
J. Fac. Pharm. Ankara / Ankara Ecz. Fak. Derg., 48(1): 20-33, 2024 
Doi: 10.33483/jfpau.1322948 

ORIGINAL ARTICLE / ÖZGÜN MAKALE 

 

A MULTIVARIATE INTERPOLATION APPROACH FOR 

PREDICTING DRUG LD50 VALUE  

 
İLAÇ LD50 DEĞERİNİ TAHMİN ETMEK İÇİN ÇOK DEĞİŞKENLİ BİR 

İNTERPOLASYON YAKLAŞIMI 

 
Gül KARADUMAN

1,2
* , Feyza KELLECİ ÇELİK

1
* 

  

 
1Karamanoğlu Mehmetbey University, Vocational School of Health Services, 70200, Karaman, Türkiye 
2University of Texas at Arlington, Department of Mathematics, TX 76019-0408, Arlington, USA 

ABSTRACT 

Objective: The present study aimed to develop a multivariate interpolation based on the 

quantitative structure-toxicity relationship (QSTR) that can accurately predict the oral median 

lethal dose (LD50) values of drugs in mice by considering five different toxicologic endpoints. 

Material and Method: A mathematical model was created using a comprehensive dataset 

comprising LD50 values from 319 pharmaceuticals belonging to various pharmacological classes. 

We developed a polynomial model that can predict the range of LD50 values for pharmaceuticals. 
We employed a technique called two-variable polynomial interpolation. This method allowed us to 

estimate the approximate values of a function at any point within a two-dimensional (2D) space by 

utilizing a polynomial equation. 

Result and Discussion: The resulting model demonstrated the ability to predict LD50 values for new 

or untested drugs, rendering it a valuable tool in the early stages of drug development. The Ghose-

Crippen-Viswanadhan octanol-water partition coefficient (ALogP) and Molecular Weight (MW) 

were selected as suitable descriptors for building the best QSAR model. Based on our evaluation, 

the model achieved an overall success rate of 86.73%. Compared to traditional experimental 

methods for LD50 determination, this innovative approach offers time and cost efficiency while 

reducing animal testing requirements. Our model can improve drug safety, optimize dosage 

regimens, and assist decision-making processes during preclinical studies and drug development. 
This approach provided a reliable and efficient method for preliminary acute toxicity assessments. 

Keywords: Data analysis, LD50, mathematical toxicology, multivariate interpolation, polynomial 

interpolation 

ÖZ 

Amaç: Bu çalışmanın amacı, beş farklı toksikolojik sonucu dikkate alarak farelerde ilaçların oral 

median letal doz (LD50) değerlerini doğru bir şekilde tahmin edebilen, niceliksel yapı-toksisite 

ilişkisine (QSTR) dayalı çok değişkenli bir interpolasyon yöntemi geliştirmektir.  
Gereç ve Yöntem: Farklı farmakolojik sınıflara ait 319 ilaca ait LD50 değerlerini içeren kapsamlı 

bir veri seti kullanılarak matematiksel bir model oluşturuldu. Farmasötiklerin LD50 değerlerinin 

aralığını tahmin edebilen bir polinom model geliştirdik. İki değişkenli polinom interpolasyon adı 
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verilen bir teknik kullanarak bunu gerçekleştirdik. Bu yöntem, bir polinom denklemi kullanarak iki 

boyutlu bir uzayda herhangi bir noktadaki bir fonksiyonun değerlerini tahmin etmemizi sağladı. 

Sonuç ve Tartışma: Elde edilen model, yeni veya denenmemiş ilaçlar için LD50 değerlerini tahmin 

etme yeteneğini gösterdi ve bu nedenle ilaç geliştirme sürecinin erken aşamalarında değerli bir araç 

olarak kullanılabilir. Değerlendirmemize göre, model genel başarı oranı olarak %86,73 olarak 

bulundu. LD50 değerinin belirlenmesinde kullanılan geleneksel deneysel yöntemlere kıyasla, bu 

yenilikçi yaklaşım zaman ve maliyet açısından avantajlı olup hayvan deneylerinin gerekliliğini 

azaltmaktadır. Modelimiz ilaç güvenliğini artırabilir, doz rejimlerini optimize edebilir ve ön klinik 

çalışmalar ve ilaç geliştirme sürecinde karar verme süreçlerine yardımcı olabilir. Bu yaklaşım, ön 

akut toksisite değerlendirmeleri için güvenilir ve etkili bir yöntem sunmuştur. 
Anahtar Kelimeler: Çok değişkenli interpolasyon, LD50, matematiksel toksikoloji, polinom 

interpolasyonu, veri analizi   

INTRODUCTION 

The median lethal dose or concentration (LD50/LC50) serves as a dose indicator for evaluating the 
acute toxicity of pharmaceuticals/chemicals in risk assessment. This dosage corresponds to the amount 

resulting in mortality in 50% of the analyzed animal population. The LD50/LC50 value is also used for 

categorizing the toxicity levels of substances, enabling a standardized and systematic approach to 
toxicological assessments (Table 1) [1].  

LD50/LC50 tests are conducted in the early stages of drug development to determine the lethal dose 

of pharmaceuticals. These trials provide a reference point for dose selection in subsequent toxicity 
studies. The accurate calculation of the LD50/LC50 value is essential for ensuring the safe use of 

medications and predicting potential adverse reactions. Thus, it aids in the establishment of the drug's 

toxicity profile [2]. Although rats, rabbits, and guinea pigs have traditionally been utilized in such 

studies, mice are often preferred as a model organism. The LD50/LC50 value can be determined through 
various administration methods, including oral, dermal, or inhalation, depending on the study's design. 

Regarding ease of use, the oral route is the commonly preferred method of medication delivery. 

Therefore, oral LD50/LC50 data in the literature are widely available compared to other routes of exposure 
[1]. 

Table 1. The hazard categories for acute toxicity (based on the LD50/LC50 value) according to the 

Globally Harmonized System of Classification and Labelling of Chemicals (GHS) guidelines [1] 

Exposure Route Category 1 Category 2 Category 3 Category 4 Category 5 

Oral (mg/kg BW) ≤ 5 5-50 50-300 300-2000 2000 < 

Dermal (mg/kg BW) ≤ 50 50-200 200-1000 1000-2000 2000 < 

Gases (ppmV) ≤ 100 100-500 500-2500 2500-20000 - 

Vapors (mg/l) ≤ 0.5 0.5-2 2-10 10-20 - 

Dust and Mists (mg/l) ≤ 0.05 0.05-0.5 0.5-1 1-5 - 

BW: Body Weight 

Due to ethical concerns, regulatory rules have recently restricted the use of laboratory animals in 

pharmaceutical research [3]. The current legislations promote the adoption of alternative approaches to 

minimize animal experiments [4].  One of the notable alternative methods involves the quantitative 
structure-toxicity relationship (QSTR) models, which assist in the rapid and cost-effective assessment 

of drug toxicity. QSTR modeling has gained recognition as a computational approach in pharmaceutical 

toxicology. These mathematical-based models establish a relationship between the structural 

characteristics of pharmaceutical compounds and their potential toxic effects. Various algorithms are 
employed in QSTR studies to facilitate classification or provide direct quantitative predictions [5]. 

Several studies have been conducted in the literature to predict the LD50/LC50 value of chemical 

substances using QSTR models, employing datasets of varying sizes [4,6,7]. However, compared to 
other research areas in QSTR, relatively few studies specifically focused on predicting the LD50/LC50 
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values of pharmaceuticals [8]. Due to this gap in the literature, we have turned to non-animal-based 

methods to predict the LD50/LC50 values of pharmaceuticals. 
The interpolation method is one of the commonly employed approaches. If LD50/LC50 values for 

certain drugs are available at specific doses, interpolation techniques can be used to estimate LD50/LC50 

values for intermediate doses [9]. Interpolation methods such as linear interpolation, polynomial 

interpolation, or spline interpolation can be used to approximate LD50/LC50 values based on the known 
data points [4]. Another approach is the regression technique. This technique can be used to estimate 

LD50/LC50 values based on a set of independent variables (predictors) such as drug dosage, 

administration route, or changing experimental conditions [4]. Various regression techniques like linear, 
logistic, or nonlinear regression can be applied to fit a model to the available LD50/LC50 data and predict 

LD50/LC50 values for newly synthesized drugs or different dosages. QSTR models also aim to establish 

relationships between the chemical structure or descriptors of drugs and their biological activities. There 

are critical dose values that play a significant role in the biological activity of a drug. Among these 
criteria, the LD50/LC50 value stands out as an indicator of acute toxicity [4,6]. By analyzing a dataset of 

drugs with known LD50/LC50 values and their corresponding chemical descriptors, QSTR models can 

be built to predict LD50/LC50 values for novel drug molecules based on their structural characteristics. 
Machine learning techniques, such as decision trees, random forests, support vector machines, or neural 

networks, can be employed to develop predictive models for LD50/LC50 estimation [10,11]. These 

models learn patterns and relationships from the available LD50/LC50 data and can be used to predict 
LD50/LC50 values for novel drugs based on their features or descriptors. The choice of the most 

appropriate method varies depending on the available data, the nature of the problem, and the specific 

goals of the analysis.  

In this study, we developed a multivariate interpolation-based [12] QSTR model to predict the 
acute oral LD50 values of drugs in mice. This model was formulated based on the impact of critical 

properties in the chemical structures of pharmaceuticals on the biological response in mice. This 

approach enables the determination of relationships between the physicochemical properties of 
pharmaceuticals and their toxicity, allowing for the rapid and effective analysis and interpretation of 

complex data. This provides a significant advantage in reducing risks and improving safety standards in 

drug development. Our study was specifically designed to minimize the utilization of experimental 
animals by narrowing down the range of LD50 values. Ultimately, a final LD50 value should be 

established through animal experimentation in the last stage, thus ensuring comprehensive assessment 

and verification of drug safety. The results obtained from this research contribute to the advancement of 

drug safety assessment and establish a foundation for future computational toxicology studies. 
Figure 1 illustrates the steps to develop a mathematical model capable of predicting the range of 

LD50 values for pharmaceuticals-the initial phase involved data collection. Subsequently, the dataset 

was pre-processed by eliminating noisy data and establishing the applicability domain. From the dataset, 
specific drugs were selected for constructing the interpolation polynomial. Two descriptors with the 

highest efficiency were chosen to represent the two variables, (𝑥 and 𝑦). Multiple interpolation 

polynomials were created to assess their success in predicting the LD50 value range. If the results were 

unsatisfactory, the process returned to step 3, where different sets of drugs were selected, and the 
interpolation process was repeated. Ultimately, the model's performance was evaluated based on the 

accuracy of correctly classifying the drug ranges of LD50 values. 

 

Figure 1. Model development workflow 
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MATERIAL AND METHOD 

Polynomial interpolation, in the context of QSTR, is a mathematical technique used to model the 
relationship between the chemical structure of a compound and its toxicological activity. QSTR models 

aim to predict the activity of a chemical based on its structural features. Polynomial interpolation 

involves fitting a polynomial function to a set of data points, where each data point represents a 
compound with known structural descriptors and corresponding activity values. The polynomial 

function is then used to interpolate the activity of compounds based on their structural descriptors. 

Estimating the LD50 values for drugs solely through interpolating molecular descriptors is 

challenging and not prevalent. Molecular descriptors alone may not provide sufficient information to 
predict toxicity levels accurately. Rather than predicting a direct mathematical value, this method yields 

more successful results in estimating a range. Therefore, in this study, we developed a mathematical 

model that efficiently predicts the range of LD50 values for a pharmaceutical. 

Material 

This study included a total of 319 drugs, each accompanied by available oral LD50 values [13-

15] (Supplementary File 1_Table S1). To ascertain the compounds' chemical structure and physical 
attributes, we accessed the two-dimensional structural data file (2D SDF) through the PubChem 

database [16]. Employing the open-source program T.E.S.T. [17], we computed chemical descriptors 

for these compounds based on the 2D SDF data files. 

We diligently cleansed and preprocessed the dataset, ensuring its freedom from any missing 
values, outliers, or other data quality anomalies. The importance of data quality cannot be understated 

in the realm of data science and machine learning workflows. Consequently, any corrupted 2D SDF files 

sourced from PubChem were meticulously eliminated from the dataset, yielding data of exceptional 
quality and usability. 

Subsequently, the remaining SDF files underwent characterization through T.E.S.T. and were 

then stored in comma-separated files. The "ReplaceMissingValues" tool, an unsupervised attribute filter 
within the WEKA 3.9.5 (Waikato Environment for Knowledge Analysis) software, was employed to 

impute the missing descriptive values [23]. Following this step, duplicated data entries were 

systematically removed from the dataset to ensure its integrity. 

The selection of descriptors for accurate LD50 estimation depends on the specific characteristics 
of the drugs being considered. We focused on the two descriptors frequently mentioned in the literature 

for the interpolation process. Two commonly used and important descriptors for LD50 estimation are the 

Ghose-Crippen-Viswanadhan octanol-water partition coefficient (ALogP) and Molecular Weight 
(MW). The selection of ALogP and MW as significant descriptors for LD50 estimation is based on the 

following reasons.  

ALogP is employed to assess a compound's solubility in nonpolar solvents (e.g., octanol) and 

polar solvents (e.g., water) [18]. It provides information about the lipophilicity of a drug and its ability 
to permeate and accumulate in biological membranes. Higher ALogP values are associated with 

increased toxicity, potentially due to enhanced membrane permeability and the likelihood of 

accumulating in fatty tissues [5]. Therefore, ALogP is a valuable indicator of a compound's 
bioavailability and potential to cross biological membranes, making it a significant factor in determining 

LD50 values. 

Our other identifier, MW, is a fundamental descriptor used in drug-related QSTR studies, 
providing information about a drug's size and complexity. MW is a critical parameter in toxicity 

modeling studies as it directly influences the toxicokinetic of xenobiotics. According to the OECD 

guidelines, it has been stated that the physicochemical properties of a chemical, such as AlogP and MW, 

may be helpful for study planning and interpretation of results [19]. 

Molecular Diversity and Distribution in Chemical Space 

Molecular diversity and distribution in chemical space play a crucial role in QSTR modeling. 

Chemical space refers to the vast multidimensional space that encompasses all possible molecules. The 
distribution of molecules within this chemical space is important because it affects the coverage and 
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representativeness of the training data used in QSTR modeling. Molecular diversity measures the variety 

and heterogeneity of molecules in a dataset. A diverse dataset should cover different regions of chemical 
space, representing a wide range of structural features and properties. Including diverse molecules in 

the training set helps capture the full range of interactions and properties that a QSTR model needs to 

predict accurately [20]. 

Considering molecular diversity and distribution in chemical space, QSTR models can provide 
reliable predictions for molecules with similar structural features or properties, even if they were not 

explicitly included in the training dataset. This enhances the generalization and applicability of QSTR 

models to guide molecular design, screening, and optimization processes in various fields [20]. 

Method 

In this study, we aimed to develop a polynomial model that can predict the range of oral LD50 

values for pharmaceuticals. We employed a technique called two-variable polynomial interpolation. 

This method allows us to estimate the values of a function at any point within a 2D space by utilizing a 
polynomial equation. 

We have a set of data points, each consisting of distinct values (𝑥0, 𝑦0), (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛), 
along with their corresponding function values 𝑓(𝑥𝑖 , 𝑦𝑖). Our goal was to find a unique multivariate 
interpolation polynomial, denoted as P(x, y), that satisfies the equation:                                        

 
𝑓(𝑥𝑖 , 𝑦𝑖) = 𝑃(𝑥𝑖 , 𝑦𝑖), (1) 

where, for each 𝑖 = 0,1, … , 𝑛. This equation should hold true for each 𝑖 ranging from 0 to 𝑛. By 

constructing such a polynomial, we aimed to accurately predict the function values for any given 

combination of 𝑥 and 𝑦 within the interpolation domain. To accurately predict function values for any 

combination of 𝑥 and 𝑦 within the interpolation domain, we need to create an interpolation matrix. The 
construction of this matrix can be accomplished using the following procedure. 

 

The polynomial of two variables of the total degree of 𝑛 is given by  
 

𝑃(𝑥, 𝑦) = ∑∑𝑎𝑗,𝑖

𝑘

𝑗=0

𝑛

𝑖=0

𝑥𝑗𝑦𝑖−𝑗 , (2) 

where, for each 𝑖 = 0,1, … , 𝑛 and 𝑗 = 0,1, … , 𝑘 [21]. We used 10 distinct (𝑥, 𝑦) values to find a 

multivariate interpolation polynomial function 𝑃(𝑥, 𝑦) of the form, 

 

𝑃(𝑥, 𝑦) = 𝑎0,1 + 𝑎1,1𝑥 + 𝑎1,2𝑦 + 𝑎2,1𝑥
2 + 𝑎2,2𝑥𝑦 + 𝑎2,3𝑦

2 + 𝑎3,1𝑥
3 + 𝑎3,2𝑥

2𝑦

+ 𝑎3,3𝑥𝑦2 + 𝑎3,4𝑦
3 

(3) 

where 𝑎0,1, 𝑎1,1, 𝑎1,2, 𝑎2,1, 𝑎2,2, 𝑎2,3, 𝑎3,1, 𝑎3,2, 𝑎3,3, and 𝑎3,4 are the coefficients to be determined. 

We can construct a system of equations by substituting the data points into the polynomial 
equation, 

 
𝑓(𝑥1, 𝑦1) =  𝑎0,1 + 𝑎1,1𝑥1 + 𝑎1,2𝑦1 + ⋯+ 𝑎3,1𝑥1

3 + 𝑎3,2𝑥1
2𝑦1 + 𝑎3,3𝑥1𝑦1

2

+ 𝑎3,4𝑦1
3 

𝑓(𝑥2 , 𝑦2) =  𝑎0,1 + 𝑎1,1𝑥2 + 𝑎1,2𝑦2 + ⋯+ 𝑎3,1𝑥2
3 + 𝑎3,2𝑥2

2𝑦2 + 𝑎3,3𝑥2𝑦2
2

+ 𝑎3,4𝑦2
3 

⋮ 
𝑓(𝑥10 , 𝑦10) =  𝑎0,1 + 𝑎1,1𝑥10 + 𝑎1,2𝑦10 + ⋯+ 𝑎3,1𝑥10

3 + 𝑎3,2𝑥10
2𝑦10

+ 𝑎3,3𝑥10𝑦10
2 + 𝑎3,4𝑦10

3, 

(4) 
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where, 𝑎0,1, 𝑎1,1,… , 𝑎3,4 are the coefficient values that are to be determined to form the interpolation 

polynomial 𝑃(𝑥, 𝑦) [22,23]. We can represent this system of equations in matrix form, 

 
𝐴 𝑎 =  𝑓, (5) 

where 𝐴 is the coefficient matrix, 𝑎 is the vector of unknown coefficients, and 𝑓 is the vector of function 

values. Equation (5) can be expressed as a linear system, 

 

𝐴𝑎 =

[
 
 
 
 1
1

𝑥1

𝑥2
⋯

𝑥1𝑦1
2   𝑦1

3

𝑥2𝑦2
2   𝑦2

3

⋮ ⋱ ⋮             

1
1

𝑥9

𝑥10
⋯  

𝑥9𝑦9
2   𝑦9

3

𝑥10𝑦10
2 𝑦10

3]
 
 
 
 

[
 
 
 
 
𝑎0,1

𝑎1,1

⋮
𝑎3,3

𝑎3,4]
 
 
 
 

=

[
 
 
 
 

𝑓(𝑥1, 𝑦1)
𝑓(𝑥2, 𝑦2)

⋮
𝑓(𝑥9, 𝑦9)

𝑓(𝑥10 , 𝑦10)]
 
 
 
 

=  𝑓, (6) 

where, 𝐴 𝜖 ℝ10×10, 𝑓 𝜖 ℝ10, and 𝑎 𝜖 ℝ10. In this equation, 𝐴 is a real-valued invertible matrix, 𝑓 is a 

vector in the real-valued space, and 𝑎 is the vector we need to find. Once we have matrix 𝐴 and vector 

𝑓, we can solve for vector 𝑎 𝜖 ℝ10 using matrix operations or linear regression techniques to obtain the 
coefficients. These coefficients represent the interpolated function. We can then evaluate the 

interpolated function at new points within the interpolation domain by substituting the input values and 

obtaining the estimated function values. 

The degree of the polynomial can be adjusted based on the targeted level of accuracy and 
complexity. Higher-degree polynomials can provide a better fit to the data but may also lead to 

overfitting. Careful consideration of the dataset and the trade-off between accuracy and complexity is 

critical when choosing the degree of the polynomial for interpolation. In our study, we chose this option 
since the third-degree polynomial produced the greatest results. The framework of multivariate 

interpolation (MVI) is shown in Figure 2. 

 
Figure 2. Algorithm: MVI 

Model Validation 

Evaluating the performance of the QSTR model on the dataset is crucial to assess its predictive 
ability across diverse molecules. The test sets should contain molecules that are structurally distinct 

from the training set, representing novel regions of chemical space. The accuracy of the polynomial was 

evaluated using the accuracy (ACC) metric. Additionally, a visual analysis of the graph depicting a 



Karaduman and Kelleci Çelik                                                                            J. Fac. Pharm. Ankara, 48(1): 20-33, 2024 26 

polynomial curve is presented. 

RESULT AND DISCUSSION 

The performance of the multivariate interpolation model was evaluated using various metrics to 

assess its accuracy and effectiveness in estimating LD50 values based on molecular descriptors. We 

employed the interpolation polynomial 𝑃(𝑥, 𝑦), utilizing two molecular descriptor values, MW and 
AlogP, for each drug. The MW values represented the x-axis, while the AlogP values represented the y-

axis for constructing the interpolation polynomial 𝑃(𝑥, 𝑦). For our analysis, we selected a dataset 

consisting of 10 drugs with their corresponding MW, AlogP, and LD50 values. We defined the output 

function values 𝑓(𝑥𝑖 , 𝑦𝑖) based on the LD50 values. By inserting the interpolation points (𝑥𝑖 , 𝑦𝑖)  into a 

system of equations, we constructed a coefficient matrix 𝐴 𝜖 ℝ10×10, an output vector 𝑓 𝜖 ℝ10, and an 

unknown vector 𝑎 𝜖 ℝ10. The coefficient matrix A had to be non-singular to ensure a unique solution 

vector 𝑎 𝜖 ℝ10 [24]. To determine the singularity of A, we computed the number of linearly independent 

columns, which signifies the columns that are not linear combinations of each other. All 10 columns of 
A were linearly independent, indicating that matrix A was non-singular or invertible. This guaranteed 

that the system of equations had a single solution. To calculate the values of 𝑎𝑗,𝑖, representing the 

coefficients of the interpolation polynomial 𝑃(𝑥, 𝑦), we utilized MATLAB, a powerful computational 

tool commonly used for scientific calculations and data analysis. MATLAB facilitated the efficient 

solution of the system of equations and enabled us to obtain the coefficients of the interpolation 

polynomial 𝑃(𝑥, 𝑦). The coefficient values 𝑎𝑗,𝑖  for the model 𝑃(𝑥, 𝑦)  with two variables were calculated 

based on the system (5) and are presented in Table 2. 

Table 2. Coefficient values 𝑎𝑗,𝑖 

Coefficient Calculated Value of Coefficient 

𝑎0,1 -91.9388 

𝑎1,1 385.1059 

𝑎1,2 134.0851 

𝑎2,1 -526.8917 

𝑎2,2 -450.4742 

𝑎2,3 125.3757 

𝑎3,1 235.0836 

𝑎3,2 355.8234 

𝑎3,3 -84.6011 

𝑎3,4 -165.7975 

Once the 𝑎𝑗,𝑖 values calculated, the interpolation polynomial 𝑃(𝑥, 𝑦) was determined as follows, 

 
𝑃(𝑥, 𝑦) = −91.9388 + 385.1059𝑥 +  134.0851𝑦 − 526.8917𝑥2 −

  450.4742𝑥𝑦 +  125.3757𝑦2 + 235.0836𝑥3 + 355.8234𝑥2𝑦 − 84.6011𝑥𝑦2 −
165.7975𝑦3, 

(7) 

where 𝑥 is MW and y is AlogP descriptor values of the drugs. 

Figure 3 illustrates the visual representation of the interpolation polynomial 𝑃(𝑥, 𝑦), showing the 

relationship between two variables, MW (Molecular Weight) and AlogP values (partition coefficient), 

of various drugs. The 𝑥-axis corresponds to the MW values, while the 𝑦-axis represents the AlogP 
values. In Figure 3, the interpolation polynomial is visualized as a curve that smoothly passes through 

the data points. Each data point represents a specific drug, with the MW and AlogP values corresponding 

to its position on the 𝑥 and 𝑦-axis, respectively. 
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Figure 3. Surface plot of the interpolation polynomial 

Model Validation 

The model underwent both internal and external validations. Internal validation of a QSTR model 

involves assessing its accuracy using the molecules employed during its creation. This includes 

predicting the activities of these molecules and analyzing parameters to determine prediction precision. 

The accuracy of the multivariate interpolation model during internal validation was assessed by 
estimating LD50 values for the chosen 10 drugs used in creating the polynomial P(x, y). Remarkably, 

the internal validation achieved a 100% success rate, given that the same drugs were used for both 

development and testing. 
However, the model's ability to predict outcomes for entirely new compounds cannot be reliably 

determined based solely on internal validation, as it relies on the same compounds utilized in its 

development. To contend with this matter, external validation becomes instrumental. In this scenario, 

the dataset is partitioned into training and test sets, comprising 309 and 10 drugs, respectively. The 
model is constructed using the training set and subsequently validated using the independent test set, 

ensuring its adaptability to novel compounds. The accuracy of the multivariate interpolation model for 

the external validation set was evaluated by estimating LD50 values for the selected drugs using the input 
MW and AlogP values. To quantify the accuracy, we employed the ACC metric, which measures the 

proportion of correct predictions made by the model out of the total number of predictions. Using the 

interpolation polynomial, we categorized the drugs based on the ranges provided in Table 2. For 
instance, when estimating the LD50 value of a drug, we applied the interpolation polynomial within the 

appropriate range indicated in Table 2. If the estimated LD50 value fell within the correct range, we 

considered it a correct estimate.  

Conversely, if the estimated value corresponded to a different interval, it was considered a false 
estimate. Based on our evaluation, the model achieved an overall success rate of 86.73%. This means 

that out of the 309 drugs tested, we correctly predicted the category (range) for 268 drugs. The high 

success rate indicates the model's proficiency in accurately estimating the LD50 values for a significant 
portion of the tested drugs. Figure 4 presents a comparison between the experimental and calculated 

LD50 values of the drugs. As depicted in the graph, the results obtained through the interpolation 

polynomial exhibit a notable level of success. 
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Figure 4. Experimental vs. Calculated LD50 values 

Our analysis demonstrated that the multivariate interpolation approach yielded accurate LD50 

predictions, with low errors suggesting a strong correlation between the estimated and actual LD50 

values. This finding emphasizes the effectiveness of the multivariate interpolation model in estimating 
acute drug toxicity levels based on the molecular descriptors MW and AlogP. The ACC metric further 

underscores the model's capability to provide reliable estimations for assessing drug safety. The 

promising performance of the multivariate interpolation model highlights its potential as a valuable  
computational tool in drug toxicity assessment and decision-making processes during drug 

development. 

Diversity and Distribution Analysis in Chemical Space  

Diversity and distribution analysis in chemical space refers to characterizing the variety and 
arrangement of molecules within a multidimensional space defined by their structural and chemical 

properties. It involves assessing the coverage and dispersion of molecules in this space, aiming to 

understand their relationships, similarities, and differences. 
Diversity analysis focuses on measuring and quantifying the variety of molecules in a dataset. 

The analysis aims to clarify the distribution of a broad range of structural features, functional groups, 

and physicochemical properties of molecules in a dataset. Different diversity metrics can be used to 

assess the dissimilarity or similarity between molecules. We used the Tanimoto similarity index for the 
diversity analysis. The Tanimoto similarity is calculated based on the presence or absence of specific 

structural features or molecular descriptors in two compounds [25]. By evaluating diversity, we can 

determine if the dataset adequately represents the chemical space of interest. Upon calculating the 
similarity value, we obtained a Tanimoto coefficient of 0.174. This result indicates a substantial 

chemical diversity, as it is closer to 0 within the range of Tanimoto similarity values. 

Distribution analysis involves examining the arrangement and clustering of molecules within 
chemical space. It aims to identify regions that are densely populated with molecules, as well as sparse 

or unexplored regions. Distribution analysis can be performed using visualization techniques. These 

methods help visualize the distribution patterns and identify clusters or subgroups of molecules with 

similar characteristics. We used chemical space mapping for chemical space distribution via molecular 
MW and AlogP values of each compound. We can explore the relationships between variables and 

patterns for MW and AlogP values in Figure 5. 

The examination of MW reveals that the lowest observed value is 46.04, while the highest value 
recorded is 1201.84. This wide range of MW values indicates the presence of diverse molecular sizes 

within the dataset. Additionally, the analysis of AlogP demonstrates a range spanning from -9.3091 to 

4.1574. The observed variation in AlogP values signifies a wide diversity of hydrophobicity or 



J. Fac. Pharm. Ankara, 48(1): 20-33, 2024                                                                 Karaduman and Kelleci Çelik 29 

lipophilicity among the molecules. Interestingly, the ranges for MW and AlogP exhibit similar patterns, 

suggesting that these properties are correlated and within the same chemical domain. The similarity in 
their ranges indicates that molecules with different MWs also possess a diverse range of AlogP values, 

implying that their hydrophobic or lipophilic characteristics are not dependent solely on their MW. This 

finding has significant implications in various scientific domains, particularly in drug discovery. 

Understanding the relationship between MW and AlogP allowed us to assess the chemical space more 
comprehensively, enabling the design and selection of compounds with desired molecular properties. 

Furthermore, this knowledge aids in exploring structure-activity relationships and identifying molecular 

scaffolds or substructures that contribute to specific MW and AlogP ranges. 

 

Figure 5. Plot matrix for MW and AlogP 

The Comprehensive Data Regarding the Descriptors Chosen for Our Optimal Model 

The process of selecting attributes is a crucial stage in machine learning modeling, as it involves 
identifying the significant descriptors of chemicals to attain optimal performance. Prediction models are 

created by utilizing various combinations of features in the descriptor pool [26]. We constructed the 

best-performing model using the identifiers with the highest success rate. In this study, we conducted 
trials with different combinations of descriptors and developed our most robust model by utilizing two 

specific descriptors that exhibited the highest predictive capacity. Our top model for predicting the acute 

oral LD50 value range of pharmaceuticals in mice incorporated the identifiers from the Constitutional 
Descriptors and Molecular Properties classes. 

Constitutional Descriptors are commonly employed in QSTR modeling studies [27]. In our 

mathematical model, the MW is one of the most important attributes among the Constitutional 

Descriptors. MW represents the mass of a molecule and provides information about its size and 
structural complexity. The MW of a compound plays a significant role in determining its 

pharmacokinetic/toxicokinetic properties. As a result, the MW serves as an important factor in 

comprehending the behavior of a molecule within the biological system [19]. 
Molecular Properties identifiers have been employed in QSTR modeling studies specifically 

targeting acute oral toxicity in rodents [28]. Another significant descriptor in our model, the ALogP 

descriptor, belongs to the Molecular Properties class. ALogP stands for the predicted logarithm of the 

partition coefficient between octanol and water. The partition coefficient measurement determines a 
compound's distribution between the hydrophobic and hydrophilic phases. AlogP provides information 

on the potential of a compound to accumulate in adipose tissue and its permeability across biological 

barriers [5]. Several studies in the field of QSTR have established a correlation between chemical 
properties related to solubility in water or lipids and the toxicological effects of compounds [29]. In line 

with this, descriptive data associated with lipophilicity have been demonstrated to contribute to the 
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prediction models of acute toxicity. Based on a comprehensive literature analysis and our findings, we 

claimed that MW and AlogP are fundamental factors significantly contributing to establishing and 
refining acute oral toxicity models. This relationship could be attributed to processes such as absorption, 

excretion, and bioaccumulation of chemicals in tissues. 

The Strengths and Limitations of the Optimal Model 

In conventional acute toxicity studies, various compound doses are administered to experimental 
subjects before determining the LD50/LC50 value of a new drug molecule. Due to the lack of knowledge 

regarding the toxicological effects of the novel molecule, a broad spectrum of doses can be employed. 

In this process, animal experiments are performed for each dose until an optimal dose is determined. 
The Organization for Economic Co-operation and Development (OECD) has established three acute 

oral toxicity procedures that rely on the utilization of experimental animals. These procedures, known 

as OECD-420 Fixed Dose Procedure, OECD-423 Acute Toxic Class Method, and OECD-425 Up-and-

Down-Procedure, serve as standardized approaches for assessing the acute oral toxicity of substances. 
The reason for the publication of multiple procedures is to reduce the number of animals used and also 

to provide a more accurate prediction of acute toxicity. Today, ongoing research aims to minimize the 

use of animal models in acute toxicity testing. In this context, the OECD has published the "Acute Oral 
Toxicity: OECD-425 Up-and-Down Procedure" to substitute conventional acute toxicity tests with 

approaches that involve a reduced number of laboratory animals [30]. Adopting the perspectives of 

health authorities regarding the reduction of animal experimentation, we aimed to conduct preliminary 
studies of acute toxicity testing using mathematical models. Before conducting animal experiments to 

determine the LD50/LC50 range, we propose the implementation of preliminary mathematical trials 

similar to our model for dose adjustment. By employing mathematical methods, dose reduction can be 

achieved to ensure drug safety, and ultimately, a final LD50/LC50 value can be established through animal 
experiments. As a result, the use of laboratory animals can be significantly reduced while ensuring drug 

safety. 

From a technical point of view, enhanced prediction accuracy is one of the advantages of using 
the interpolation technique for acute drug toxicity, specifically predicting drug LD50/LC50 with 

computational modeling. Researchers can refine and optimize the model using multivariate 

interpolation, improving prediction accuracy for drug LD50/LC50 values. This enables more precise 
assessments of a drug's acute toxicity potential, aiding in early-stage drug development and regulatory 

decision-making. Another advantage we can count on is cost and time efficiency. Computational 

modeling offers a more time and cost-effective alternative to traditional experimental methods for 

determining drug LD50/LC50. Our mathematical approach allows researchers to streamline the modeling 
process, reducing the need for extensive and expensive animal testing, saving resources, and accelerating 

drug evaluation timelines. One of the most important advantages of using this technique is reduced 

reliance on animal testing. This technique contributes to the reduction of animal testing in toxicological 
research. Using computational modeling, researchers can minimize the ethical concerns associated with 

animal experimentation, promoting more humane research practices while maintaining scientific rigor. 

There are also disadvantages besides the advantages of using an interpolation technique for acute 

toxicity. The greatest challenge in applying mathematical modeling is the complexity and expertise 
requirements. Multivariate interpolation for drug LD50/LC50 prediction involves complex mathematical 

modeling techniques. It requires expertise in computational modeling and statistical analysis, which may 

limit accessibility for researchers without the necessary skills or resources. Continuous model 
improvement is another point to note. Using a mathematical equation necessitates ongoing efforts to 

improve and validate the model. This includes incorporating new data, refining the model's parameters, 

and accounting for evolving scientific knowledge. Sustaining a robust and up-to-date model requires 
continuous research and resource allocation. 

Our model is specifically designed to evaluate acute toxicity through oral administration in mice. 

However, since LD50 values can vary for the same molecule across different exposure routes, such as 

dermal or inhalation [13], the applicability of our model is limited in those situations. Furthermore, 
considering the species-specific toxicity variations, separate model scenarios should be developed for 

guinea pigs, rabbits, rats, or other experimental animal species. 
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Limiting our study to drug molecules presents both advantages and disadvantages. The presence 

of a well-balanced dataset, encompassing compounds with diverse physicochemical properties, reduces 
the occurrence of molecules outside the AD, consequently enhancing the model’s predictive 

performance. By exclusively focusing on pharmaceuticals, we ensured a dataset with homogeneity. 

Nevertheless, our model overlooked the evaluation of non-pharmaceutical substances. QSTR models 

discussed in the literature regarding acute toxicity encompass a broad range of chemicals [31]. In 
contrast, our model is specifically designed for pharmaceutical molecules, which sets it apart in scope 

and focus. 

The primary objective of modeling studies is to construct a dataset encompassing a wide range of 
molecules, maximizing its inclusiveness [4]. While we acknowledge the validity of this approach, we 

argue that it is equally important for molecules to belong to specific chemical groups to establish a 

reliable prediction model. The selection of descriptors based on specific chemical groups can pave the 

way for future molecule development studies. Considering that there are studies in the literature 
evaluating various chemicals for determining LD50/LC50 values, our study, which solely focuses on the 

LD50/LC50 values of drugs, takes an innovative approach. 

Acute toxicity effects are complex processes arising from various biokinetic, cellular, and 
molecular events. Attempting to condense the intricate physiological phenomena associated with acute 

toxicity into a single numerical value may result in the loss of valuable information. Moreover, available 

data on LD50/LC50 values exhibit significant variability due to variations in experimental protocols, 
animal species, strains, and laboratories. This variability undermines the reliability and reproducibility 

of acute toxicity measurements. Consequently, these challenges complicate the modeling process and 

lead to a relatively limited number of QSTR models for predicting acute oral toxicity compared to other 

endpoints [8]. However, the disadvantage mentioned in this section applies not only to mathematical 
modeling studies but also to animal experiments, where the LD50/LC50 value is traditionally determined. 

LD50/LC50 values have been used to initially assess relative toxicity among chemicals [4]. This issue can 

be addressed by integrating non-animal-based prediction models and diverse animal models and 
incorporating various exposure scenarios. It is worth noting that the dataset we used for our study lacks 

inorganic chemicals and salt structures, which could be an area for improvement in future research. As 

a result, our models could not provide predictions for these substances. The substances currently utilized 
as active drug ingredients were excluded from the evaluation. 

In conclusion, the LD50/LC50 value, representing the dosage at which 50% of specific test subjects 

experience fatality, is critical for assessing acute toxicity during drug development. The LD50/LC50 test 

assesses the toxic effects of drugs on human health, establishing appropriate dosage regimens and 
ensuring their safe usage. Due to ethical considerations, traditional animal-based methods in acute 

toxicology studies are being replaced by mathematically based approaches. Our model has successfully 

predicted the five toxicologic endpoints of regulatory significance related to the acute oral toxicity of 
pharmaceuticals in mice. The endpoints are critical to regulatory regimes since it serves as the 

foundation for chemical toxicological categorization. We have argued that the current mathematical 

approach holds promise in assessing the LD50/LC50 value of drug candidates during the early stages of 

drug development. This means new pharmaceuticals can be synthesized more cost-effective, timely, and 
safely. Cutting-edge models, such as ours, have the remarkable potential to significantly reduce the 

necessity for animal testing in toxicological research, thereby addressing ethical concerns. Reliable and 

validated in silico techniques can be utilized as an initial step in calculating the LD50/LC50 range of 
drugs, serving as a valuable tool in early toxicity assessment. In conclusion, the presented mathematical 

model offers a reliable and practical means for estimating the LD50/LC50 values of drugs in mice. 
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