Research Article
BibTex RIS Cite

Silver Nanoparticles Capped with Poly[(maleic anhydride)-co-(vinyl acetate)]

Year 2023, Volume: 44 Issue: 1, 112 - 119, 26.03.2023
https://doi.org/10.17776/csj.1192585

Abstract

Anhydride containing functional co-polymer, Poly[(maleic anhydride)-co-(vinyl acetate)] (pMAVAc) was synthesized by free radical polymerization reaction presence of methyl ethyl ketone (MEK) media with benzoyl peroxide radical initiation at 80 ◦C. Surface modification of pMAVAc was carried out with silver to obtain size specific silver nanocomposites by well-known chemical-reduction approach. Structural characterizations of the samples were performed spectroscopic measurement and surface morphology identification using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Scanning Electron Microscopy (SEM), respectively. Results obtained from the ATR-FTIR analysis, detection of the characteristic spectrum data of the co-polymer composition in pMAVAc-AgNPs nanocomposite is proof that the co-polymer structure remains unchanged after treatment. The size and morphological properties of the silver nanoparticles were compatible with the characteristic nanomaterial structure and their average size was found to be 35 nm. In addition, as expected, MAVA-AgNPs nanocomposite, the detection of 79.73% Ag by mass is evidence of the high silver content in the material, and it was concluded that the co-polymer was successfully coated with silver. In recent years, considering the increasing importance of biocompatible nanomaterials in drug delivery systems and in pharmaceutical industry, the synthesized nanocomposites are thought to be a useful drug carrier system with potential antibacterial activity.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] Sung Y.K., Kim, S.W. Recent advances in polymeric drug delivery systems, Biomater. Res., 24 (12) (2020).
  • [2] Popescu I., Suflet D.M., Pelin I.M., Chitanu G.C., Biomedical applications of maleic anhydride copolymers, Rev. Roum. Chim., 56 (2011) 173–188.
  • [3] Scognamiglio F., Travan A., Rustighi I., Tarchi P., Palmisano S., Adhesive and sealant interfaces for general surgery applications, J. Biomed. Mater. Res. B. Appl. Biomater., 104(3) (2016) 626-639.
  • [4] Ringsdorf H., Structure and properties of pharmacologically active polymers, J. Polym. Sci., 51 (1975) 135–153.
  • [5] Spridon D., Panaitescu L., Ursu D., Uglea C.V., Synthesis and biocompatibility of maleic anhydride copolymers: 1. Maleic anhydride–vinyl acetate, maleic anhydride methyl methacrylate and maleic anhydride-styrene, Polym. Int., 43 (1997) 175–181.
  • [6] Bortel E., Styslo M., On the chemical modifications of poly(maleic anhydride-co-isobutene) by means of hydrolysis ammonisation or aminations, Makromol. Chem. Macromol. Chem. Phys., 191 (1990) 2653.
  • [7] Hathaichanok T., Somboon T., Stephan T.D., Warangkana W., Antibacterial Potential of Silver Nanoparticles Capped with Poly(4-styrenesulfonic acid-co-maleic acid) Polymer, Adv. Mat. Res., 1088 (2015) 64-68.
  • [8] Mavani K., Shah M., Synthesis of Silver Nanoparticles by using Sodium Borohydride as a Reducing Agent, Int. J. Eng. Res. Technol. (IJERT) , 2(3) (2013) 2278-018.
  • [9] Agnihotri S., Mukherjiabc S., Mukherji S., Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy, RSC Adv., 4 (2014) 3974–3983.
  • [10] Haque Md. N., Kwon S., Daechul C., Formation and stability study of silver nano-particles in aqueous and organic medium, Korean J. Chem. Eng., 34(7) (2017) 2072-2078.
  • [11] Cameron S., Hosseinian F., Willmore W., A Current Overview of the Biological and Cellular Effects of Nanosilver, Int. J. Mol. Sci., 19(7) (2018) 2030.
  • [12] Travan A., Pelillo C., Donati I., Marsich E., Benincasa M., Scarpa T., Semeraro S., Turco G., Gennaro R., Paoletti S., Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity, Biomacromolecules., 10(6) (2009) 1429–1435.
  • [13] S. Salem S., H. Hashem A., M. Sallam A., S. Doghish A., A. Al-Askar A.,.A. Arishi A, M. Shehabeldine A., Synthesis of Silver Nanocomposite Based on Carboxymethyl Cellulose: Antibacterial, Antifungal and Anticancer Activities, Polymers, 14, (2022) 3352.
  • [14] Nikolić, N., Spasojević, J., Radosavljević, A., Milošević, M., Barudžija, T., Rakočević, L., Kačarević-Popović, Z., Influence of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) polymer matrix composition on the bonding environment and characteristics of Ag nanoparticles produced by gamma irradiation, Radiat. Phys. Chem., 202 (2023) 110564.
  • [15] Kang K., Lim D.H., Choi I.H., Kang T., Lee K., Moon E.Y., Yang Y., Lee M.S., Lim J.S., Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles, Toxicol Lett., 10;205(3) (2011) 227-234.
  • [16] Boca S., Potara, M., Gabudean, A.M., Juhem, A., Baldeck, P., Astilean, S., Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy, Cancer Lett., 311 (2011) 131–140.
  • [17] Liu X., Gao P., Du J., Zhao X., Wong K.K.Y., Long-term anti-inflammatory efficacy in intestinal anastomosis in mice using silver nanoparticle-coated suture, J Pediatr Surg., 52(12) (2017) 2083-2087.
  • [18] Koseoglu-Imer, D.Y., Kose, B., Altinbas, M., Koyuncu, I., The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes, J. Membr. Sci., 428 (2013) 620–628.
  • [19] Huang, J., Zhang, K., Wang, K., Xie, Z., Ladewig, B., Wang, H., Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties, J. Membr. Sci., 423–424 (2012) 362–370.
  • [20] Zhang, S., Qiu, G., Peng Ting, Y., Shung Chung, T., Silver-PEGylated dendrimer nano-composite coating for anti-foulingthin film composite membranes for water treatment, Colloid Surf. A., 436 (2013) 207–214.
  • [21] Arthanareeswaran, G., Thanikaivelan, P., Fabrication of cellulose acetate-zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis, Sep. Purif. Technol., 74 (2010) 230–235.
  • [22] Velgosova O., Mačák L., Múdra E., Vojtko M., Lisnichuk M., Preparation, Structure, and Properties of PVA-AgNPs Nanocomposites, Polymers, 15(2) (2023) 379.
  • [23] Basri, H., Ismail, A.F., Aziz, M., Polyethersulfone (PES)‐silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity, Desalination, 273 (2011) 72–80.
  • [24] Huang, J., Arthanareeswaran, G., Zhang, K., Effect of silver loaded sodium zirconium phosphate (nanoAgZ) nanoparticles incorporation on PES membrane performance. Desalination, 285 (2012) 100–107.
  • [25] Keleştemur S., Kilic E., Uslu Ü., Cumbul A., Ugur M., Akman S., Culha M., Wound healing properties of modified silver nanoparticles and their distribution in mouse organs after topical application, Nano Biomed. Eng., 4(4) (2012), 160-176
  • [26] Endo T., Shibata A., Yanagida Y., Higo Y., Hatsuzawa T., Localized surface plasmon resonance optical characteristics for hydrogen peroxide using polyvinylpyrrolidone coated silver nanoparticles, Mater. Lett., 64(19) (2010) 2105-2108.
  • [27] Karakus G., Zengin H.B., Akin Polat Z., Yenidunya A.F., Aydin S., Cytotoxicity of three maleic anhydride copolymers and common solvents used for polymer solvation, Polym. Bull., 70 (2013) 1591–1612.
  • [28] Karakus G., Akin Polat Z., Yenidunya A. F., Zengin H. B., Karakus C. B., Synthesis, characterization and cytotoxicity of novel modified poly[(maleic anhydride)-co-(vinyl acetate)]/noradrenaline conjugate, Polym. Int., 62 (2013) 492–500.
  • [29] Karakus G., Ece A., Sahin Yaglioglu A., Zengin H. B., Karahan M., Synthesis, structural characterization, and antiproliferative/cytotoxic effects of a novel modified poly(maleic anhydride-co-vinyl acetate)/doxorubicin conjugate, Polym. Bull., 74 (2017) 2159–2184.
  • [30] D’Anna V., Spyratou A., Sharma M., Hagemann H., FT-IR spectra of inorganic borohydride, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128 (2014) 902–906.
  • [31] Lester A., Xuefeng W., Infrared Spectrum of the Novel Electron-Deficient BH4 Radical in Solid Neon, J. Am. Chem. Soc., 124 (2002) 7280-7281.
  • [32] Xiao C.M., Tan J., Xue G.N., Synthesis and properties of starch-g-poly(maleic anhydride-co-vinyl acetate), Express. Polym. Lett., 4 (2010) 9–16.
  • [33] Sunel V., Popa M., Stoican A.D., Popa A.A., Uglea C., Poly (maleic anhydride-alt-vinyl acetate) conjugate with alkylating agents, Mater. Plast., 45 (2008) 149–153.
  • [34] Ghosh S., Banthia A.K., An approach to novel polyamidoamine (PAMAM) side chain dendritic polyesterurethane (SCDPEU) block copolymer architectures, Eur. Polym. J., 39 (2003) 2141–2146.
  • [35] Assi Z., Schneider A.G., Ulpe A.C., Bredow T., Rüscher C.H., The Rigidity of the (BH4)-Anion Dispersed in Halides AX, A = Na, K; X = Cl, Br, I, and in MBH4 with M = Na, K, Rb, Cs, Crystals 12 (2022) 510.
  • [36] Wu J.H., Hsieh T.Y., Lin H.Y., Shiau I.L., Chang S.T., Properties of wood plasticization with octanoyl chloride in a solvent-free system, Wood. Sci. Technol. 37 (2004) 363–372.
  • [37] Schramm C., High temperature ATR-FTIR characterization of the interaction of polycarboxylic acids and organotrialkoxysilanes with cellulosic material, Spectrochim. Acta A Mol. Biomol. Spectrosc. 243 (2020) 118815.
  • [38] Yulong A., Xu L., Yuxi Z., Yan L., Yunwu Z., Chunhua W., Kaimeng X., Xijuan C., Can L., Red, green, and blue light-emitting carbon dots prepared from o-phenylenediamine, RSC Adv., 11 (2021) 26915–26919.
  • [39] Alahmad A., Feldhoff A., Bigall N.C., Rusch P., Scheper T., Hypericum perforatum L.-Mediated Green Synthesis of Silver Nanoparticles Exhibiting Antioxidant and Anticancer Activities, Nanomaterials, 11 (2021) 487.
  • [40] Razzaque S., Hussain S. Z., Hussain I., Tan B., Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands, Polymers (8) (2016) 156.
Year 2023, Volume: 44 Issue: 1, 112 - 119, 26.03.2023
https://doi.org/10.17776/csj.1192585

Abstract

Project Number

-

References

  • [1] Sung Y.K., Kim, S.W. Recent advances in polymeric drug delivery systems, Biomater. Res., 24 (12) (2020).
  • [2] Popescu I., Suflet D.M., Pelin I.M., Chitanu G.C., Biomedical applications of maleic anhydride copolymers, Rev. Roum. Chim., 56 (2011) 173–188.
  • [3] Scognamiglio F., Travan A., Rustighi I., Tarchi P., Palmisano S., Adhesive and sealant interfaces for general surgery applications, J. Biomed. Mater. Res. B. Appl. Biomater., 104(3) (2016) 626-639.
  • [4] Ringsdorf H., Structure and properties of pharmacologically active polymers, J. Polym. Sci., 51 (1975) 135–153.
  • [5] Spridon D., Panaitescu L., Ursu D., Uglea C.V., Synthesis and biocompatibility of maleic anhydride copolymers: 1. Maleic anhydride–vinyl acetate, maleic anhydride methyl methacrylate and maleic anhydride-styrene, Polym. Int., 43 (1997) 175–181.
  • [6] Bortel E., Styslo M., On the chemical modifications of poly(maleic anhydride-co-isobutene) by means of hydrolysis ammonisation or aminations, Makromol. Chem. Macromol. Chem. Phys., 191 (1990) 2653.
  • [7] Hathaichanok T., Somboon T., Stephan T.D., Warangkana W., Antibacterial Potential of Silver Nanoparticles Capped with Poly(4-styrenesulfonic acid-co-maleic acid) Polymer, Adv. Mat. Res., 1088 (2015) 64-68.
  • [8] Mavani K., Shah M., Synthesis of Silver Nanoparticles by using Sodium Borohydride as a Reducing Agent, Int. J. Eng. Res. Technol. (IJERT) , 2(3) (2013) 2278-018.
  • [9] Agnihotri S., Mukherjiabc S., Mukherji S., Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy, RSC Adv., 4 (2014) 3974–3983.
  • [10] Haque Md. N., Kwon S., Daechul C., Formation and stability study of silver nano-particles in aqueous and organic medium, Korean J. Chem. Eng., 34(7) (2017) 2072-2078.
  • [11] Cameron S., Hosseinian F., Willmore W., A Current Overview of the Biological and Cellular Effects of Nanosilver, Int. J. Mol. Sci., 19(7) (2018) 2030.
  • [12] Travan A., Pelillo C., Donati I., Marsich E., Benincasa M., Scarpa T., Semeraro S., Turco G., Gennaro R., Paoletti S., Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity, Biomacromolecules., 10(6) (2009) 1429–1435.
  • [13] S. Salem S., H. Hashem A., M. Sallam A., S. Doghish A., A. Al-Askar A.,.A. Arishi A, M. Shehabeldine A., Synthesis of Silver Nanocomposite Based on Carboxymethyl Cellulose: Antibacterial, Antifungal and Anticancer Activities, Polymers, 14, (2022) 3352.
  • [14] Nikolić, N., Spasojević, J., Radosavljević, A., Milošević, M., Barudžija, T., Rakočević, L., Kačarević-Popović, Z., Influence of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) polymer matrix composition on the bonding environment and characteristics of Ag nanoparticles produced by gamma irradiation, Radiat. Phys. Chem., 202 (2023) 110564.
  • [15] Kang K., Lim D.H., Choi I.H., Kang T., Lee K., Moon E.Y., Yang Y., Lee M.S., Lim J.S., Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles, Toxicol Lett., 10;205(3) (2011) 227-234.
  • [16] Boca S., Potara, M., Gabudean, A.M., Juhem, A., Baldeck, P., Astilean, S., Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy, Cancer Lett., 311 (2011) 131–140.
  • [17] Liu X., Gao P., Du J., Zhao X., Wong K.K.Y., Long-term anti-inflammatory efficacy in intestinal anastomosis in mice using silver nanoparticle-coated suture, J Pediatr Surg., 52(12) (2017) 2083-2087.
  • [18] Koseoglu-Imer, D.Y., Kose, B., Altinbas, M., Koyuncu, I., The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes, J. Membr. Sci., 428 (2013) 620–628.
  • [19] Huang, J., Zhang, K., Wang, K., Xie, Z., Ladewig, B., Wang, H., Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties, J. Membr. Sci., 423–424 (2012) 362–370.
  • [20] Zhang, S., Qiu, G., Peng Ting, Y., Shung Chung, T., Silver-PEGylated dendrimer nano-composite coating for anti-foulingthin film composite membranes for water treatment, Colloid Surf. A., 436 (2013) 207–214.
  • [21] Arthanareeswaran, G., Thanikaivelan, P., Fabrication of cellulose acetate-zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis, Sep. Purif. Technol., 74 (2010) 230–235.
  • [22] Velgosova O., Mačák L., Múdra E., Vojtko M., Lisnichuk M., Preparation, Structure, and Properties of PVA-AgNPs Nanocomposites, Polymers, 15(2) (2023) 379.
  • [23] Basri, H., Ismail, A.F., Aziz, M., Polyethersulfone (PES)‐silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity, Desalination, 273 (2011) 72–80.
  • [24] Huang, J., Arthanareeswaran, G., Zhang, K., Effect of silver loaded sodium zirconium phosphate (nanoAgZ) nanoparticles incorporation on PES membrane performance. Desalination, 285 (2012) 100–107.
  • [25] Keleştemur S., Kilic E., Uslu Ü., Cumbul A., Ugur M., Akman S., Culha M., Wound healing properties of modified silver nanoparticles and their distribution in mouse organs after topical application, Nano Biomed. Eng., 4(4) (2012), 160-176
  • [26] Endo T., Shibata A., Yanagida Y., Higo Y., Hatsuzawa T., Localized surface plasmon resonance optical characteristics for hydrogen peroxide using polyvinylpyrrolidone coated silver nanoparticles, Mater. Lett., 64(19) (2010) 2105-2108.
  • [27] Karakus G., Zengin H.B., Akin Polat Z., Yenidunya A.F., Aydin S., Cytotoxicity of three maleic anhydride copolymers and common solvents used for polymer solvation, Polym. Bull., 70 (2013) 1591–1612.
  • [28] Karakus G., Akin Polat Z., Yenidunya A. F., Zengin H. B., Karakus C. B., Synthesis, characterization and cytotoxicity of novel modified poly[(maleic anhydride)-co-(vinyl acetate)]/noradrenaline conjugate, Polym. Int., 62 (2013) 492–500.
  • [29] Karakus G., Ece A., Sahin Yaglioglu A., Zengin H. B., Karahan M., Synthesis, structural characterization, and antiproliferative/cytotoxic effects of a novel modified poly(maleic anhydride-co-vinyl acetate)/doxorubicin conjugate, Polym. Bull., 74 (2017) 2159–2184.
  • [30] D’Anna V., Spyratou A., Sharma M., Hagemann H., FT-IR spectra of inorganic borohydride, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128 (2014) 902–906.
  • [31] Lester A., Xuefeng W., Infrared Spectrum of the Novel Electron-Deficient BH4 Radical in Solid Neon, J. Am. Chem. Soc., 124 (2002) 7280-7281.
  • [32] Xiao C.M., Tan J., Xue G.N., Synthesis and properties of starch-g-poly(maleic anhydride-co-vinyl acetate), Express. Polym. Lett., 4 (2010) 9–16.
  • [33] Sunel V., Popa M., Stoican A.D., Popa A.A., Uglea C., Poly (maleic anhydride-alt-vinyl acetate) conjugate with alkylating agents, Mater. Plast., 45 (2008) 149–153.
  • [34] Ghosh S., Banthia A.K., An approach to novel polyamidoamine (PAMAM) side chain dendritic polyesterurethane (SCDPEU) block copolymer architectures, Eur. Polym. J., 39 (2003) 2141–2146.
  • [35] Assi Z., Schneider A.G., Ulpe A.C., Bredow T., Rüscher C.H., The Rigidity of the (BH4)-Anion Dispersed in Halides AX, A = Na, K; X = Cl, Br, I, and in MBH4 with M = Na, K, Rb, Cs, Crystals 12 (2022) 510.
  • [36] Wu J.H., Hsieh T.Y., Lin H.Y., Shiau I.L., Chang S.T., Properties of wood plasticization with octanoyl chloride in a solvent-free system, Wood. Sci. Technol. 37 (2004) 363–372.
  • [37] Schramm C., High temperature ATR-FTIR characterization of the interaction of polycarboxylic acids and organotrialkoxysilanes with cellulosic material, Spectrochim. Acta A Mol. Biomol. Spectrosc. 243 (2020) 118815.
  • [38] Yulong A., Xu L., Yuxi Z., Yan L., Yunwu Z., Chunhua W., Kaimeng X., Xijuan C., Can L., Red, green, and blue light-emitting carbon dots prepared from o-phenylenediamine, RSC Adv., 11 (2021) 26915–26919.
  • [39] Alahmad A., Feldhoff A., Bigall N.C., Rusch P., Scheper T., Hypericum perforatum L.-Mediated Green Synthesis of Silver Nanoparticles Exhibiting Antioxidant and Anticancer Activities, Nanomaterials, 11 (2021) 487.
  • [40] Razzaque S., Hussain S. Z., Hussain I., Tan B., Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands, Polymers (8) (2016) 156.
There are 40 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Natural Sciences
Authors

Gamze Ayas 0009-0009-7276-0897

Gülderen Karakuş 0000-0003-2596-9208

Project Number -
Publication Date March 26, 2023
Submission Date October 21, 2022
Acceptance Date February 6, 2023
Published in Issue Year 2023Volume: 44 Issue: 1

Cite

APA Ayas, G., & Karakuş, G. (2023). Silver Nanoparticles Capped with Poly[(maleic anhydride)-co-(vinyl acetate)]. Cumhuriyet Science Journal, 44(1), 112-119. https://doi.org/10.17776/csj.1192585