BibTex RIS Cite

-

Year 2013, Volume: 1 Issue: 1, 67 - 73, 25.03.2015

Abstract

Like many eukaryotes, DNA methylation is an important mechanism of epigenetic control in bacteria. Unlike eukaryotes, bacteria use DNA adenine methylation rather than DNA cytosine methylation as an epigenetic signal. Epigenetic mechanisms are thought to control several virulence factors of bacteria. Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella are the mostly studied bacteria under that topic. Finding out how to control this gene expression in bacteria can facilitate the control of infections that may generate hope for the development of new options. Development of new drug molecules has become increasingly limited. As the number of molecular microbiology studies increase, it has been focused that bacteria virulence factors can be controlled by epigenetic mechanisms. Recently, the usage of Dam inhibitors for the treatment of infection and tumor suppression are the main questions focused on this topic

References

  • Casadesu J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol. 2006;70(3):830–56,
  • Ferenczy MW, DeLuca NA. Epigenetic modulation of gene expression from quiescent Herpes Simplex Virus genomes. J Virol. 2009;83(17):8514–24.
  • Pantry SN, Medveczky PG. Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus replication. Semin Cancer Biol. 2009;19(3):153-7.
  • True HL, Berlin I, Lindquist SL. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature. 2004;431:184–7
  • McVittie B. In brief What is Epigenetics? 2006. http://epigenome.eu/en/1,1,0. Erişim tarihi: 2011
  • Barras F, Marinus MG. The great GATC: DNA methylation in E. coli. Trends Genet. 1989;5(5):139- 43.
  • Lobner-Olesen A, Skovgaard O, and Marinus MG. Dam methylation: coordinating cellular processes. Curr Opin Microbiol. 2005;8(2):154-160.
  • Marinus MG. Methylation of DNA. In FC. Neidhardt et al. (eds). Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. Washington D.C. ASM Press, 1996;782-91. 9. Modrich P.
  • Methyl-directed DNA mismatch
  • correction. J Biol Chem. 1989;264(12):6597-600.
  • Palmer BR, Marinus MG. The dam and dcm strains of Escherichia coli—a review. Gene. 1994;143(1):1-12.
  • Wion D, Casadesus J. N(6)-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol. 2006.4(3):183-92.
  • Uetake H, Toyama S, Hagiwara S. On the mechanism of host-induced modification. Multiplicity activation and thermolabile factor responsible for phage growth restriction. Virology. 1964;22(2):202-13.
  • Roberts RJ. Restriction and modification enzymes and their recognition sequences. Gene. 1978;4(3):183- 94. 14. Lederberg, S.
  • Host-controlled restriction and
  • modification of deoxyribonucleic acid in Escherichia
  • coli. Virology. 1965;27(3):378-87.
  • Boyer H. Genetic control of restriction and modification in Escherichia coli. J Bacteriol. 1964;88(6):1652-60.
  • Malone T, Blumenthal RM, Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol. 1995;253(4):618-32.
  • Horton JR, Liebert K, Hattman S, Jeltsch A, Cheng X. Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase. Cell. 2005;121(3):349-61.
  • Liebert K, Hermann A, Schlickenrieder M, Jeltsch A. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)- methyltransferase. J Mol Biol. 2004;341(2):443-54.
  • Urig S, Gowher H, Hermann A, et al. The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J Mol Biol. 2002;319(5):1085-96.
  • Bale A, d'Alarcao M, Marinus MG. Characterization of DNA adenine methylation mutants of Escherichia coli K12. Mutat Res. 1979;59(2):157-65.
  • Julio SM, Heithoff DM, Provenzano D, et al. DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect Immun. 2001;69(12):7610-5.
  • Torreblanca J, Casadesus J. DNA adenine methylase mutants of Salmonella typhimurium and a novel dam- regulated locus. Genetics. 1996;144(1):15-26.
  • Egan ES, Duigou S, Waldor MK. Autorepression of RctB, an initiator of Vibrio cholerae chromosome II replication. J Bacteriol. 2006;188(2):789-93.
  • Lobner-Olesen A, Boye E, Marinus MG. Expression of the Escherichia coli dam gene. Mol Microbiol. 1992;6(13):1841-51.
  • Blyn LB, Braaten BA, Low DA. Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J. 1990.9(12):4045-54.
  • Braaten BA, Nou X, Kaltenbach LS, Low DA. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell. 1994;76(3):577-88.
  • Hernday A, Krabbe M, Braaten B, Low D. Self- perpetuating epigenetic pili switches in bacteria. Proc Natl Acad Sci USA. 2002;99(Suppl. 4):16470–6

Bakterilerde Epigenetik

Year 2013, Volume: 1 Issue: 1, 67 - 73, 25.03.2015

Abstract

Ökaryotlarda olduğu gibi bakterilerde de epigenetik kontrolün önemli bir mekanizması DNA metilasyonudur. Bakterilerdeki metilasyonun ökaryotlardakinden farkı sitozin yerine yaygın olarak adeninin metillenmesidir. Bakterilerin birçok virülans faktörünün epigenetik mekanizmalarla kontrol edildiği düşünülmektedir. Bu konuda en çok çalışılan bakteriler Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, Brucella ve Pseudomonas cinsi olmuştur. Bakterilerde gen ifadelenmesinin nasıl kontrol edildiğinin bilinmesi infeksiyonların kontrolünde yeni seçeneklerin geliştirilmesi için umut olabilecektir. Yeni antibiyotik moleküllerinin geliştirilmesi gittikçe sınırlı bir hale gelmiştir. Moleküler mikrobiyoloji çalışmaları arttıkça, epigenetik mekanizmalar ile bakterilerin virülans faktörlerinin kontrol edilebileceği konusunda yoğunlaşılmıştır. Çok yakında cevaplanabileceğini umduğumuz iki soru Dam inhibitörlerinin infeksiyon tedavisi ve tümör baskılanması amacıyla kullanılıp kullanılmayacağıdır.

References

  • Casadesu J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol. 2006;70(3):830–56,
  • Ferenczy MW, DeLuca NA. Epigenetic modulation of gene expression from quiescent Herpes Simplex Virus genomes. J Virol. 2009;83(17):8514–24.
  • Pantry SN, Medveczky PG. Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus replication. Semin Cancer Biol. 2009;19(3):153-7.
  • True HL, Berlin I, Lindquist SL. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature. 2004;431:184–7
  • McVittie B. In brief What is Epigenetics? 2006. http://epigenome.eu/en/1,1,0. Erişim tarihi: 2011
  • Barras F, Marinus MG. The great GATC: DNA methylation in E. coli. Trends Genet. 1989;5(5):139- 43.
  • Lobner-Olesen A, Skovgaard O, and Marinus MG. Dam methylation: coordinating cellular processes. Curr Opin Microbiol. 2005;8(2):154-160.
  • Marinus MG. Methylation of DNA. In FC. Neidhardt et al. (eds). Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. Washington D.C. ASM Press, 1996;782-91. 9. Modrich P.
  • Methyl-directed DNA mismatch
  • correction. J Biol Chem. 1989;264(12):6597-600.
  • Palmer BR, Marinus MG. The dam and dcm strains of Escherichia coli—a review. Gene. 1994;143(1):1-12.
  • Wion D, Casadesus J. N(6)-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol. 2006.4(3):183-92.
  • Uetake H, Toyama S, Hagiwara S. On the mechanism of host-induced modification. Multiplicity activation and thermolabile factor responsible for phage growth restriction. Virology. 1964;22(2):202-13.
  • Roberts RJ. Restriction and modification enzymes and their recognition sequences. Gene. 1978;4(3):183- 94. 14. Lederberg, S.
  • Host-controlled restriction and
  • modification of deoxyribonucleic acid in Escherichia
  • coli. Virology. 1965;27(3):378-87.
  • Boyer H. Genetic control of restriction and modification in Escherichia coli. J Bacteriol. 1964;88(6):1652-60.
  • Malone T, Blumenthal RM, Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol. 1995;253(4):618-32.
  • Horton JR, Liebert K, Hattman S, Jeltsch A, Cheng X. Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase. Cell. 2005;121(3):349-61.
  • Liebert K, Hermann A, Schlickenrieder M, Jeltsch A. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)- methyltransferase. J Mol Biol. 2004;341(2):443-54.
  • Urig S, Gowher H, Hermann A, et al. The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J Mol Biol. 2002;319(5):1085-96.
  • Bale A, d'Alarcao M, Marinus MG. Characterization of DNA adenine methylation mutants of Escherichia coli K12. Mutat Res. 1979;59(2):157-65.
  • Julio SM, Heithoff DM, Provenzano D, et al. DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect Immun. 2001;69(12):7610-5.
  • Torreblanca J, Casadesus J. DNA adenine methylase mutants of Salmonella typhimurium and a novel dam- regulated locus. Genetics. 1996;144(1):15-26.
  • Egan ES, Duigou S, Waldor MK. Autorepression of RctB, an initiator of Vibrio cholerae chromosome II replication. J Bacteriol. 2006;188(2):789-93.
  • Lobner-Olesen A, Boye E, Marinus MG. Expression of the Escherichia coli dam gene. Mol Microbiol. 1992;6(13):1841-51.
  • Blyn LB, Braaten BA, Low DA. Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J. 1990.9(12):4045-54.
  • Braaten BA, Nou X, Kaltenbach LS, Low DA. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell. 1994;76(3):577-88.
  • Hernday A, Krabbe M, Braaten B, Low D. Self- perpetuating epigenetic pili switches in bacteria. Proc Natl Acad Sci USA. 2002;99(Suppl. 4):16470–6
There are 30 citations in total.

Details

Primary Language Turkish
Journal Section Derlemeler
Authors

Aynur Eren Topkaya

Hayati Güneş

Publication Date March 25, 2015
Published in Issue Year 2013 Volume: 1 Issue: 1

Cite

APA Eren Topkaya, A., & Güneş, H. (2015). Bakterilerde Epigenetik. International Journal of Basic and Clinical Medicine, 1(1), 67-73.
AMA Eren Topkaya A, Güneş H. Bakterilerde Epigenetik. International Journal of Basic and Clinical Medicine. March 2015;1(1):67-73.
Chicago Eren Topkaya, Aynur, and Hayati Güneş. “Bakterilerde Epigenetik”. International Journal of Basic and Clinical Medicine 1, no. 1 (March 2015): 67-73.
EndNote Eren Topkaya A, Güneş H (March 1, 2015) Bakterilerde Epigenetik. International Journal of Basic and Clinical Medicine 1 1 67–73.
IEEE A. Eren Topkaya and H. Güneş, “Bakterilerde Epigenetik”, International Journal of Basic and Clinical Medicine, vol. 1, no. 1, pp. 67–73, 2015.
ISNAD Eren Topkaya, Aynur - Güneş, Hayati. “Bakterilerde Epigenetik”. International Journal of Basic and Clinical Medicine 1/1 (March 2015), 67-73.
JAMA Eren Topkaya A, Güneş H. Bakterilerde Epigenetik. International Journal of Basic and Clinical Medicine. 2015;1:67–73.
MLA Eren Topkaya, Aynur and Hayati Güneş. “Bakterilerde Epigenetik”. International Journal of Basic and Clinical Medicine, vol. 1, no. 1, 2015, pp. 67-73.
Vancouver Eren Topkaya A, Güneş H. Bakterilerde Epigenetik. International Journal of Basic and Clinical Medicine. 2015;1(1):67-73.