Review
BibTex RIS Cite

HİBRİT TAKVİYELİ BAKIR MATRİSLİ KOMPOZİTLERİN ÜRETİMİ VE MEKANİK ÖZELLİKLERİ ÜZERİNE BİR DERLEME

Year 2021, Volume: 2 Issue: 2, 35 - 46, 31.12.2021

Abstract

Dünyanın her yerinde teknolojik gelişmelere paralel olarak kompozit malzemelere olan ilgi her geçen gün artmaktadır. Kompozit malzemeler havacılık, otomotiv, uzay ve metal endüstrilerinde sıklıkla kullanılmaktadır. Kompozit malzemeler arasında bakır ana matrisli kompozit malzemeler; düşük yoğunluk, gelişmiş yorulma mukavemeti, yüksek sertlik ve yüksek özgül mukavemeti gibi üstün özellikleri ile ön plana çıkmaktadır. Literatürde tek bir takviye ile güçlendirilmiş kompozit malzemeler üzerine birçok araştırmalar mevcuttur. Fakat yapılan çalışmalarda kompozit malzemeleri güçlendirmede tek bir takviyenin belirli bir oranda etkiye sahip olduğu görülmektedir. Bu bağlamda metal matrisli kompozitlerin mekanik özelliklerinin daha fazla geliştirilmesine yönelik olarak birden fazla takviye malzemesi kullanılmasıyla hibrit takviyeli kompozit malzemeler üretilmesi birçok araştırmacının dikkatini çekmektedir. Tek bir takviye elemanına nazaran hibrit kompozitlerin daha iyi mekanik özellikler sergilediği son zamanlarda yapılan çalışmalarda açıkça görülmektedir. Literatürde hibrit kompozit malzemeler üzerine birçok araştırma mevcuttur. Bu çalışmada hibrit takviyeli bakır matrisli kompozit malzemelerin üstün özelliklerine dikkat çekmek amacıyla kapsamlı bir araştırma yapılmıştır.

References

  • Uzun M, Munis MM, Usca ÜA. Different ratios CrC particle-reinforced Cu matrix composite materials and investigation of wear performance. Int J Eng Res Appl. 2018;8(7):1-7.
  • Usca ÜA, Uzun M, Kuntoğlu M, Şap S, Giasin K, Pimenov DY. Tribological Aspects, Optimization and Analysis of Cu-B-CrC Composites Fabricated by Powder Metallurgy. Materials. 2021;14(15):4217.
  • Şap S, Uzun M, Usca ÜA, Pimenov DY, Giasin K, Wojciechowski S. Investigation on microstructure, mechanical, and tribological performance of Cu base hybrid composite materials. J Mater Res Technol. 2021;15:6990-7003.
  • Sap E. Microstructural and Mechanical Properties of Cu-Based Co-Mo-Reinforced Composites Produced by the Powder Metallurgy Method. J Mater Eng Perform. 2020;29(12):8461-72.
  • Uzun M, Çetin MS. Investigation of characteristics of Cu based, Co-CrC reinforced composites produced by powder metallurgy method. Adv Powder Technol. 2021;32(6):1992-2003.
  • Akbarpour M, Salahi E, Hesari FA, Yoon E, Kim H, Simchi A. Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles. Mater Sci Eng A. 2013;568:33-9.
  • Uzun M, Münis MM, Usca ÜA. Farklı oranlarda CrC partikül takviyesi kullanılarak toz metalürjisi yöntemiyle üretilmiş Cu matrisli kompozit malzemelerin mikroyapı ve mekanik özelliklerinin incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018;22(2):495-501.
  • Kilic M, Imak A, Kirik I. Surface Modification of AISI 304 Stainless Steel with NiBSi-SiC Composite by TIG Method. J Mater Eng Perform. 2021;30:1411-9.
  • Usca ÜA, Uzun M, Kuntoğlu M, Sap E, Gupta MK. Investigations on tool wear, surface roughness, cutting temperature, and chip formation in machining of Cu-B-CrC composites. Int J Adv Manuf Technol. 2021;116(9):3011-25.
  • Uzun M, Usca UA. Effect of Cr particulate reinforcements in different ratios on wear performance and mechanical properties of Cu matrix composites. J Braz Soc Mech Sci & Eng. 2018;40(4):197.
  • Sap E. Microstructure and Mechanical Effects of Co–Ti Powder Particles on Cu Matrix Composites. Russ J Non-ferrous Metals. 2021;62(1):107-18.
  • Jamwal A, Seth PP, Kumar D, Agrawal R, Sadasivuni KK, Gupta P. Microstructural, tribological and compression behaviour of Copper matrix reinforced with Graphite-SiC hybrid composites. Mater Chem Phys. 2020;251:123090.
  • Usca ÜA, Uzun M, Sap S, Kuntoğlu M, Giasin K, Pimenov DY, et al. Tool wear, surface roughness, cutting temperature and chips morphology evaluation of Al/TiN coated carbide cutting tools in milling of Cu-B-CrC based ceramic matrix composites. J Mater Res Technol. 2021:1-35.
  • Jha P, Gautam RK, Tyagi R. Friction and wear behavior of Cu–4wt.%Ni–TiC composites under dry sliding conditions. Friction. 2017;5(4):437-46.
  • Şap E, Usca ÜA, Gupta MK, Kuntoğlu M, Sarıkaya M, Pimenov DY, et al. Parametric Optimization for Improving the Machining Process of Cu/Mo-SiCp Composites Produced by Powder Metallurgy. Materials. 2021;14(8):1921.
  • Chen X, Bao R, Yi J, Fang D, Tao J, Li F. Enhancing mechanical properties of pure copper-based materials with CrxOy nanoparticles and CNT hybrid reinforcement. J Mater Sci. 2021;56(4):3062-77.
  • Chmielewski M, Nosewicz S, Wyszkowska E, Kurpaska Ł, Strojny-Nędza A, Piątkowska A, et al. Analysis of the micromechanical properties of copper-silicon carbide composites using nanoindentation measurements. Ceram Int. 2019;45(7):9164-73.
  • Uzun M, Usca ÜA. Farklı oranlarda Cr partikül takviyesinin Cu matrislikompozitlerin mekanik özelliklerine ve mikroyapısna etkisi. Dicle Üniversitesi Mühendislik Dergisi. 2017;8(4):797-803.
  • Çelik E, Aslan AK. The effect of porosity and Cu rate on microstructure and mechanical properties of Co alternative powder metallurgy compound. Sci Sinter. 2017;49(3):225-34.
  • Cui G, Ren J, Lu Z. The Microstructure and Wear Characteristics of Cu–Fe Matrix Friction Material with Addition of SiC. Tribol Lett. 2017;65(3):108.
  • Islak S, Çalıgülü U, Hraam HRH, Özorak C, Koç V. Electrical conductivity, microstructure and wear properties of Cu-Mo coatings. Res Eng Struct Mater. 2019;5(2).
  • Bai GZ, Li N, Wang XT, Wang JG, Kim MJ, Zhang HL. High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration. J Alloys Compd. 2018;735:1648-53.
  • Şap S, Şap E, Kırık İ. Biyomalzeme Olarak Kullanılan Mühendislik Ürünleri. III. Uluslararası Battalgazi Bilimsel Çalışmalar Kongresi; 2019; Malatya; s. 200-207.
  • Şap S, Şap E, Kırık İ. Titanyum ve Alaşımlarının Biyomalzeme Olarak Kullanılması. III Uluslararası Battalgazi Bilimsel Çalışmalar Kongresi; 2019;Malatya: s. 1052-1059.
  • Şap S. Toz Metalurjisi Yöntemiyle Üretilen Titanyumun Biyomedikal Uygulamalarda Kullanımı. I. Uluslararası Malatya Uygulamalı Bilimler Kongresi; 2019; Malatya; s. 385-392.
  • Barmouz M, Asadi P, Besharati Givi MK, Taherishargh M. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles size and volume fraction. Mater Sci Eng A. 2011;528(3):1740-9.
  • Cao F, Dong G, Jiang Y, Xiao P, Wang T, Liang S. Effect of La addition on microstructures and properties of (TiB2-TiB)/Cu hybrid composites prepared by in situ reaction. Mater Sci Eng A. 2020;789:139605.
  • Jamwal A, Prakash P, Kumar D, Singh N, Sadasivuni KK, Harshit K, et al. Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC-graphite hybrid composites. J Compos Mater. 2019;53(18):2545-53.
  • Kannan A, Mohan R, Viswanathan R, Sivashankar N. Experimental investigation on surface roughness, tool wear and cutting force in turning of hybrid (Al7075+SiC+Gr) metal matrix composites. J Mater Res Technol. 2020;9(6):16529-40.
  • Karthik K, Rajamani D, Manimaran A, Prakash JU. Wear behaviour of hybrid polymer matrix composites using Taguchi technique. Mater Today Proc. 2020;33(7);3186-90.
  • Degirmenci U, Kirca M. Design and mechanical characterization of a novel carbon-based hybrid foam: A molecular dynamics study. Computational Materials Science. 2018;154:122-31.
  • Şap S, Şap E. Döküm Yöntemiyle Üretilen Co Esaslı Cr-Mo Alaşımlarının Mikroyapı Ve Mekanik Özelliklerinin İncelenmesi. III. Uluslararası Mesleki ve Teknik Bilimler Kongresi; 2018; Gaziantep; s. 1067.
  • Long F, Guo X, Song K, Jia S, Yakubov V, Li S, et al. Synergistic strengthening effect of carbon nanotubes (CNTs) and titanium diboride (TiB2) microparticles on mechanical properties of copper matrix composites. J Mater Res Technol. 2020; 9(4):7989-8000.
  • Mittal P, Paswan MK, Sadasivuni KK, Gupta P. Structural, wear and thermal behaviour of Cu-Al2O3-graphite hybrid metal matrix composites. Proc Inst Mech Eng L. 2020;234(8):1154-64.
  • Degirmenci U, Erturk AS, Yurtalan MB, Kirca M. Tensile behavior of nanoporous polyethylene reinforced with carbon-based nanostructures. Computational Materials Science. 2021;186:109971.
  • Naghikhani M, Ardestani M, Moazami-Goudarzi M. Microstructure, Mechanical Properties and Wear Performance of WC/Brass Composites Produced by Pressureless and Spark Plasma Sintering Processes. Met Mater Int. 2019;27:1639-48.
  • Natrayan L, Kumar MS. Influence of silicon carbide on tribological behaviour of AA2024/Al2O3/SiC/Gr hybrid metal matrix squeeze cast composite using Taguchi technique. Mater Res Express. 2020;6(12):1265f9.
  • Gatea S, Ou H, McCartney G. Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments. Mater Charact. 2018;142:365-76.
  • Şap S, Turgut A, Uzun M. Investigation of microstructure and mechanical properties of Cu/Ti–B–SiCp hybrid composites. Ceram Int. 2021;47(21):29919-29.
  • Lei T, Tang W, Cai S-H, Feng F-F, Li N-F. On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction. Corrosion Science. 2012;54:270-7.
  • Nautiyal H, Kumari S, Khatri OP, Tyagi R. Copper matrix composites reinforced by rGO-MoS2 hybrid: Strengthening effect to enhancement of tribological properties. Compos Part B-Eng. 2019;173:106931.
  • Erdoğan M. Mühendislik Alaşımlarının Yapı ve Özellikleri. Ankara: Nobel Yayın Dağıtım; 2001. s. 602.
  • Jinwei Yin PZ, Hanqin Liang, Dongxu Yao, Yongfeng Xia, Kaihui Zuo, YuPing Zeng. Microstructure and Mechanical Properties of Cu Matrix Composites Reinforced by TiB2/TiN Ceramic Reinforcements. Acta Metall Sin. 2020;33(12):1609-17.
  • Şap E. Güçlendirilmiş Bakır Esaslı Kompozit Malzemelerin Mikroyapı ve Sertlik Özellikleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021;11(1):590-8.
  • Abd El Aal MI. Effect of high-pressure torsion processing on the microstructure evolution and mechanical properties of consolidated micro size Cu and Cu-SiC powders. Adv Powder Technol. 2017;28(9):2135-50.
  • Şap E. Investigation of mechanical properties of Cu/Mo-SiCp composites produced with P/M, and their wear behaviour with the Taguchi method. Ceram Int. 2021;47(18):25910-20.
  • Şap S. Toz Metalurjisi Yöntemiyle Sinterlenen Sert Metallerin Üretimi ve Mekanik Özellikleri. 1 Uluslararası Malatya Uygulamalı Bilimler Kongresi; 2019; Malatya: İzdaş; s. 393-400.
  • Hassan SF, Gupta M. Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J Alloys Compd. 2006;419(1):84-90.
  • Şap E, Usca UA, Gupta MK, Kuntoğlu M. Tool wear and machinability investigations in dry turning of Cu/Mo-SiCp hybrid composites. Int J Adv Manuf Technol. 2021;114(1):379-96.
  • Bahador A, Umeda J, Yamanoglu R, Ghandvar H, Issariyapat A, Abu Bakar TA, et al. Deformation mechanism and enhanced properties of Cu–TiB2 composites evaluated by the in-situ tensile test and microstructure characterization. J Alloys Compd. 2020;847:156555.
  • Milowska KZ, Burda M, Wolanicka L, Bristowe PD, Koziol KKK. Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu–CNT composites. Nanoscale. 2019;11(1):145-57.
  • Mohapatra S, Mantry S, Singh SK. Performance Evaluation of Glass-Epoxy-TiC Hybrid Composites Using Design of Experiment. Journal of Composites. 2014;2014:670659.
  • Liu J, Yang S, Liu K, Gui C, Xia W. Effect of Age-Hardening Treatment on Microstructure and Sliding Wear-Resistance Performance of WC/Cu-Ni-Mn Composite Coatings. Metall Mater Trans A. 2017;48(6):3017-26.
  • Chen H-s, Zhang Y-y, Nie H-h, Wang J-f, Wang W-x, Zhou J, et al. The microstructure and mechanical properties of the B4C/Cu matrix composite fabricated by SPS-HR. Mater Sci Technol. 2018;34(12):1460-7.
  • Özgün Ö, Bulut C. A novel mixing method for powder metallurgy copper‐carbon nanotube composites. Materwiss Werksttech. 2020;51(7):982-91.
  • Şap S, Şap E. Co Bazlı İmplant Malzemelere Ti Ve Mn İlavesinin Etkisi. III. Uluslararası Mesleki ve Teknik Bilimler Kongresi; 2018; Gaziantep; s. 1066.
  • Prosviryakov A. SiC content effect on the properties of Cu–SiC composites produced by mechanical alloying. J Alloys Compd. 2015;632:707-10.
  • https://uslularhadde.com/metalmatrislikompozitmalzemeler (erişim tarihi:01.11.2021).
  • Şenel MC, Gürbüz M, Koç E. SiC Takvıyeli Alümınyum Esaslı Kompozıtlerın Mekanik Özelliklerinin Ve Mikro Yapısının İncelenmesi. J Technological Applied Sciences. 2018;13(2):122-33.
  • Mallikarjuna HM, Ramesh CS, Koppad PG, Keshavamurthy R, Sethuram D. Nanoindentation and wear behaviour of copper based hybrid composites reinforced with SiC and MWCNTs synthesized by spark plasma sintering. Vacuum. 2017;145:320-33.
  • Akramifard HR, Shamanian M, Sabbaghian M, Esmailzadeh M. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Materials & Design (1980-2015). 2014;54:838-44.
  • Li M, Zhai H, Huang Z, Liu X, Zhou Y, Li S, et al. Tensile behavior and strengthening mechanism in ultrafine TiC0.5 particle reinforced Cu–Al matrix composites. J Alloys Compd. 2015;628:186-94.
  • Balalan Z, Gulan F. Microstructure and mechanical properties of Cu-B4C and CuAl-B4C composites produced by hot pressing. Rare Metals. 2019;38(12):1169-77.
Year 2021, Volume: 2 Issue: 2, 35 - 46, 31.12.2021

Abstract

References

  • Uzun M, Munis MM, Usca ÜA. Different ratios CrC particle-reinforced Cu matrix composite materials and investigation of wear performance. Int J Eng Res Appl. 2018;8(7):1-7.
  • Usca ÜA, Uzun M, Kuntoğlu M, Şap S, Giasin K, Pimenov DY. Tribological Aspects, Optimization and Analysis of Cu-B-CrC Composites Fabricated by Powder Metallurgy. Materials. 2021;14(15):4217.
  • Şap S, Uzun M, Usca ÜA, Pimenov DY, Giasin K, Wojciechowski S. Investigation on microstructure, mechanical, and tribological performance of Cu base hybrid composite materials. J Mater Res Technol. 2021;15:6990-7003.
  • Sap E. Microstructural and Mechanical Properties of Cu-Based Co-Mo-Reinforced Composites Produced by the Powder Metallurgy Method. J Mater Eng Perform. 2020;29(12):8461-72.
  • Uzun M, Çetin MS. Investigation of characteristics of Cu based, Co-CrC reinforced composites produced by powder metallurgy method. Adv Powder Technol. 2021;32(6):1992-2003.
  • Akbarpour M, Salahi E, Hesari FA, Yoon E, Kim H, Simchi A. Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles. Mater Sci Eng A. 2013;568:33-9.
  • Uzun M, Münis MM, Usca ÜA. Farklı oranlarda CrC partikül takviyesi kullanılarak toz metalürjisi yöntemiyle üretilmiş Cu matrisli kompozit malzemelerin mikroyapı ve mekanik özelliklerinin incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018;22(2):495-501.
  • Kilic M, Imak A, Kirik I. Surface Modification of AISI 304 Stainless Steel with NiBSi-SiC Composite by TIG Method. J Mater Eng Perform. 2021;30:1411-9.
  • Usca ÜA, Uzun M, Kuntoğlu M, Sap E, Gupta MK. Investigations on tool wear, surface roughness, cutting temperature, and chip formation in machining of Cu-B-CrC composites. Int J Adv Manuf Technol. 2021;116(9):3011-25.
  • Uzun M, Usca UA. Effect of Cr particulate reinforcements in different ratios on wear performance and mechanical properties of Cu matrix composites. J Braz Soc Mech Sci & Eng. 2018;40(4):197.
  • Sap E. Microstructure and Mechanical Effects of Co–Ti Powder Particles on Cu Matrix Composites. Russ J Non-ferrous Metals. 2021;62(1):107-18.
  • Jamwal A, Seth PP, Kumar D, Agrawal R, Sadasivuni KK, Gupta P. Microstructural, tribological and compression behaviour of Copper matrix reinforced with Graphite-SiC hybrid composites. Mater Chem Phys. 2020;251:123090.
  • Usca ÜA, Uzun M, Sap S, Kuntoğlu M, Giasin K, Pimenov DY, et al. Tool wear, surface roughness, cutting temperature and chips morphology evaluation of Al/TiN coated carbide cutting tools in milling of Cu-B-CrC based ceramic matrix composites. J Mater Res Technol. 2021:1-35.
  • Jha P, Gautam RK, Tyagi R. Friction and wear behavior of Cu–4wt.%Ni–TiC composites under dry sliding conditions. Friction. 2017;5(4):437-46.
  • Şap E, Usca ÜA, Gupta MK, Kuntoğlu M, Sarıkaya M, Pimenov DY, et al. Parametric Optimization for Improving the Machining Process of Cu/Mo-SiCp Composites Produced by Powder Metallurgy. Materials. 2021;14(8):1921.
  • Chen X, Bao R, Yi J, Fang D, Tao J, Li F. Enhancing mechanical properties of pure copper-based materials with CrxOy nanoparticles and CNT hybrid reinforcement. J Mater Sci. 2021;56(4):3062-77.
  • Chmielewski M, Nosewicz S, Wyszkowska E, Kurpaska Ł, Strojny-Nędza A, Piątkowska A, et al. Analysis of the micromechanical properties of copper-silicon carbide composites using nanoindentation measurements. Ceram Int. 2019;45(7):9164-73.
  • Uzun M, Usca ÜA. Farklı oranlarda Cr partikül takviyesinin Cu matrislikompozitlerin mekanik özelliklerine ve mikroyapısna etkisi. Dicle Üniversitesi Mühendislik Dergisi. 2017;8(4):797-803.
  • Çelik E, Aslan AK. The effect of porosity and Cu rate on microstructure and mechanical properties of Co alternative powder metallurgy compound. Sci Sinter. 2017;49(3):225-34.
  • Cui G, Ren J, Lu Z. The Microstructure and Wear Characteristics of Cu–Fe Matrix Friction Material with Addition of SiC. Tribol Lett. 2017;65(3):108.
  • Islak S, Çalıgülü U, Hraam HRH, Özorak C, Koç V. Electrical conductivity, microstructure and wear properties of Cu-Mo coatings. Res Eng Struct Mater. 2019;5(2).
  • Bai GZ, Li N, Wang XT, Wang JG, Kim MJ, Zhang HL. High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration. J Alloys Compd. 2018;735:1648-53.
  • Şap S, Şap E, Kırık İ. Biyomalzeme Olarak Kullanılan Mühendislik Ürünleri. III. Uluslararası Battalgazi Bilimsel Çalışmalar Kongresi; 2019; Malatya; s. 200-207.
  • Şap S, Şap E, Kırık İ. Titanyum ve Alaşımlarının Biyomalzeme Olarak Kullanılması. III Uluslararası Battalgazi Bilimsel Çalışmalar Kongresi; 2019;Malatya: s. 1052-1059.
  • Şap S. Toz Metalurjisi Yöntemiyle Üretilen Titanyumun Biyomedikal Uygulamalarda Kullanımı. I. Uluslararası Malatya Uygulamalı Bilimler Kongresi; 2019; Malatya; s. 385-392.
  • Barmouz M, Asadi P, Besharati Givi MK, Taherishargh M. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles size and volume fraction. Mater Sci Eng A. 2011;528(3):1740-9.
  • Cao F, Dong G, Jiang Y, Xiao P, Wang T, Liang S. Effect of La addition on microstructures and properties of (TiB2-TiB)/Cu hybrid composites prepared by in situ reaction. Mater Sci Eng A. 2020;789:139605.
  • Jamwal A, Prakash P, Kumar D, Singh N, Sadasivuni KK, Harshit K, et al. Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC-graphite hybrid composites. J Compos Mater. 2019;53(18):2545-53.
  • Kannan A, Mohan R, Viswanathan R, Sivashankar N. Experimental investigation on surface roughness, tool wear and cutting force in turning of hybrid (Al7075+SiC+Gr) metal matrix composites. J Mater Res Technol. 2020;9(6):16529-40.
  • Karthik K, Rajamani D, Manimaran A, Prakash JU. Wear behaviour of hybrid polymer matrix composites using Taguchi technique. Mater Today Proc. 2020;33(7);3186-90.
  • Degirmenci U, Kirca M. Design and mechanical characterization of a novel carbon-based hybrid foam: A molecular dynamics study. Computational Materials Science. 2018;154:122-31.
  • Şap S, Şap E. Döküm Yöntemiyle Üretilen Co Esaslı Cr-Mo Alaşımlarının Mikroyapı Ve Mekanik Özelliklerinin İncelenmesi. III. Uluslararası Mesleki ve Teknik Bilimler Kongresi; 2018; Gaziantep; s. 1067.
  • Long F, Guo X, Song K, Jia S, Yakubov V, Li S, et al. Synergistic strengthening effect of carbon nanotubes (CNTs) and titanium diboride (TiB2) microparticles on mechanical properties of copper matrix composites. J Mater Res Technol. 2020; 9(4):7989-8000.
  • Mittal P, Paswan MK, Sadasivuni KK, Gupta P. Structural, wear and thermal behaviour of Cu-Al2O3-graphite hybrid metal matrix composites. Proc Inst Mech Eng L. 2020;234(8):1154-64.
  • Degirmenci U, Erturk AS, Yurtalan MB, Kirca M. Tensile behavior of nanoporous polyethylene reinforced with carbon-based nanostructures. Computational Materials Science. 2021;186:109971.
  • Naghikhani M, Ardestani M, Moazami-Goudarzi M. Microstructure, Mechanical Properties and Wear Performance of WC/Brass Composites Produced by Pressureless and Spark Plasma Sintering Processes. Met Mater Int. 2019;27:1639-48.
  • Natrayan L, Kumar MS. Influence of silicon carbide on tribological behaviour of AA2024/Al2O3/SiC/Gr hybrid metal matrix squeeze cast composite using Taguchi technique. Mater Res Express. 2020;6(12):1265f9.
  • Gatea S, Ou H, McCartney G. Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments. Mater Charact. 2018;142:365-76.
  • Şap S, Turgut A, Uzun M. Investigation of microstructure and mechanical properties of Cu/Ti–B–SiCp hybrid composites. Ceram Int. 2021;47(21):29919-29.
  • Lei T, Tang W, Cai S-H, Feng F-F, Li N-F. On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction. Corrosion Science. 2012;54:270-7.
  • Nautiyal H, Kumari S, Khatri OP, Tyagi R. Copper matrix composites reinforced by rGO-MoS2 hybrid: Strengthening effect to enhancement of tribological properties. Compos Part B-Eng. 2019;173:106931.
  • Erdoğan M. Mühendislik Alaşımlarının Yapı ve Özellikleri. Ankara: Nobel Yayın Dağıtım; 2001. s. 602.
  • Jinwei Yin PZ, Hanqin Liang, Dongxu Yao, Yongfeng Xia, Kaihui Zuo, YuPing Zeng. Microstructure and Mechanical Properties of Cu Matrix Composites Reinforced by TiB2/TiN Ceramic Reinforcements. Acta Metall Sin. 2020;33(12):1609-17.
  • Şap E. Güçlendirilmiş Bakır Esaslı Kompozit Malzemelerin Mikroyapı ve Sertlik Özellikleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021;11(1):590-8.
  • Abd El Aal MI. Effect of high-pressure torsion processing on the microstructure evolution and mechanical properties of consolidated micro size Cu and Cu-SiC powders. Adv Powder Technol. 2017;28(9):2135-50.
  • Şap E. Investigation of mechanical properties of Cu/Mo-SiCp composites produced with P/M, and their wear behaviour with the Taguchi method. Ceram Int. 2021;47(18):25910-20.
  • Şap S. Toz Metalurjisi Yöntemiyle Sinterlenen Sert Metallerin Üretimi ve Mekanik Özellikleri. 1 Uluslararası Malatya Uygulamalı Bilimler Kongresi; 2019; Malatya: İzdaş; s. 393-400.
  • Hassan SF, Gupta M. Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J Alloys Compd. 2006;419(1):84-90.
  • Şap E, Usca UA, Gupta MK, Kuntoğlu M. Tool wear and machinability investigations in dry turning of Cu/Mo-SiCp hybrid composites. Int J Adv Manuf Technol. 2021;114(1):379-96.
  • Bahador A, Umeda J, Yamanoglu R, Ghandvar H, Issariyapat A, Abu Bakar TA, et al. Deformation mechanism and enhanced properties of Cu–TiB2 composites evaluated by the in-situ tensile test and microstructure characterization. J Alloys Compd. 2020;847:156555.
  • Milowska KZ, Burda M, Wolanicka L, Bristowe PD, Koziol KKK. Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu–CNT composites. Nanoscale. 2019;11(1):145-57.
  • Mohapatra S, Mantry S, Singh SK. Performance Evaluation of Glass-Epoxy-TiC Hybrid Composites Using Design of Experiment. Journal of Composites. 2014;2014:670659.
  • Liu J, Yang S, Liu K, Gui C, Xia W. Effect of Age-Hardening Treatment on Microstructure and Sliding Wear-Resistance Performance of WC/Cu-Ni-Mn Composite Coatings. Metall Mater Trans A. 2017;48(6):3017-26.
  • Chen H-s, Zhang Y-y, Nie H-h, Wang J-f, Wang W-x, Zhou J, et al. The microstructure and mechanical properties of the B4C/Cu matrix composite fabricated by SPS-HR. Mater Sci Technol. 2018;34(12):1460-7.
  • Özgün Ö, Bulut C. A novel mixing method for powder metallurgy copper‐carbon nanotube composites. Materwiss Werksttech. 2020;51(7):982-91.
  • Şap S, Şap E. Co Bazlı İmplant Malzemelere Ti Ve Mn İlavesinin Etkisi. III. Uluslararası Mesleki ve Teknik Bilimler Kongresi; 2018; Gaziantep; s. 1066.
  • Prosviryakov A. SiC content effect on the properties of Cu–SiC composites produced by mechanical alloying. J Alloys Compd. 2015;632:707-10.
  • https://uslularhadde.com/metalmatrislikompozitmalzemeler (erişim tarihi:01.11.2021).
  • Şenel MC, Gürbüz M, Koç E. SiC Takvıyeli Alümınyum Esaslı Kompozıtlerın Mekanik Özelliklerinin Ve Mikro Yapısının İncelenmesi. J Technological Applied Sciences. 2018;13(2):122-33.
  • Mallikarjuna HM, Ramesh CS, Koppad PG, Keshavamurthy R, Sethuram D. Nanoindentation and wear behaviour of copper based hybrid composites reinforced with SiC and MWCNTs synthesized by spark plasma sintering. Vacuum. 2017;145:320-33.
  • Akramifard HR, Shamanian M, Sabbaghian M, Esmailzadeh M. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Materials & Design (1980-2015). 2014;54:838-44.
  • Li M, Zhai H, Huang Z, Liu X, Zhou Y, Li S, et al. Tensile behavior and strengthening mechanism in ultrafine TiC0.5 particle reinforced Cu–Al matrix composites. J Alloys Compd. 2015;628:186-94.
  • Balalan Z, Gulan F. Microstructure and mechanical properties of Cu-B4C and CuAl-B4C composites produced by hot pressing. Rare Metals. 2019;38(12):1169-77.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Reviews
Authors

Serhat Şap 0000-0001-5177-4952

Ünal Değirmenci 0000-0003-1480-2488

Üsame Ali Usca

Mahir Uzun

Publication Date December 31, 2021
Submission Date November 23, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

APA Şap, S., Değirmenci, Ü., Usca, Ü. A., Uzun, M. (2021). HİBRİT TAKVİYELİ BAKIR MATRİSLİ KOMPOZİTLERİN ÜRETİMİ VE MEKANİK ÖZELLİKLERİ ÜZERİNE BİR DERLEME. Bingöl Üniversitesi Teknik Bilimler Dergisi, 2(2), 35-46.
AMA Şap S, Değirmenci Ü, Usca ÜA, Uzun M. HİBRİT TAKVİYELİ BAKIR MATRİSLİ KOMPOZİTLERİN ÜRETİMİ VE MEKANİK ÖZELLİKLERİ ÜZERİNE BİR DERLEME. BUTS. December 2021;2(2):35-46.
Chicago Şap, Serhat, Ünal Değirmenci, Üsame Ali Usca, and Mahir Uzun. “HİBRİT TAKVİYELİ BAKIR MATRİSLİ KOMPOZİTLERİN ÜRETİMİ VE MEKANİK ÖZELLİKLERİ ÜZERİNE BİR DERLEME”. Bingöl Üniversitesi Teknik Bilimler Dergisi 2, no. 2 (December 2021): 35-46.
EndNote Şap S, Değirmenci Ü, Usca ÜA, Uzun M (December 1, 2021) HİBRİT TAKVİYELİ BAKIR MATRİSLİ KOMPOZİTLERİN ÜRETİMİ VE MEKANİK ÖZELLİKLERİ ÜZERİNE BİR DERLEME. Bingöl Üniversitesi Teknik Bilimler Dergisi 2 2 35–46.
IEEE S. Şap, Ü. Değirmenci, Ü. A. Usca, and M. Uzun, “HİBRİT TAKVİYELİ BAKIR MATRİSLİ KOMPOZİTLERİN ÜRETİMİ VE MEKANİK ÖZELLİKLERİ ÜZERİNE BİR DERLEME”, BUTS, vol. 2, no. 2, pp. 35–46, 2021.
ISNAD Şap, Serhat et al. “HİBRİT TAKVİYELİ BAKIR MATRİSLİ KOMPOZİTLERİN ÜRETİMİ VE MEKANİK ÖZELLİKLERİ ÜZERİNE BİR DERLEME”. Bingöl Üniversitesi Teknik Bilimler Dergisi 2/2 (December 2021), 35-46.
JAMA Şap S, Değirmenci Ü, Usca ÜA, Uzun M. HİBRİT TAKVİYELİ BAKIR MATRİSLİ KOMPOZİTLERİN ÜRETİMİ VE MEKANİK ÖZELLİKLERİ ÜZERİNE BİR DERLEME. BUTS. 2021;2:35–46.
MLA Şap, Serhat et al. “HİBRİT TAKVİYELİ BAKIR MATRİSLİ KOMPOZİTLERİN ÜRETİMİ VE MEKANİK ÖZELLİKLERİ ÜZERİNE BİR DERLEME”. Bingöl Üniversitesi Teknik Bilimler Dergisi, vol. 2, no. 2, 2021, pp. 35-46.
Vancouver Şap S, Değirmenci Ü, Usca ÜA, Uzun M. HİBRİT TAKVİYELİ BAKIR MATRİSLİ KOMPOZİTLERİN ÜRETİMİ VE MEKANİK ÖZELLİKLERİ ÜZERİNE BİR DERLEME. BUTS. 2021;2(2):35-46.
This journal is prepared and published by the Bingöl University Technical Sciences journal team.