Review
BibTex RIS Cite
Year 2021, Volume: 8 Issue: 2, 50 - 57, 30.06.2021

Abstract

References

  • 1.Szybalska EH, Szybalski W. Genetics of human cell lines, iv. DNA-mediat- ed heritable transformation of a biochemical trait. Proc Natl Acad Sci USA 1962;48(12):2026–34.
  • 2. Redwan ERM, Matar SM, El‐Aziz GA et al. Synthesis of the human insulin gene: protein expression, scaling up and bioactivity. Prep Biochem Biotechnol 2008;38(1):24–39.
  • 3. Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A et al. Human recombinant lysosomal enzymes produced in microorganisms. Mol Genet Metab 2015;116(1- 2):13–23.
  • 4. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the hu- man genome. Nature 2001;409(6822):860–921.
  • 5. International Human Genome Sequencing Consortium. Finishing the euchro- matic sequence of the human genome. Nature 2004;431(7011):931-45.
  • 6. Hood L, Rowen L. The human genome project: big science transforms biology and medicine. Genome Med 2013;5(9):79.
  • 7. Cring MR, Sheffield VC. Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther 2020 Oct 9. doi: 10.1038/ s41434- 020-00197-8. [Epub ahead of print]
  • 8. Zhang D, Hussain A, Manghwar H et al. Genome editing with the CRISPR‐ Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol J 2020;18(8):1651–69.
  • 9. Eid A, Mahfouz MM. Genome editing: the road of CRISPR/Cas9 from bench to clinic. Exp Mol Med 2016;48(10):e265.
  • 10. Coller BS. Ethics of human genome editing. Annu Rev Med 2019;70(1):289–305. Khalil AM. The genome editing revolution: review. J Genet Eng Biotechnol 2020;18(1):68.
  • 12. Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011;188(4):773-82.
  • 13. Wright DA, Thibodeau-Beganny S, Sander JD et al. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 2006;1(3):1637–52.
  • 14. Urnov FD, Miller JC, Lee YL et al. Highly efficient endogenous human gene cor- rection using designed zinc-finger nucleases. Nature 2005;435(7042):646–51.
  • 15. Sander JD, Dahlborg EJ, Goodwin MJ et al. Selection-free zinc-finger-nuclease en- gineering by context-dependent assembly (CoDA). Nat Methods 2011;8(1):67-9.
  • 16. Tebas P, Jadlowsky JK, Shaw PA et al. CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. J Clin Invest 2021;131(7):e144486.
  • 17. Stone D, Niyonzima N, Jerome KR. Genome editing and the next generation of antiviral therapy. Hum Genet 2016;135(9):1071-82.
  • 18. Weber ND, Stone D, Sedlak RH et al. AAV-mediated delivery of zinc fin- ger nucleases targeting hepatitis B virus inhibits active replication. PLoS One 2014;9(5):e97579.
  • 19. Nain V, Sahi S, Verma A. CPP-ZFN: a potential DNA-targeting anti-malarial drug. Malar J 2010;9:258.
  • 20. Kim HJ, Lee HJ, Kim H et al. Targeted genome editing in human cells with zinc fin- ger nucleases constructed via modular assembly. Genome Res 2009;19(7):1279-88.
  • 21. Akbudak MA, Kontbay K. Yeni nesil genom düzenleme teknikleri: ZFN, TALEN, CRISPR’lar ve bitkilerde kullanımı. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 2017;26(1):111-26.
  • 22. Nemudryi AA, Valetdinova KR, Medvedev SP et al. TALEN and CRISPR/Cas ge- nome editing systems: tools of discovery. Acta Naturae 2014;6(3):19-40.
  • 23. Timilsina S, Potnis N, Newberry EA et al. Xanthomonas diversity, virulence and plant–pathogen interactions. Nat Rev Microbiol 2020;18(8):415–27.
  • 24. Method of the year 2011. Nat Methods 2012;9(1):1.
  • 25. Reyon D, Tsai SQ, Khayter C et al. FLASH assembly of TALENs for high-through- put genome editing. Nat Biotechnol 2012;30(5):460-5.
  • 26. Budhagatapalli N, Rutten T, Gurushidze M et al. Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-strand breaks in barley. G3 2015;5(9):1857-63.
  • 27.Mussolino C, Morbitzer R, Lütge F et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011;39(21):9283-93.
  • 28. Scholze H, Boch J. TAL effectors are remote controls for gene activation. Curr Opin Microbiol 2011;14(1):47-53.
  • 29. Kadam US, Shelake RM, Chavhan RL et al. Concerns regarding 'off-target' activity of genome editing endonucleases. Plant Physiol Biochem 2018;131:22-30.
  • 30. Sun N, Liang J, Abil Z et al. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst 2012;8(4):1255-63.
  • 31. Bloom K, Ely A, Mussolino C et al. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther 2013;21(10):1889-97.
  • 32. Carlson DF, Tan W, Lillico SG et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 2012;109:17382-7.
  • 33. Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B: Biol Sci 2016;371(1707):20150496.
  • 34. Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 2018;200(7):e00580-17.
  • 35. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157(6):1262–78.
  • 36. Javed MR, Sadaf M, Ahmed T et al. CRISPR-Cas system: history and prospects as a genome editing tool in microorganisms. Curr Microbiol 2018;75(12):1675–83.
  • 37. Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol 2020;10(7):1387.
  • 38. Costa JR, Bejcek BE, McGee JE et al. Genome editing using engineered nu- cleases and their use in genomic screening. Assay Guidance Manual (serial online) 2017 Nov 20 (cited 2021 Mar 8) : (23 screens). Available from: URL: https://www.ncbi.nlm.nih.gov/books/NBK464635/.
  • 39. Jinek M, Chylinski K, Fonfara I et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337(6096):816–21.
  • 40. Strzyz P. CRISPR–Cas9 wins Nobel. Nat Rev Mol Cell Biol 2020;21(12):714.
  • 41. Liu Z, Dong H, Cui Y et al. Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact 2020;19(1):172.
  • 42. Uppada V, Gokara M, Rasineni GK. Diagnosis and therapy with CRISPR ad- vanced CRISPR based tools for point of care diagnostics and early therapies. Gene 2018;656:22–9.
  • 43. Clark DP, Pazdernik NJ, McGehee MR. Genome Defense. In: Clark DP, Pazdernik NJ, McGehee MR, editors. Molecular Biology (Third Edition). London: Academic Press; 2019.p.622-53.
  • 44. Makarova KS, Wolf YI, Alkhnbashi OS et al. An updated evolutionary classifica- tion of CRISPR–Cas systems. Nat Rev Microbiol 2015;13(11):722–36.
  • 45. Makarova KS, Haft DH, Barrangou R et al. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 2011;9(6):467–77.
  • 46. Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adap- tive immunity. Mol Cell 2014;54(2):234–44.
  • 47. Jolany Vangah S, Katalani C, Boone HA et al. CRISPR-Based diagnosis of infec- tious and noninfectious diseases. Biol Proced Online 2020;22(1):22.
  • 48. Foss DV, Hochstrasser ML, Wilson RC. Clinical applications of CRISPR-based genome editing and diagnostics. Transfusion 2019;59(4):1389–99.
  • 49. Gupta D, Bhattacharjee O, Mandal D et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sci 2019;232:116636.
  • 50. Zhang XH, Tee LY, Wang XG et al. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 2015;4(11):e264.
  • 51. Naeem M, Majeed S, Hoque MZ et al. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 2020;9(7):1608.
  • 52. Anzalone AV, Randolph PB, Davis JR et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576(7785):149–57.
  • 53. Cohen J. Prime editing promises to be a cut above CRISPR. Science 2019;366(6464):406.
  • 54. Porto EM, Komor AC, Slaymaker IM et al. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020;19(12):839–59.
  • 55. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020;38(7):824–44.
  • 56. Schene IF, Joore IP, Oka R et al. Prime editing for functional repair in patient-de- rived disease models. Nat Commun 2020;11(1):5352.
  • 57. Smirnikhina SA. Prime editing: making the move to prime time. CRISPR J 2020;3(5):319–21.
  • 58. Janik E, Niemcewicz M, Ceremuga M et al. Various aspects of a gene editing sys- tem-CRISPR-Cas9. Int J Mol Sci 2020 16;21(24):9604.
  • 59. Greely HT. CRISPR’d babies: human germline genome editing in the ‘He Jiankui affair’. J Law Biosci 2019;6(1):111–83.
  • 60. Bosley KS, Botchan M, Bredenoord AL et al. CRISPR germline engineering – the community speaks. Nat Biotechnol 2015;33(5):478-86.
  • 61. Lanphier E, Urnov F, Haecker SE et al. Don’t edit the human germ line. Nature 2015;519(7544):410-1.
  • 62. Khan SH. Genome-editing technologies: concept, pros, and cons of various ge- nome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids 2019;16:326–34.
  • 63. Cong L, Ran FA, Cox D et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339(6121):819–23.

MAIN GENOME EDITING TOOLS: AN OVERVIEW OF THE LITERATURE, FUTURE APPLICATIONS AND ETHICAL QUESTIONS

Year 2021, Volume: 8 Issue: 2, 50 - 57, 30.06.2021

Abstract

The popularity of genome editing technologies in the scientific community has been on the rise for several years. These technologies are slowly becoming a ray of hope for many patients with genetic diseases, thanks to their immense potential for clinical application. New genome editing tools are being rap- idly developed and introduced, while pre-existing ones are being perfected. In the process beginning with the completion of the Human Genome Project to the first clinical trials focusing on cancer immunotherapy and treating blindness, studies on genome editing have increased exponentially. The clustered regularly interspaced short palindromic repeats system is a Nobel Prize-winning genome editing tool celebrated by many researchers and is often praised due to its ease of use, low cost, and efficiency compared to other acknowledged genome editing tools. This review aims to discuss the historical development, working mechanisms, present and future clinical applications of zinc-finger nucleases, transcription activator-like effector nucleases, clustered regularly inter- spaced short palindromic repeats, and prime editors, while presenting the ethical aspects of using these genome editing tools. Keywords: Zinc-finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats, gene editing

References

  • 1.Szybalska EH, Szybalski W. Genetics of human cell lines, iv. DNA-mediat- ed heritable transformation of a biochemical trait. Proc Natl Acad Sci USA 1962;48(12):2026–34.
  • 2. Redwan ERM, Matar SM, El‐Aziz GA et al. Synthesis of the human insulin gene: protein expression, scaling up and bioactivity. Prep Biochem Biotechnol 2008;38(1):24–39.
  • 3. Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A et al. Human recombinant lysosomal enzymes produced in microorganisms. Mol Genet Metab 2015;116(1- 2):13–23.
  • 4. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the hu- man genome. Nature 2001;409(6822):860–921.
  • 5. International Human Genome Sequencing Consortium. Finishing the euchro- matic sequence of the human genome. Nature 2004;431(7011):931-45.
  • 6. Hood L, Rowen L. The human genome project: big science transforms biology and medicine. Genome Med 2013;5(9):79.
  • 7. Cring MR, Sheffield VC. Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther 2020 Oct 9. doi: 10.1038/ s41434- 020-00197-8. [Epub ahead of print]
  • 8. Zhang D, Hussain A, Manghwar H et al. Genome editing with the CRISPR‐ Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol J 2020;18(8):1651–69.
  • 9. Eid A, Mahfouz MM. Genome editing: the road of CRISPR/Cas9 from bench to clinic. Exp Mol Med 2016;48(10):e265.
  • 10. Coller BS. Ethics of human genome editing. Annu Rev Med 2019;70(1):289–305. Khalil AM. The genome editing revolution: review. J Genet Eng Biotechnol 2020;18(1):68.
  • 12. Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011;188(4):773-82.
  • 13. Wright DA, Thibodeau-Beganny S, Sander JD et al. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 2006;1(3):1637–52.
  • 14. Urnov FD, Miller JC, Lee YL et al. Highly efficient endogenous human gene cor- rection using designed zinc-finger nucleases. Nature 2005;435(7042):646–51.
  • 15. Sander JD, Dahlborg EJ, Goodwin MJ et al. Selection-free zinc-finger-nuclease en- gineering by context-dependent assembly (CoDA). Nat Methods 2011;8(1):67-9.
  • 16. Tebas P, Jadlowsky JK, Shaw PA et al. CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. J Clin Invest 2021;131(7):e144486.
  • 17. Stone D, Niyonzima N, Jerome KR. Genome editing and the next generation of antiviral therapy. Hum Genet 2016;135(9):1071-82.
  • 18. Weber ND, Stone D, Sedlak RH et al. AAV-mediated delivery of zinc fin- ger nucleases targeting hepatitis B virus inhibits active replication. PLoS One 2014;9(5):e97579.
  • 19. Nain V, Sahi S, Verma A. CPP-ZFN: a potential DNA-targeting anti-malarial drug. Malar J 2010;9:258.
  • 20. Kim HJ, Lee HJ, Kim H et al. Targeted genome editing in human cells with zinc fin- ger nucleases constructed via modular assembly. Genome Res 2009;19(7):1279-88.
  • 21. Akbudak MA, Kontbay K. Yeni nesil genom düzenleme teknikleri: ZFN, TALEN, CRISPR’lar ve bitkilerde kullanımı. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 2017;26(1):111-26.
  • 22. Nemudryi AA, Valetdinova KR, Medvedev SP et al. TALEN and CRISPR/Cas ge- nome editing systems: tools of discovery. Acta Naturae 2014;6(3):19-40.
  • 23. Timilsina S, Potnis N, Newberry EA et al. Xanthomonas diversity, virulence and plant–pathogen interactions. Nat Rev Microbiol 2020;18(8):415–27.
  • 24. Method of the year 2011. Nat Methods 2012;9(1):1.
  • 25. Reyon D, Tsai SQ, Khayter C et al. FLASH assembly of TALENs for high-through- put genome editing. Nat Biotechnol 2012;30(5):460-5.
  • 26. Budhagatapalli N, Rutten T, Gurushidze M et al. Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-strand breaks in barley. G3 2015;5(9):1857-63.
  • 27.Mussolino C, Morbitzer R, Lütge F et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011;39(21):9283-93.
  • 28. Scholze H, Boch J. TAL effectors are remote controls for gene activation. Curr Opin Microbiol 2011;14(1):47-53.
  • 29. Kadam US, Shelake RM, Chavhan RL et al. Concerns regarding 'off-target' activity of genome editing endonucleases. Plant Physiol Biochem 2018;131:22-30.
  • 30. Sun N, Liang J, Abil Z et al. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst 2012;8(4):1255-63.
  • 31. Bloom K, Ely A, Mussolino C et al. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther 2013;21(10):1889-97.
  • 32. Carlson DF, Tan W, Lillico SG et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 2012;109:17382-7.
  • 33. Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B: Biol Sci 2016;371(1707):20150496.
  • 34. Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 2018;200(7):e00580-17.
  • 35. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157(6):1262–78.
  • 36. Javed MR, Sadaf M, Ahmed T et al. CRISPR-Cas system: history and prospects as a genome editing tool in microorganisms. Curr Microbiol 2018;75(12):1675–83.
  • 37. Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol 2020;10(7):1387.
  • 38. Costa JR, Bejcek BE, McGee JE et al. Genome editing using engineered nu- cleases and their use in genomic screening. Assay Guidance Manual (serial online) 2017 Nov 20 (cited 2021 Mar 8) : (23 screens). Available from: URL: https://www.ncbi.nlm.nih.gov/books/NBK464635/.
  • 39. Jinek M, Chylinski K, Fonfara I et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337(6096):816–21.
  • 40. Strzyz P. CRISPR–Cas9 wins Nobel. Nat Rev Mol Cell Biol 2020;21(12):714.
  • 41. Liu Z, Dong H, Cui Y et al. Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact 2020;19(1):172.
  • 42. Uppada V, Gokara M, Rasineni GK. Diagnosis and therapy with CRISPR ad- vanced CRISPR based tools for point of care diagnostics and early therapies. Gene 2018;656:22–9.
  • 43. Clark DP, Pazdernik NJ, McGehee MR. Genome Defense. In: Clark DP, Pazdernik NJ, McGehee MR, editors. Molecular Biology (Third Edition). London: Academic Press; 2019.p.622-53.
  • 44. Makarova KS, Wolf YI, Alkhnbashi OS et al. An updated evolutionary classifica- tion of CRISPR–Cas systems. Nat Rev Microbiol 2015;13(11):722–36.
  • 45. Makarova KS, Haft DH, Barrangou R et al. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 2011;9(6):467–77.
  • 46. Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adap- tive immunity. Mol Cell 2014;54(2):234–44.
  • 47. Jolany Vangah S, Katalani C, Boone HA et al. CRISPR-Based diagnosis of infec- tious and noninfectious diseases. Biol Proced Online 2020;22(1):22.
  • 48. Foss DV, Hochstrasser ML, Wilson RC. Clinical applications of CRISPR-based genome editing and diagnostics. Transfusion 2019;59(4):1389–99.
  • 49. Gupta D, Bhattacharjee O, Mandal D et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sci 2019;232:116636.
  • 50. Zhang XH, Tee LY, Wang XG et al. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 2015;4(11):e264.
  • 51. Naeem M, Majeed S, Hoque MZ et al. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 2020;9(7):1608.
  • 52. Anzalone AV, Randolph PB, Davis JR et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576(7785):149–57.
  • 53. Cohen J. Prime editing promises to be a cut above CRISPR. Science 2019;366(6464):406.
  • 54. Porto EM, Komor AC, Slaymaker IM et al. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020;19(12):839–59.
  • 55. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020;38(7):824–44.
  • 56. Schene IF, Joore IP, Oka R et al. Prime editing for functional repair in patient-de- rived disease models. Nat Commun 2020;11(1):5352.
  • 57. Smirnikhina SA. Prime editing: making the move to prime time. CRISPR J 2020;3(5):319–21.
  • 58. Janik E, Niemcewicz M, Ceremuga M et al. Various aspects of a gene editing sys- tem-CRISPR-Cas9. Int J Mol Sci 2020 16;21(24):9604.
  • 59. Greely HT. CRISPR’d babies: human germline genome editing in the ‘He Jiankui affair’. J Law Biosci 2019;6(1):111–83.
  • 60. Bosley KS, Botchan M, Bredenoord AL et al. CRISPR germline engineering – the community speaks. Nat Biotechnol 2015;33(5):478-86.
  • 61. Lanphier E, Urnov F, Haecker SE et al. Don’t edit the human germ line. Nature 2015;519(7544):410-1.
  • 62. Khan SH. Genome-editing technologies: concept, pros, and cons of various ge- nome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids 2019;16:326–34.
  • 63. Cong L, Ran FA, Cox D et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339(6121):819–23.
There are 62 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Collection
Authors

Eylül Şenödeyici 0000-0002-4132-1594

Dengiz Koray Şahintürk This is me 0000-0001-9865-0930

Bilge Rana Akbolat This is me 0000-0002-7488-7623

Arzu Dindar This is me 0000-0002-8587-8941

Selin Sefer This is me 0000-0003-1512-8456

Gül Feride Anğay This is me 0000-0002-1870-5776

Selma Demir This is me 0000-0002-0964-5513

Publication Date June 30, 2021
Submission Date April 18, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Şenödeyici, E., Şahintürk, D. K., Akbolat, B. R., Dindar, A., et al. (2021). MAIN GENOME EDITING TOOLS: AN OVERVIEW OF THE LITERATURE, FUTURE APPLICATIONS AND ETHICAL QUESTIONS. Turkish Medical Student Journal, 8(2), 50-57.
AMA Şenödeyici E, Şahintürk DK, Akbolat BR, Dindar A, Sefer S, Anğay GF, Demir S. MAIN GENOME EDITING TOOLS: AN OVERVIEW OF THE LITERATURE, FUTURE APPLICATIONS AND ETHICAL QUESTIONS. TMSJ. June 2021;8(2):50-57.
Chicago Şenödeyici, Eylül, Dengiz Koray Şahintürk, Bilge Rana Akbolat, Arzu Dindar, Selin Sefer, Gül Feride Anğay, and Selma Demir. “MAIN GENOME EDITING TOOLS: AN OVERVIEW OF THE LITERATURE, FUTURE APPLICATIONS AND ETHICAL QUESTIONS”. Turkish Medical Student Journal 8, no. 2 (June 2021): 50-57.
EndNote Şenödeyici E, Şahintürk DK, Akbolat BR, Dindar A, Sefer S, Anğay GF, Demir S (June 1, 2021) MAIN GENOME EDITING TOOLS: AN OVERVIEW OF THE LITERATURE, FUTURE APPLICATIONS AND ETHICAL QUESTIONS. Turkish Medical Student Journal 8 2 50–57.
IEEE E. Şenödeyici, “MAIN GENOME EDITING TOOLS: AN OVERVIEW OF THE LITERATURE, FUTURE APPLICATIONS AND ETHICAL QUESTIONS”, TMSJ, vol. 8, no. 2, pp. 50–57, 2021.
ISNAD Şenödeyici, Eylül et al. “MAIN GENOME EDITING TOOLS: AN OVERVIEW OF THE LITERATURE, FUTURE APPLICATIONS AND ETHICAL QUESTIONS”. Turkish Medical Student Journal 8/2 (June 2021), 50-57.
JAMA Şenödeyici E, Şahintürk DK, Akbolat BR, Dindar A, Sefer S, Anğay GF, Demir S. MAIN GENOME EDITING TOOLS: AN OVERVIEW OF THE LITERATURE, FUTURE APPLICATIONS AND ETHICAL QUESTIONS. TMSJ. 2021;8:50–57.
MLA Şenödeyici, Eylül et al. “MAIN GENOME EDITING TOOLS: AN OVERVIEW OF THE LITERATURE, FUTURE APPLICATIONS AND ETHICAL QUESTIONS”. Turkish Medical Student Journal, vol. 8, no. 2, 2021, pp. 50-57.
Vancouver Şenödeyici E, Şahintürk DK, Akbolat BR, Dindar A, Sefer S, Anğay GF, Demir S. MAIN GENOME EDITING TOOLS: AN OVERVIEW OF THE LITERATURE, FUTURE APPLICATIONS AND ETHICAL QUESTIONS. TMSJ. 2021;8(2):50-7.