝑡, 𝑠)𝐹(𝑠, 𝑦(𝑠))𝑑𝑠
𝐿

0
≤ ∫ |𝑔(𝑡, 𝑠)|𝑞(𝑠)𝜑(|𝑦(𝑠)|)𝑑𝑠

𝐿

0
, 

                            ≤ 𝜑(‖𝑦‖0) ∫ |𝑔(𝑡, 𝑠)|𝑞(𝑠)𝑑𝑠
𝐿

0
. 

Consequently, ‖𝑦‖0 ≤ 𝑘0 𝑖𝑠 𝜑(‖𝑦‖0) and ‖𝑦‖0 ≠ 𝑀 from (5). We will now show using Theorem 

2 that (1) has a solution in 𝐴𝐶(0, 𝐿). 
Lemma 2.4. Let us be the product of two real or complex solutions of the equation 𝑦″ + 𝜆𝑦 = 𝑞𝑦  

with 𝑞 in 𝐻1. 

                           〈𝑢, 𝑣〉 = ∫ 𝑢(𝑡)𝑣(𝑡)𝑑𝑡
𝑇

0
 and let 𝐷 =

𝑑

𝑑𝑡
.  

Further, let   

                              𝐻0
𝑚 = {𝑢 ∈ 𝐻𝑚: [𝑢] = 0}. 

Let 𝑞 ∈ 𝐻1 and let 𝑓 and 𝑔 be two solitions of 𝑦″ + 𝜆𝑦 = 𝑞𝑦   the product of these solutions is either 

L-periodic, or disappears at 𝐿. Thus, 
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                              2𝜆〈𝑓𝑔, ℎ〉 = 〈𝑓𝑔, 𝑃ℎ〉, 

                  𝑃 = −
1

2
𝐷2 + 2𝑞 + 𝑞′𝐼 being ℎ ∈ 𝐻0

1, where 𝐼ℎ = ∫ ℎ(𝑡)𝑑𝑡.
1

0
 

Remark. The following equation also applies to ℎ ∈ 𝐻0
2, 

                              〈𝑓𝑔, 𝑃ℎ〉 =
1

2
〈(𝑓𝑔)′, ℎ′〉 + 〈𝑓𝑔, 2𝑞ℎ + 𝑞′𝐼ℎ〉. 

Proof. The two solutions of  𝑦″ + 𝜆𝑦 = 𝑞𝑦, 𝑓  and 𝑔 give the following equation 

                                          𝐿(𝑓𝑔) = 2𝜆𝐷(𝑓𝑔), 

where are 𝐻 = −
1

2
𝐷3 + 𝑞𝐷 + 𝐷𝑞. Hence, 

                                        2𝜆𝑓𝑔 = 𝐼𝐻(𝑓𝑔) + 𝑐, 

where 𝐼𝑢 = ∫ ℎ(𝑡)𝑑𝑡.
1

0
 By matching this expression with  ℎ ∈ 𝐻0

1, we get  
                                       2𝜆〈𝑓𝑔, ℎ〉 = 〈𝐼𝐻(𝑓𝑔), ℎ〉, 

the term  〈𝑐, ℎ〉 = 𝑐[ℎ]  reads absent here. 

If we integrate it piecewise, with 𝐼ℎ|0 = 0 and 𝐼ℎ|1 = [ℎ]= 0 , 

                                  〈𝐼𝐻(𝑓𝑔), ℎ〉 = −〈𝐻(𝑓𝑔), 𝐼ℎ〉, 

                                   =
1

2
((𝑓𝑔)ℎ′ − (𝑓𝑔)′ℎ)|0

𝐿 + 〈𝑓𝑔, 𝐻𝐼ℎ〉. 

Since 𝑓𝑔 is L-periodic, h is also L-periodic, if the boundary terms disappear and 𝑔 disappears at 

the lower and upper bounds, then 

                              ((𝑓𝑔)′ℎ − (𝑓𝑔)ℎ′)|0
𝐿 = 𝑓𝑔′ℎ|0

𝐿 = (𝑓𝑔′ − 𝑓′𝑔)ℎ|0
𝐿, 

𝑓𝑔′ − 𝑓′𝑔 since the Wronskian value of g is constant, the last term also disappears. So either way, 

                              〈𝐼𝐻(𝑓𝑔), ℎ〉 = 〈𝑓𝑔, 𝐻𝐼ℎ〉, 

it turns out that 𝐻𝐼 = 𝑃. 

 Since 𝛾𝑛 must not disappear to be differentiable, 

                                                      𝛿𝛾𝑛
= {

𝜕𝛾𝑛 when  𝛾𝑛 ≠ 0
0 ,      otherwise

. 

Theorem 2.5. Let's take 

                                                𝐹(𝛼) = 0 .                                                                                                   (6) 

Let α and 𝐹(𝛼) be vectors of the same size, and 𝐹(𝛼), 𝛺 form a system of equations corresponding 

to a continuously differentiable function of α. Let's take a solution of (6) 𝛼 = 𝛼 ̅so that the 

determinant of the 𝐽(𝛼) Jacobian matrix of F(α) does not disappear at 𝛼 = �̅�, δ being a positive 

constant and 𝜅 < 1a non-negative constant, 

          (i) 𝛺𝛿 = {𝛼|‖𝛼 − �̅�‖ ≦ 𝛿} ⊂  𝛺, 

         (ii) ‖𝐽(𝛼) − 𝐽(�̅�) ‖ ≦
𝜅

𝑀′
 for any 𝛼 ∈ 𝛺𝛿 ,                                                                              (7) 

        (iii)  
𝑀′𝑟

1−𝜅
≦  𝛿, 

where 𝑟 and 𝑀′(> 0) are numbers such that 

               ‖𝐹(�̂�)‖ ≦ 𝑟  and     ‖𝐽−1(�̂�)‖ ≦ 𝑀′.                                                                                (8) 

 So system (6) has only one solution 𝛼 = �̅� in the 𝛺𝛿  region, and 

                              ‖𝛼 − �̅�‖ ≦  
𝑀′𝑟

1−𝜅
.                                                                                                 (9) 

Proof. Let's apply Newton's sequential method, taking  𝐴 = 𝐽−1(�̂�), 

                                      𝛼𝑛+1 = 𝛼𝑛 − 𝐴 𝐹(𝛼𝑛)     (𝑛 = 0,1,2, … . )                                                 (10)  

where 𝛼0 = �̂�.  

In the first place, this sequential process can be continued indefinitely and 
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                                         ‖  𝛼𝑛+1 − 𝛼𝑛‖ ≦  𝜅𝑛‖  𝛼1 − 𝛼0‖,                                                            (11) 

                                                𝛼𝑛+1 ∈ 𝛺𝛿 ,         (𝑛 = 0,1,2, … . )                                                          (12) 

for 𝑛 = 0, (11) is evident. For   𝛼1, we have succesively 

                                     ‖  𝛼1 − 𝛼0‖ =  ‖𝐴 𝐹(𝛼0)‖ ≦  𝑀′𝑟, 

                                                         ≦ (1 − 𝜅)𝛿 < 𝛿,                                                                            (13) 

and consequently   𝛼1 ∈ 𝛺𝛿 . This proves  (12) for 𝑛 = 0. 

 Let us assume that (11) and (12)  hold up to 𝑛 − 1. Then form (11) we have  

                                 𝛼𝑛+1 − 𝛼𝑛 = (𝛼𝑛 −   𝛼𝑛−1) − 𝐴[𝐹(𝛼𝑛) − 𝐹(𝛼𝑛−1)], 

                                        = 𝐴 ∫ {𝐽(𝛼0) − 𝐽[𝛼𝑛−1 + 𝜗(𝛼𝑛 −   𝛼𝑛−1)]}. (𝛼𝑛 −   𝛼𝑛−1)𝑑𝜗
1

0
. 

Here 𝛼𝑛−1 + 𝜗(𝛼𝑛 −   𝛼𝑛−1) ∈  𝛺𝛿  (0 ≦ 𝜗 ≦1) since (𝛼𝑛,   𝛼𝑛−1) ∈  𝛺𝛿 by the assumption. The by 

(ii) of (7), we have  

                                          ‖  𝛼𝑛+1 − 𝛼𝑛‖ ≦ 𝑀′.
𝜅

𝑀′
‖  𝛼𝑛 − 𝛼𝑛−1‖ = 𝜅‖  𝛼𝑛 − 𝛼𝑛−1‖,                (14) 

which proves (11) for 𝑛 because 

                                           ‖  𝛼𝑛 − 𝛼𝑛−1‖ ≦  𝜅𝑛−1‖  𝛼1 − 𝛼0‖, 

by the assumption. Since 

                                     ‖  𝛼𝑛+1 − 𝛼0‖ ≦ ‖  𝛼𝑛+1 − 𝛼𝑛‖ + ‖  𝛼𝑛 − 𝛼𝑛−1‖ + ⋯ + ‖  𝛼1 − 𝛼0‖, 

it follows from (11) and  (12) that 

                                    ‖  𝛼𝑛+1 − 𝛼0‖ ≦ ( 𝜅𝑛 +  𝜅𝑛−1 + ⋯  𝜅 + 1) ‖  𝛼1 − 𝛼0‖, 

                                                                   ≦  
𝑀′𝑟

1−𝜅
≦  𝛿,                                                                      (15) 

which proves (12) for 𝑛. 

 It is seen that the steps can continue indefinitely in 𝛺𝛿 ⊂ 𝛺 with the repetition rule in 

equation (10) and the use of (11) and (12).   

 Continuing the sequential operation results in an infinite and convergent sequence {𝛼𝑛} in 

𝛺𝛿 because | 𝜅| < 1. Let 

                                                             �̅� = lim
𝑛→∞

  𝛼𝑛. 

the resulting �̅� is a solution of obvious equation (6). The inequality (9) can also be easily obtained 

from (15). To complete the proof, let us show the uniqueness of the final solution. Let �̅�′ be another 

solution of (6) in the region.Then, 

                                                       �̅� = �̅� − 𝐴𝐹(�̅�), 

                                                       𝛼′̅ = �̅�′ − 𝐴𝐹(𝛼′̅), 

analogously to (14) we have 

                                                   ‖�̅� − 𝛼′̅‖ ≦ 𝜅‖�̅� − 𝛼 ′̅‖, 

which implies 

                                                           ‖�̅� − 𝛼 ′̅‖ = 0,                                                                     (16) 

 0 ≦  𝜅 < 1 and equality of (16) indicates that the solution is unique. 

 

3. Results and Discussion 

 

Firstly, the Hilbert space boundary value problem, which consists of the Sturm-Liouville equation 

and boundary conditions, the general properties of the operator suitable for the problem are 

introduced, the asymptotics of the solution functions and their characteristics are obtained by using 
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Green's function. The stability and uniqueness of the solutions are demonstrated by Leray-Schauder. 

The following problems are considered for differential operators; It is possible to define the operator 

according to which spectral data. For Sturm-Liouville operators, the transformative role of the 

operator in inverse problem theory is important. According to the given conditions, the smallest 

eigenvalue of the spectra may not be taken. Given the boundary conditions and a single spectrum, it 

is possible to obtain the potential provided the function is in the middle of the range. Considering 

this situation in the study and a supportive result is shown by a different method. 

Although some of the results obtained are similar to others, the existence has been proven with a 

newer technique using the method applied by Leray Schauder. In inverse problem theory, it is shown 

that while the solution of the inverse problem is based on two spectrums, the solution potential is 

obtained with a single spectrum. 

 

 

4. Conclusions 

 

In general, it is known that in regular or singular problems, the potential function can be determined 

uniformly with the help of two eigenvalue sequences. The quasi-inverse spectral problem involves 

reconstructing the operator over the entire range in an operational situation where the spectrum and 

potential are known in the half range. If the function 𝑞(𝑥) is known in the given range, the function 

with only the eigenvalue sequence, the function 𝑞(𝑥) can be determined uniquely over the entire 

range. In spectral theory, the case for inverse problems of Sturm-Liouville problems given with 

boundary conditions is as follows, eigenvalue sequences to calculate the potential and norming 

constants or spectrum are used. It has been shown that when a single spectrum is taken, necessary 

and sufficient conditions are created for it, thereby uniquely determining the potential and thus the 

intensity of the array. For the inverse problem, it has been shown that a single spectrum is effective 

in determining the potential. In addition, necessary conditions are given for the Sturm-Liouville 

problem to have a spectrum with real value potential. The existence has been proven with a newer 

technique using the method implemented by Leray Schauder. The results obtained gave a different 

perspective to the evidence in the literature. 
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