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ABSTRACT 

Objective: Polychlorinated biphenyls (PCBs) were very widely used in industrial products in past. 

These chemicals were banned in the 1970s due to their toxic effects.  PCBs can still affect human 

health, as they are persistent in the environment. Aroclor 1254 (A1254) is a commercial PCB 

congener which was used in electrical transformers, fluorescent lighting fixtures and old appliances 
such as televisions or refrigerators. In this study, we aimed to evaluate the toxic effects of A1254 on 

heart and thyroid in male Sprague-Dawley rats. In addition, the modifying role of selenium status 

was also evaluated. 
Material and Method: 8-week-old male Sprague-Dawley (SD) rats were used in the experiment. 

The animals were separated randomly into 6 groups (n=6) as control; selenium supplemented (SeS); 

selenium deficient (SeD); A1254 exposed (A); selenium supplemented A1254 exposed (ASeS) and 

selenium deficient A1254 exposed (ASeD). A1254 was applied by gavage during the last 15 days of 

feeding period. Heart and thyroid weights and relative weights, plasma thyroid hormone levels, as 

well as thyroid and heart tissue oxidative/antioxidative parameters were evaluated. 

Result and Discussion: Results showed that A1254 exposure and selenium deficiency caused 

oxidative stress on both heart and thyroid. Plasma fT3 and fT4 levels markedly changed in ASeD 
group. In conclusion, it can be stated that A1254 exposure can cause lead to oxidative/antioxidative 

imbalance in both thyroid and heart and can disrupt functioning of thyroid hormones. Selenium 

seems to have a modifying role in A1254 toxicity in both organs, the importance of which should be 

evaluated with further mechanistic experiments.   

Keywords: Aroclor 1254, cardiotoxicity, oxidative stress, selenium, thyroid disorders 

ÖZ 

Amaç: Poliklorlu bifeniller (PCB’ler) geçmişte endüstriyel ürünlerde çok yaygın olarak 
kullanılmıştır. Bu kimyasallar, toksik etkileri nedeniyle 1970'lerde yasaklanmıştır. PCB'ler, çevrede 

kalıcı oldukları için insan sağlığını hala etkileyebilir. Aroclor 1254 (A1254), elektrik 

transformatörlerinde, fluoresan aydınlatma armatürlerinde ve televizyon veya buzdolabı gibi eski 

cihazlarda kullanılan ticari bir PCB türevidir. Bu çalışmada erkek Sprague-Dawley sıçanlarında 

A1254'ün kalp ve tiroid üzerindeki toksik etkilerinin değerlendirmesi amaçlanmıştır. Ayrıca 

selenyum durumunun düzenleyici rolü de değerlendirilmiştir. 

Gereç ve Yöntem: Çalışmada 8 haftalık erkek Sprague-Dawley (SD) ratlar kullanılmıştır. 

Hayvanlar, kontrol grubu, selenyum suplemente grup (SeS); selenyum eksikliği olan grup (SeD); 

A1254 maruziyet grubu (A); selenyum suplemente A1254'e maruziyet grubu (ASeS) ve selenyum 

eksikliği olan A1254'e maruziyet (ASeD) olarak rastgele 6 gruba ayrıldı. A1254, beslenme sürecinin 

son 15 gününde uygulanmıştır. Kalp ve tiroid ağırlıkları ve bağıl ağırlıkları, plazma tiroid hormonu 
seviyeleri ve ayrıca tiroid ve kalp dokusu oksidatif/antioksidatif parametreleri değerlendirilmiştir. 

Sonuç ve Tartışma: Sonuçlar, A1254 maruziyetinin ve selenyum eksikliğinin hem kalp hem de tiroit 

dokusunda oksidatif strese neden olduğunu göstermiştir. Plazma fT3 ve fT4 seviyeleri ASeD 

grubunda belirgin şekilde değişmştir. Sonuç olarak, A1254 maruziyetinin hem tiroit hem de kalpte 

oksidan/antioksidan dengesizliğe yol açabileceği ve tiroit hormonlarının işleyişini bozabileceği 

söylenebilir. Selenyum, her iki organda da A1254 toksisitesinde değiştirici bir role sahip olduğu 

görünmektedir ve bunun önemi daha ileri mekanistik deneylerle değerlendirilmelidir. 

Anahtar Kelimeler: Aroklor 1254, kardiyotoksisite, oksidatif stress, selenyum, tiroit bozuklukları 

INTRODUCTION 

Polychlorinated biphenyls (PCBs) belong to the class of “manmade halogenated aromatic 

hydrocarbon compounds” [1]. Since they are very stable substances in terms of chemical and physical 
structure, they are mainly used in the production of capacitors, transformers, hydraulic pumps, printing 

ink, paints, pesticides, and electrical insulation liquids [2].  

Although most countries have banned the commercial production of PCBs since the 1970s, the 

compounds can still be detected in the environment [3]. Some researchers suggest that these compounds 
are still being used in the industry in developing countries while others suggest that their environmental 

persistence cause their presence in human and animal tissues and biological fluids. As PCBs are highly 
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lipophilic organic pollutants, they can accumulate and bioaccumulate in the food chain. Therefore, their 

body load increases due to increasing biological age in humans [4]. 
It has been determined by various studies that high levels of PCBs are found in water sources and 

soil samples in developing countries [5-7]. In various studies conducted in different countries, PCB 

concentrations in biological samples such as serum, breast milk, and adipose tissue indicates that human 

exposure exceeds the tolerable daily intake (TDI, 20 ng/kg body weight), which was determined by the 
World Health Organization (WHO) [8-11]. The threat posed by PCB accumulation in the environment 

leads to low-dose PCB toxicity as well as long-term human exposure. This phenomenon has received 

much attention among both environmental engineers and toxicologists as these compounds, which were 
banned years ago, are still a significant health threat today. PCB exposure may cause pathological 

effects, such as reproductive, neurological, endocrinologic, cardiovascular, and immunological 

disorders in both humans and animals [12-18]. 

Various studies have demonstrated that PCBs cause pathological changes in the thyroid gland and 
a decrease in serum thyroid hormone levels [19-23]. It has been observed that thyroid hormones increase 

in response to PCB exposure and this effect is sometimes followed by a decrease. Such effects usually 

depend on the type of PCB [24-25]. It is thought that the effects of PCBs on thyroid functions may be 
due to their structural similarity to thyroid hormones and their competing for binding to the same 

globulins in the blood [2,16,25,26].It is known that inflammation and oxidative stress in the thyroid 

gland may also play a role in thyroid hormone disorders and that PCBs may lead to inflammation and 
oxidative/antioxidative balance in multiple organs and systems [27,28]. 

Exposure to PCBs has been associated with different cardiac and circulatory pathologies such as 

heart failure, heart disease, atherosclerotic cardiovascular diseases and hypertension. Numerous 

epidemiological studies have found that exposure to PCBs, particularly dioxin-like (DL)-PCBs, is 
associated with an increased risk of cardiovascular disease [29-31]. 

Aroclor 1254 (A1254) was a highly used PCB congener. A1254 contains 54% chlorine by weight 

and contains 5 chlorines per biphenyl molecule [7,32]. Because Aroclors are composed of dozens of 
chlorinated PCB components, their biodegradation takes a very long time [33]. A1254 is known to have 

various toxic effects, including cardiac and thyroidal toxicities [34-37]. 

Selenium, an essential trace element, has important roles in many cellular processes in the human 
body, especially in the antioxidant and immune systems. Enzymes and proteins they have selenium as a 

component are called “selenoproteins”. Crucial proteins and antioxidant enzymes such as iodothyronine 

deiodinases, glutathione peroxidases, thioredoxin reductases, and selenoprotein P are all selenoproteins. 

Selenium supplementation is known to have a protective effect against the oxidative stress caused by 
physical, chemical and biological agents and selenium supplementation may be beneficial in chronic 

diseases at appropriate doses [38-41]. 

Our study aimed to evaluate the toxic effects of A1254 exposure on thyroid and heart in adult 
male Sprague-Dawley rats. The toxic effects of this PCB congener was determined by measuring 

oxidant/antioxidant parameters as well as plasma thyroid hormone levels. In addition, the modifying 

role of selenium status after A1254 exposure was evaluated. 

MATERIAL AND METHOD 

Chemicals and Kits 

A1254 (purity 99%), alcohols, Tris, diethylenetriaminepentaacetic acid (DTPA), 
phenylmethanesulfonyl fluoride (PMSF), and BCA Protein Assay Kit were purchased from Sigma-

Aldrich (St. Louis, MO). Total antioxidant capacity (TAOC), Malondialdehyde (MDA) and protein 

carbonyl assay kits were purchased from Cayman (Ann Arbor, MI).  Rat thyroxine, T4 ELISA Kit was 

from Biomatik (Kitchener, Canada) and Rat Triiodothyronine (T3) ELISA Kit was from MyBioSource 
(Vancouver, Canada), respectively. All other chemicals were from Sigma-Aldrich. 

Experimental Groups 

3-week-old male Sprague-Dawley (SD) rats were obtained from the Laboratory of Experimental 
Animals at Hacettepe University. Six groups were randomly created (n=6 animals for each) and each 
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group was housed in polypropylene cages with stainless steel grid tops. The cages were kept in regulated 

humidity (at 50%), temperature (at 23°C), and 12-hour light/dark cycle. Every week body weights (bw) 
of the animals were measured. The feeding period lasted for five weeks and the animals had unlimited 

access to food and water. The experimental groups were as follows: 

1-Control group was fed with normal rat diet (0.15 mg/kg Se) for 7 weeks.  

2-Selenium supplemented (SeS) group was fed with selenium-supplemented diet (1 mg/kg Se) for 7 
weeks. 

3-Selenium deficient (SeD) group was fed with selenium-deficient diet (≤0.05 mg/kg Se) for 7 weeks. 

4-Aroclor 1254 (A) group was fed with normal rat diet (0.15 mg/kg Se) for 7 weeks and received 10 
mg/kg A1254 by gavage during the last 15 days of feeding period.  

5-Selenium supplemented Aroclor 1254 (ASeS) group was fed with selenium-supplemented diet (1 

mg/kg Se) for 7 weeks and received 10 mg/kg A1254 by gavage during the last 15 days of feeding 

period.  
6-Selenium deficient Aroclor 1254(ASeD) group was fed with selenium-deficient diet (≤0.05 mg/kg Se) 

for 7 weeks and received 10 mg/kg A1254 by gavage during the last 15 days of feeding period.  

Thyroid Hormone Levels  

After decapitation, 5 ml blood samples were taken into heparinized tubes. Tubes were centrifuged 

at 3500 rpm for 10 min. Plasma samples were aliquoted and stored at -80oC. fT3 levels were measured 

with a competitive ELISA kit and fT4 levels were determined by a quantitative sandwich ELISA kit.  

Preparation of Tissue Homogenates 

Teflon pestle homogenizer used for heart and thyroid homogenates 10% (w/v). Total homogenate 

in a volume of ice-cold buffer containing Tris (10 mM), diethylenetriaminepentaacetic acid (1 mM), and 

phenylmethanesulphonyl fluoride (1 mM; adjusted to pH 7.4). The supernatant's total antioxidant 
capacity (TAOC), malondialdehyde (MDA), and carbonyl concentrations were assessed after 

centrifugation at 1500 xg, 4 °C, for 10 min. The rest of the supernatants were recentrifugated at 9500 

xg, 4°C for 20 min, and the antioxidant enzyme activities (SOD, CAT) were determined in the 
supernatant. All spectrophotometric measurements were performed using a spectrophotometer 

SpectraMax M2 (Molecular Devices, Sunnyvale, CA). 

Determination of Antioxidant Enzyme Activities and Oxidative Stress Parameters 

Catalase (CAT) activity was determined with the enzymatic decomposition of H2O2. One unit of 

CAT activity was defined as the amount of enzyme required to decompose 1 μmol H2O2 in one min was 

followed directly at 240 nm [42]. One unit of CAT activity was defined as the amount of enzyme 

required to decompose 1 μmol H2O2 in one min. 
The total superoxide dismutase (total SOD) activity was determined by monitoring the auto-

oxidation of pyrogallol at 420 nm [43]. One unit of total SOD activity was defined as the amount of 

enzyme required to inhibit the rate of pyrogallol auto-oxidation by 50%. 
TAOC of experimental groups was evaluated with a commercial kit based on the ability of 

antioxidants in the sample to inhibit the oxidation of ABTS® (2,2’-Azino-di- [3-ethylben, 

followedulphonate]) to ABTS®•+ by metmyoglobin. The amount of ABTS®•+ produced can be 

monitored by reading the absorbance at 750 nm or 405 nm.  
The carbonyl groups as the biomarker of protein oxidation were determined by a quantitative 

analysis of carbonyl groups is based on the formation of stable hydrazones after the derivatization of 

these groups with DNPH. Subsequently, the absorbance of the stable hydrazones formed is measured 
spectrophotometrically at 370 nm by “carbonyl assay kit”. 

MDA levels were measured as a biomarker of lipid peroxidation with a commercial kit. The basis 

of the Cayman kit used in the measurement is the reaction of malondialdehyde with thiobarbituric acid 
in acidic conditions and the color intensity of the pink compound formed is measured colorimetrically 

at 530 nm.  
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Total Protein Determination  

Total protein measurement was performed using a commercial kit using the bicinchoninic acid 
(BCA) assay. This experiment is based on the spectrophotometric measurement of the absorbance of the 

purple complex formed by the reaction of BCA and Cu+2 ions and the Cu+1 ions formed as a result of 

the reaction of the protein in alkaline media, at 562 nm [44]. 

Statistical Analysis 

The results were expressed as mean±standard deviation (SD). The differences among the groups 

were evaluated with Kruskal–Wallis one-way analysis of variance, followed by Mann–Whitney U test 

using a Statistical Package for Social Sciences Program (SPSS) version 17.0 (Chicago, IL).  P values 
<0.05 were considered as statistically significant. 

RESULT AND DISCUSSION  

In our study, we determined the effects of A1254 exposure on heart and thyroid at different 
selenium status in rats. The results suggested that A1254 exposure may cause decrease in tissue weights, 

oxidative stress on organs, and hormonal disorders in rats. The results of this study can be discussed in 

five parts: 

Heart Organ Weights 

Heart weights in all study groups were lower than the control. In SeS and SeD groups, there were 

8% and 18% decreases in heart weight while A group had 47% lower heart weight compared to control 

(p<0.05, all). ASeS group had 20% lower heart weight (p>0.05) while ASeD group has 21% decreased 
heart weight (p<0.05) vs. control (Figure 1A). 

Relative heart weights in SeS (11%) and SeD (15%) groups were markedly lower than control 

while in A group there was 10% insignificant decrease vs. control group. Both ASeS (14%) and ASeD 
(11%) groups had significantly lower heart weights vs. control (Figure 1B). 

 

Figure 1. Heart and relative heart weights of groups. 
A. Heart weights of groups; B. Relative heart weights of groups.  

a,b,c,dBars that do not share same letters (superscripts) are significantly different from each other (p < .05) 

Wang et al. (2021) found that low dose (0.5 µg/kg and 50 µg/kg) PCB126 exposure caused an 

increase in relative heart weights. This increase is thought to be related to cardiac hypertrophy seen with 
low-dose exposure [45]. In our study, we can suggest that the inhibition of heart tissue development due 

to oxidative damage caused by high-dose A1254 exposure may be the underlying factor of lower heart 

and relative heart weights in A1254-exposed groups. Moreover, the decreases in heart and relative heart 

weights in selenium deficiency might be due to both increased cardiac oxidative stress and the lower 
antioxidant capacity of the heart tissue. In addition, other mechanisms yet to be identified might 

contribute to lower heart and relative heart weights in both selenium deficiency and/or A1254 exposure. 
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The contradiction between the results of our study and the study conducted by Wang et al. (2021) may 

be due to the difference in the PCB congeners.  

Determination of Antioxidant Enzyme Activities and Oxidative Stress Parameters on Heart Tissue 

Heart MDA levels in A group was higher than control (69%, p<0.05). There were no significant 

changes in MDA levels in other study groups (Fig 2A). Heart carbonyl levels in ASeD group was 

significantly higher than control (2-fold). Carbonyl levels of SeD and A groups were higher vs. control 

group (46% and 27%, respectively; p>0.05, both) (Fig 2B). Heart TAOC levels in ASeD group was 
markedly lower than control (23%) (Fig 2C). 

The results indicate that A1254 exposure leads to lipid peroxidation in heart. Heart carbonyl levels 

in the ASeD group were significantly higher than control (2-fold). Although A1254 exposure alone 

does causes higher levels of protein oxidation and lower TAOC levels, the differences between A and 

control groups were not statistically significant for both of the measured parameters. These results 
suggest that selenium deficiency exacerbates the protein oxidation caused by A1254 exposure. All these 

results suggest that there is a deterioration in the oxidant/antioxidant balance in the heart tissue, 

particularly after A1254 exposure and selenium deficiency. The increase in CAT activity indicates the 

response of the organ to protect itself against the oxidative stress that occurs in the heart tissue with the 
application of A1254 in selenium deficiency. Several in vivo studies also suggest that different PCBs 

and PCB congeners lead to tissue damage, oxidative stress, disrupt the work of calcium and potassium 

channels and affect enzyme activities [46-50]. In studies conducted on humans, PCB exposure has been 
associated with important cardiac pathologies such as myocardial infarction, heart attack, coronary 

atherosclerosis and heart failure [31,51,52].  In addition, various studies show that selenium deficiency 

can have negative effects on cardiovascular health [40,53]. As selenium is the major component of 
glutathione peroxidases (GPxs), which are crucial antioxidant enzymes, the decrease in selenium levels 

mainly affects GPx activity. Lower GPx activity exacerbates endothelial dysfunction, a major 

contributing factor in the severity of chronic heart failure symptoms, in various conditions such as 

hyperhomocysteinemia. This suggests that homocysteine may be involved in the chronic heart failure 
associated endothelial dysfunction through a peroxide-dependent oxidative mechanism [54]. According 

to our results, it can be postulated that PCB toxicity may occur more predominantly in selenium 

deficiency and its consequences may be more pronounced. 

 
Figure 2. Heart oxidative stress parameters. 

A. MDA levels in heart.; B. Carbonyl levels in heart; C. TAOC levels in heart. 
a,b,c,dBars that do not share same letters (superscripts) are significantly different from each other (p < .05) 
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CAT activity was significantly higher in ASeD group (33%) while there were no marked changes 

in SOD activities of the study groups vs. control. 

 

Figure 3. Heart antioxidant enzyme activities. 
A. CAT activity of heart tissue; B. SOD levels of heart tissue 

a,b,c,dBars that do not share same letters (superscripts) are significantly different from each other (p < .05) 

Thyroid Organ Weights 

The thyroid weights in SeD (38%), A (39%), ASeS (55%) and ASeD (50%) groups were 

markedly lower than control (Fig. 4A). Relative thyroid weights were significantly lower in all study 

groups (21% in SeS, 34%in SeD, 30% in A, 52% in ASeS and 41% in ASeD groups vs. control) (Fig. 
4B). These results indicate that Se deficiency and/or A1254 exposure cause more pronounced decreases 

in thyroid tissue weights and relative organ weights. As both A1254 alone and selenium deficiency alone 

lead to lower thyroid/relative thyroid weight, it is not suprising that the combination of A1254 exposure 

and selenium deficiency produces a more pronounced effect on thyroid/relative thyroid weights.  

 
Figure 4. Thyroid and relative thyroid weights of groups. 

A. Thyroid weights of groups; B. Relative thyroid weights of groups. 
a,b,c,dBars that do not share same letters (superscripts) are significantly different from each other (p < .05) 

Thyroid Hormone Levels 

fT4 levels in SeD group were significantly higher than control (64%). fT4 levels were markedly 

lower in A (51%), ASeS (22%) and ASeD (10%) groups vs. control group (Fig. 5A). fT3 levels were 
lower in A (37%) group vs. control (Fig. 5B). Numerous studies have shown that selenium is directly 

related to thyroid tissue and hormones as selenium is the integral component of iodothyronine 

deiodinases, which are a subfamily of deiodinase enzymes important in the activation and deactivation 

of thyroid hormones [38,55].   
 Limited number of in vivo and human studies indicate that exposures to A1254 and other PCBs 

can cause changes in thyroid hormone levels. Although the results of these studies varied depending on 
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the exposure period and dose, the data showed that rodents showed significant changes in thyroid 

hormone levels after PCB exposure. These alterations caused by A1254 in thyroid may be due to their 
structural similarity to thyroid hormones. In addition, as exposure to A1254 caused a significant decrease 

in serum fT3 levels, it can be concluded that A1254 also has an endocrine disrupting effect in the thyroid, 

most possible due to disruption of hormonal feedback flow and changes in enzyme levels that metabolize 

thyroid hormones. Moreover, thyroidal damage, oxidative stress and/or the interactions of A1254 with 
thyroid hormone receptors may lead to alterations in thyroid hormone levels [16, 27, 34, 56-63].   

However, more mechanistic studies are needed to show the exact endocrine disrupting mechanisms of 

different PCB congeners in the thyroid.  

 

Figure 5. Plasma thyroid hormone levels 
A. fT4 levels; B. fT3 levels 

a,b,c,dBars that do not share the same letters (superscripts) are significantly different from each other (p < .05) 

Determination of Oxidative Stress Parameters on Thyroid Tissue 

Thyroid MDA levels in SeD (58%), A (1.7-fold), ASeS (70%) and ASeD (2.5-fold) groups were 

markedly higher than control (Fig 6A). TAOC levels in SeD (36%), A (50%), ASeS (36%) and ASeD 

(33%) groups were significantly lower than control (Fig 6B). It has been determined that lipid 
peroxidation in thyroid was much more pronounced with the selenium deficiency with accompanying 

A1254 exposure. TAOC levels in SeD (36%), A (50%), ASeS (36%) and ASeD (33%) groups were 

significantly lower than control in thyroid. It has been observed that exposure to A1254 in the presence 

of selenium deficiency cause a more significant decrease in the antioxidant defense capacity of thyroid 
tissue.  Several studies and comprehensive reviews suggested that selenium deficiency causes higher 

oxidative stress in thyroid in accordance with the results of the presence study [65-69].   

 

Figure 6. Thyroid oxidative stress parameters. 
A. MDA levels of thyroid tissue; B. Carbonyl levels of thyroid tissue 

a,b,c,dBars that do not share same letters (superscripts) are significantly different from each other (p < .05) 
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In conclusion, it can be suggested that A1254 causes toxic effects in both heart and thyroid in 

rats. A1254 disrupts thyroid enzymes and causes oxidative/antioxidative imbalance in both thyroid and 
heart. Selenium, a crucial essential element, seems to have modifying role in the cardiac and thyroidal 

toxicity of A1254. The exact mechanism through which selenium is partially protective against toxicity 

of A1254 in heart and thyroid is not clear. However, as selenium is the integral component of many 

important antioxidants, selenium supplementation seems to augment the toxicity of A1254, at least 
partially. Mechanistic studies are needed to clarify the exact effects of selenium in PCB toxicity. 

moreover, as selenium is also an important element for the endothelial functioning through GPxs, the 

mechanism through which selenium shows a protective effect in heart against A1254 toxicity should be 

investigated in detail.   
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