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Özet
Amaç: Bir veya daha fazla parçanın kırılma noktalarında 
birleştirildiği parçalı regresyon, istatistiksel bir teknik olarak 
yaygın bir şekilde kullanılmaktadır. Bu çalışmada hem 
simülasyon verisi hem de gerçek veri setleri kullanılarak tek 
değişkenli polinom regresyon analizi ile karesel ve kübik 
parçalı regresyon analizlerinin karşılaştırılması hedeflendi. 
Materyal-Metot: Çalışmanın uygulama basamağında R 
yazılım programı kullanılarak simülasyon uygulaması için 
algoritmalar yazıldı. Polinom ve sürekli parçalı regresyon 
analiz yöntemlerinin karşılaştırılması n=100 birimlik veri 
setleri için 1000 tekrarlı simülasyon ile gerçekleştirildi. 
Ayrıca Türkiye’de 2010 yılındaki tüberküloz vaka sayılarını 
içeren tüberküloz veri seti ile Türkiye’deki 1970-2015 
yılları arasındaki kızamık vaka sayılarını içeren kızamık veri 
setleri kullanılarak oluşturulan polinom ve parçalı regresyon 
modellerinin tahmin performansları; belirtme katsayısı (R2), 
hata kareler ortalaması (HKO), Akaike bilgi kriteri (ABK) ve 
Bayes bilgi kriteri (BBK) değerlerine göre karşılaştırıldı.
Bulgular: Tüm polinom ve parçalı regresyon modellerinin 
R2, HKO, ABK ve BBK değerleri bakımından performansları 
istatistiksel olarak birbirinden farklı bulundu (p<0,001). 
Parçalı regresyon modellerinin R2 değerlerinin polinom 
regresyon modellerine göre daha yüksek; HKO, ABK ve BBK 
değerlerinin ise daha düşük olduğu gözlendi.  Gerçek veri 
setleri ile yapılan uygulamalarda en uygun dönüm noktalarına 
göre oluşturulan tüm parçalı regresyon modellerinin R2 
değerlerinin polinom regresyonlardan daha yüksek; HKO, 
ABK ve BBK değerlerinin ise daha düşük olduğu belirlendi 
Oluşturulan parçalı regresyon modellerinin veri setlerini 
polinom regresyonlara göre daha iyi tahmin ettiği belirlendi.
Sonuç: Sağlık alanında yapılan çalışmaların çoğunda 
polinom regresyon yöntemlerinin tercih edilmesine rağmen 
bu çalışma ile en uygun dönüm noktalı parçalı regresyonlarla 
veri analizinin istatistiksel açıdan üstünlük sağladığı 
uygulamalarla ortaya konmuştur.
Anahtar kelimeler: Parçalı Regresyon, Simülasyon, 
Tüberküloz, Kızamık, Dönüm noktası.

Abstract
Objective: Piecewise regression, which one or more pieces 
are combined in breakpoints, is  widely used as a statistical 
technique. It was aimed to compare piecewise regression 
analyses and polynomial regression analysis using both 
simulated data and real data sets.
Material-Method: In the application step of the study, 
algorithms were created by using R software for simulation 
practice. Polynomial and piecewise regression analysis 
methods were compared using data sets with n=100 units 
and 1000 times running simulation. Additionally, estimation 
performances of piecewise and polynomial regression were 
built by using the data sets which contained in the number 
of tuberculosis cases according to age in 2010 year and the 
number of measles cases from 1970 to 2015 years in Turkey 
were compared according to the coefficient of determination 
(R2), mean square error (MSE), Akaike information criteria 
(AIC) and Bayes information criteria (BIC).
Results: It was found that there was a significant difference 
between all of the polynomial and piecewise regression 
models (p<0.001). R2 values of piecewise regression models 
were higher than polynomial regression models; MSE, AIC 
and BIC values were observed to be lower. According to 
the result of both simulation and real data set applications, 
piecewise regression models which were generated according 
to optimal knots were found to have better estimation 
performance than polynomial regression models according to 
R2, MSE, AIC and BIC criteria. 
Conclusions: This study revealed that data analysis with 
piecewise regressions having optimal knots provided 
superiority statistically, although polynomial regression 
methods are preferred in the field of health studies mostly.
Keywords: Piecewise Regression, Simulation, Tuberculosis, 
Measles, Knot.
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Introduction
Scientific studies in the field of health, polynomial regression 
models are used in addition to the linear regression models 
which are widely used for examining the relationship between 
the dependent and independent variables (1-4). However, if 
the point distribution of the relationship between dependent 
and independent variables shows deviations that cannot be 
expressed by polynomial regression models, the distribution 
of these models is reduced. In such cases, piecewise regression 
models are used (4-6). Examination of point distribution 
with piecewise regressions provides the researcher with 
possibilities to deal with low-level polynomials, to estimate 
for any interval of the independent variable, to obtain more 
flexible curves and to easily model complex distributions that 
cannot be explained by the known models according to the 
optimal knots (7, 8).
Polynomials that form piecewise functions can easily be 
combined in computer programs. Therefore, the use of 
piecewise polynomials is suitable for predicting particularly 
the experimental data or modelled curves (9, 10).
This work aims to compare the performances of quadratic and 
cubic piecewise regression analyses and univariate polynomial 
regression analysis using simulation data. Moreover, 
performances of quadratic, cubic piecewise regression and 
univariate polynomial regression were compared using 
2010 tuberculosis data set and from 1970 to 2015 measles 
data set in Turkey. The performance of the generated models 
evaluated according to the coefficient of determination (R2), 
mean square error (MSE), Akaike information criterion (AIC) 
and Bayesian information criterion (BIC).

Material and Methods
Piecewise Regression 
"Piecewise regression" refers to the examination of point 
distributions of dependent and independent variables divided 
into pieces at specific points called knot (6, 11-13).
It may not always be appropriate to estimate a large number of 
(x,y) data points in a data set in the form of {(xi; yi):  =1,…, n} 
with a single curve. As the number of points increases, 
deviations from the point distribution will also increase and 
estimation power of the generated model will be lower since 
the degree of polynomial representing the relation between 
x and y will increase too (14, 15). The piecewise regression 
approach is recommended for such cases. Piecewise 
regression is based on the principle involving a division of the 
data sets at specified intervals and an method in each interval 
with polynomials of an appropriate degree (4, 11, 16). If the 
knot is determined by the researcher at the beginning of the 
trial, such knots are called “fixed knots”. If it is not previously 
known and is determined by examining the point distribution 
obtained through the research, such knots are called the 
“variable knots” (17-19). The functions formed between 
the knots starting from the first knot are polynomials in the 
d’th degree (20, 21). Determination of location and number 
of a knot is closely related to the shape of the distribution. 
The approximate location and number of knots in piecewise 

regressions can usually be detected by visual inspection (22). 
Visual inspection of point distribution gives essential clues 
to the researcher about the division form to be applied, how 
a function (quadratic or cubic) will be used and how many 
pieces of point distribution will be examined (4, 23).
It is important to note that the areas with sudden directional 
changes are the possible knot regions. Furthermore, the 
function to be used in the division also determine the point 
at which the knot or points will be formed in the point 
distribution (7, 19). 
“+” Functions
The “+” functions are commonly used to create piecewise 
regressions. The regression models can be divided into pieces 
according to the knots determined by the functions “+”. A 
function “+” expressed by (x-t)+, t being the knot, and (x-
t) being the independent variable of piecewise function, is 
defined as follows:

If x is less than or equal to knot point t, then function equals 
to 0. Otherwise, the function is equal to (x-t). Thus, an 
expression given by the function "+" does not affect the part 
of the piecewise regression model before the corresponding 
knot (24-26).
Piecewise Regression Models
It is called to be “continuous piecewise regression” when 
different regions of point distributions show the distributions 
in respect of the same function or different functions, the case 
where functions created before and after any specified knot 
gives the same “yi”  value at this knot (11, 16, 27).
Each part that forms the piecewise regression has a unique 
fixed-term causing discontinuity. The coefficients that impair 
continuity can be removed from the model by applying 
continuity constraints into the piecewise regression model. 
The general form of piecewise regression without any 
restrictions is as follows (25, 26, 28, 29).

In this equation; x represents the value of the independent 
variable, t is the knot value,       is the regression coefficient,  
     is the regression coefficient of the function “+”, k is the 
degree of the independent variable, d is the degree of the 
function “+”, e is the error term, m is the number of knots, 
and n is the sample unit number (25).
The piecewise regression equation given in the general form 
above can also be expressed as:
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This equation is constrained by applying continuity constraints 
and                           the constants can be removed from the 
model. So the model becomes continuous (25, 28, 30).

Simulation Applications
Two different simulation algorithms were performed in 
this study. These algorithms have some differences in the 
data generation phase. The comparison of polynomial and 
continuous piecewise regression analysis methods was 
performed according to R2, MSE, AIC, and BIC values that 
were calculated after the simulation of n=100 with 1000 runs. 
Descriptive statistics were specified as median (25th-75th 
percentiles). The data was analyzed using the base and stats 
packages in R software. 
Second Degree Simulation Application:
Independent variable, one knot and error term were 
randomly derived from x~U(1,100), t~U(40,60), e~U(-15,15) 
distributions, respectively. 
Then the independent variable z = x - t  and the dependent 
variable y=-10+15*x-0.22*x2+15*z+0.07*z2-e were 
generated.
The quadratic regression model was estimated by the least 
square method (LSM) and the R2, MSE, AIC and BIC values 
of this model were calculated.
The LSM method was used to estimate a piecewise regression 
model including two partial pieces in quadratic+quadratic 
structure divided into two according to the knot t, the first 
piece being formed only with the variable x, and the second 
piece being formed with the variables x and z. The R2, MSE, 
AIC and BIC values of the model were calculated.
Third Degree Simulation Application:
Independent variable, two different knots and error term 
were randomly derived from the distributions x~U(1,100), 
t1~U(30,50), t2~U(51,70),  e~U(-4,4), respectively. 
Then the independent variables z1=x-t1, z2=x-t2  and the 
dependent variable y=-10+7*x-0.2*x2+0.0012*x3+5.2*z1-
0.02*z1

2+0.00009*z1
3-2*z2+0.01*z2

2-0.00009*z2
3-e were 

generated.
The cubic regression model was estimated by the LSM 
method and the R2, MSE, AIC and BIC values of this model 
were calculated.
A piecewise regression model with two partial pieces in 
quadratic+cubic structure divided into two according to the 
knot t1, the first part is formed only with the variable x and 
the second part being formed with the variables x and z1, was 
estimated by the LSM method. The R2, MSE, AIC and BIC 
values of the model were calculated.
Knot               and the independent variable z3=x-t3 were 
created to estimate a piecewise regression model with two 
partial pieces in a cubic+cubic structure.

t3 was determined as the knot and a piecewise regression 
model with two partial pieces in a cubic+cubic structure was 
estimated by the LSM method. The first part is formed only 
with the variable x; the second part is built with the variables 
x and z3 in the generated model. The R2, MSE, AIC and BIC 
values of the model were calculated.
A piecewise regression model with two partial pieces in 
cubic+cubic structure divided into two pieces according to 
the knot 3, the first piece being formed only with the variable 
x and the second part being formed with the variables x and 
z3, was estimated by the LSM method. The R2, MSE, AIC and 
BIC values of the model were calculated.
Real Data Applications
Tuberculosis Data Set: 
The 2010 tuberculosis data set used in the study was retrieved 
from the study called “The Battle of Tuberculosis in Turkey 
2012 Report” by the Turkish Public Health Institution (https://
hsgm.saglik.gov.tr). The data set consists of 96 units and 
contains total tuberculosis cases according to age values 
ranging from 0-99. In order to create regression models, the 
total number of cases was taken as the dependent variable 
(y); age variable was taken as an independent variable  
(x) from this data set. 
Measles Data Set:
The measles data set used in the study was retrieved from 
the webpage on “The Statistical Data of the Department of 
Vaccine-Preventable Diseases” on the website of the Turkish 
Public Health Institution (https://hsgm.saglik.gov.tr). The data 
set consists of 46 units and contains measles cases ranging 
from 1970 to 2015. In order to create regression models, 
the number of cases variable (y) was taken as the dependent 
variable and time variable (x) was taken as an independent 
variable from this data set.

Results
Simulation Results
In the study conducted with the data derived from the second 
degree, it was observed that none of the R2, MSE, AIC and BIC 
values were normally distributed according to the quadratic 
regression model. According to the piecewise regression 
model in quadratic+quadratic structure, only R2 value was 
not normally distributed; MSE, AIC and BIC values were 
found to be normally distributed. For this reason, the Mann-
Whitney U test was used to compare differences between 
formed models in terms of the R2, MSE, AIC and BIC values 
in simulation with second-degree derived data. The models 
were found statistically different with respect to these values 
(p<0.001). As shown in Table 1, the piecewise regression 
model in quadratic+quadratic structure has higher R2 value 
and lower MSE, AIC and BIC values. In the study conducted 
with the data derived from the third degree, it was observed 
that R2 and MSE values were not normally distributed and 
AIC and BIC values were normally distributed. According 
to the piecewise regression model in quadratic+cubic 
structure, none of the R2, MSE, AIC and BIC values were 
normally distributed. According to the cubic+cubic structure 
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in piecewise regression model, it was determined that only 
MSE value was not normally distributed, R2, AIC and 
BIC values were normally distributed. For this reason, the 
Kruskal-Wallis test was used to compare differences between 
formed models in terms of the R2, MSE, AIC and BIC values 
in simulation with third-degree derived data. The models 
were found statistically different with respect to these values. 
(p<0.001). In addition, as a result of multiple comparisons, it 
was concluded that all models are statistically different from 
each other with respect to R2, MSE, AIC and BIC values 
(p<0.001 for comparison of all regression models). Piecewise 
regression models were found to have higher values of R2 
and lower values of MSE, AIC and BIC. The highest R2 
value was found in quadratic+cubic regression model, and 
the lowest values of MSE, AIC and BIC were also found in 
quadratic+cubic regression model (Table 2).

Tuberculosis Data Set Application Results
The quadratic and cubic models were examined in polynomial 
and piecewise regression as the distribution of the number of 
cases according to age was more appropriate for the cubic 
structure in the tuberculosis data set.
Model Estimation By Polynomial Regressions:
Created quadratic and cubic regression equations to estimate 
the age-related tuberculosis cases were estimated by the LSM 
method.
According to the results, quadratic and cubic regression 
models were found statistically significant (For quadratic 
model: F=101; df1=2, df2=93; p<0.001; for cubic model: 
F=128; df1=3, df2=92; p<0.001). Additionally, all coefficients 
of both models were found statistically significant (Table 3).
Model Estimation By Piecewise Regression:
The distribution graph of the number of tuberculosis cases 
varying by age was given in Figure 1. When Figure 1 is 
examined, it is noticed that the number of cases of tuberculosis 
increased between the age of 6 and 21, the number of cases 
started to decrease after the age of 21, there was a steady 
course between ages 33-57 and a quick decline after age 57. 
Therefore, it was decided to model with two knots and three 
partial pieces functions. Ages 21 and 33 were determined as 
the best knots for applying piecewise regression as a result 
of experiments in regions where the number of cases of 
tuberculosis had jumps or deviated direction of distribution.
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Criteria
Model

p
Quadratic Quadratic+Quadratic

R2 0.82 (0.65-0.93) 0.98 (0.97 - 0.99) <0.001
MSE 876.32 (760.00-1050.96) 71.30 (67.02 - 76.45) <0.001
AIC 969.36 (955.12 - 987.54) 722.48 (716.30 - 729.45) <0.001
BIC 979.78 (965.54-997.96) 738.11 (731.93-745.08) <0.001

Table 1. Descriptive statistics and comparison results of R2, MSE, 
AIC and BIC values of quadratic and piecewise regression models 
(quadratic+quadratic)

Criteria
Model

p
Cubic Quadratic

+Cubic Cubic+Cubic

 R2  0.77
(0.69 - 0.85) 

 0.97
(0.96 - 0.98) 

 0.96
(0.95 - 0.97)  <0.001 

 MSE  60.14
(52.24 - 70.59) 

 7.68
(6.88 - 8.72) 

 9.74
(8.53 - 11.4)  <0.001 

 AIC  703.46
(689.37 - 719.47) 

 501.62
(490.59 - 514.39) 

 527.44
(514.18 - 543.15)  <0.001 

 BIC  716.47
(702.40 - 732.50) 

 519.85
(508.83 - 532.63) 

 548.28
(535.02 - 564.00)  <0.001 

Table 2. Descriptive statistics and comparison results of R2, MSE, 
AIC and BIC values of cubic regression model and piecewise 
regression models (quadratic+cubic and cubic+cubic)

Variable

Model

Quadratic Cubic

b sb t p b sb t p

Constant 60.42 20.6 2.93 0.004 -44.39 21.2 -2.09 0.04
x 10.53 1 10.51 <0.001 24.13 1.94 12.42 <0.001
x2 -0.13 0.01 -12.58 <0.001 -0.49 0.05 -10.24 <0.001
x3 0.003 0.0003 7.66 <0.001

Table 3. Quadratic and cubic regression parameter estimates

Figure 1. Distribution of tuberculosis cases according to age and 
candidate knot regions
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The following piecewise function structure was created 
according to the determined knots.

According to the function above, it is the first piece between 
0-21 years old, the second piece between 21-33 years old 
and the third piece between 33-99 years old. A piecewise 
regression model with restricted fixed coefficients was formed 
by the “+” functions based on the specified knot as follows:

The regression equation was estimated by the LSM method. 
Piecewise regression model was found statistically significant 
according to the obtained results (F=340; df1=6, df2=89; 
p<0.001). In addition, all coefficients of the model were 
found statistically significant (Table 4).
Graphical representation of formed models was given in 
Figure 2. Marked points are knots of the piecewise regression.

Comparison Of Models For Tuberculosis Data Set:
The comparison results according to the calculated model 
selection criteria were given in Table 5.
According to the results, the piecewise regression model with 
quadratic+quadratic+quadratic structure formed by three     
partial pieces is more successful than quadratic and cubic 
regression models in estimating the number of age-related 
tuberculosis cases (Table 5 and Figure 2).
Measles Data Set Application Results
Because the distribution of the number time-varying measles 
cases in the measles data set is more appropriate for the 
cubic structure, cubic models were examined in polynomial 
regressions, and quadratic models were examined in piecewise 
regressions.
Model Estimation By Polynomial Regression:
Created regression equation for estimating the distribution 
of time-varying measles cases was estimated by the LSM 
method. A quadratic regression model was statistically 
significant according to the obtained results (F=13.81; df1=3, 
df2=42; p=0.002). In addition, all coefficients of the model 
were statistically significant. (Table 6).

Model Estimation By Piecewise Regressions:
Distribution of measles cases from 1970 to 2015 was given 
in Figure 3. The knot was determined according to jump or 
sudden change points. As shown in Figure 3, the number of 
cases of measles is fluctuating in some regions. So each of the 
points in these regions is a candidate knot. For this reason, it 
was decided to model with one knot and piecewise function 
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Variable b sb t p

Constant 69.19 14.81 4.67 <0.001
x -15.80 3.18 -4.97 <0.001
x2 1.52 0.14 10.71 <0.001

(x-21)+ -45.35 7.37 -6.15 <0.001
(x-21)+

2 -2.65 0.37 -7.27 <0.001
(x-33)+ 23.29 4.95 4.71 <0.001
(x-33)+

2 1.08 0.39 2.75 0.007

Table 4. Parameter estimates in piecewise regression with 
quadratic+quadratic+quadratic structure

Model R2 MSE AIC BIC
Quadratic 0.68 4569.95 1089.45 1099.71
Cubic 0.81 2791.50 1044.13 1056.95
Quadratic+
Quadratic+Quadratic 0.96 604.59 903.37 923.79

Table 5. The R2, MSE, AIC and BIC values of models

Variable b sb t p

Constant 16 880 000 000 6 048 000 000 2.79 0.008
x -25 420 000 9 107 000 -2.79 0.008
x2 12 760 4571 2.79 0.008
x3 -2.14 0.77 -2.79 0.008

Table 6. Parameter estimation for cubic regression

Figure 2. Representation of estimated and observed values by 
regression models of the number of age-related tuberculosis cases

Figure 3. Point distribution of measles cases between 1970-2015 
years
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with two pieces and year 1993 was determined to be the best 
knot for applying piecewise regression as a result of the trials.
According to the determined knot, the following piecewise 
function structure was formed:

According to the function above, it is the first piece between 
the 1970-1993 years; the second piece is between the 1993-
2015 years. A piecewise regression model with restricted 
fixed coefficients were created by “+” functions based on the 
specified knot as follows:

The regression equation was estimated by the LSM method. 
Piecewise regression model was found statistically significant 
according to the obtained results (F=18.63; df1=4, df2=41; 
p<0.001). In addition, all coefficients of the model were found 
as statistically significant (Table 7). Graphical representation 
of formed models was given in Figure 4. Marked points are 
knots of the piecewise regression.

Comparison Of Regression Models For Measles Data Set:
The comparison results according to the calculated model 
selection criteria were given in Table 8.

According to the results, the piecewise regression model 
with quadratic+quadratic structure that formed by two partial 
pieces is more successful than cubic regression model about 
estimating the number of time-varying measles cases (Table 
8 and Figure 4).

Discussion
Although piecewise regressions are used in many areas, their 
use in the field of health is not common yet. Polynomial 
regressions were not as popular as piecewise regressions 
because they provided more straightforward analysis than 
piecewise regressions and were included more often in 
statistical package programs. This led researchers to use 
polynomial regressions. However, the polynomials that form 
piecewise regressions can easily be combined in computer 
programs and provide the researcher with the required ease 
for analysis.
In reviewing the literature, some studies using piecewise 
regressions are remarkable. Hurley et al. conducted a 
simulation work with 2000 runs with five data sets of different 
structures and formed in order to compare the performances 
of the piecewise regressions and simple regressions using 
one dependent variable and one independent variable derived 
from the distribution of x~U(1,100) consisting of 201 units 
(31). Three of the data sets had a quadratic structure, and 
the remaining two data sets had a cubic structure. They 
constructed six regression models for each data structure: linear 
regression, polynomial regression (cubic and quadratic), and 
piecewise regression (linear, quadratic and cubic). For each 
piecewise regression model, they defined the points x=32 and 
x=68 points to be fixed knots, and formed linear, polynomial 
and piecewise regression models according to the LSM 
method conforming to the data structure in order to estimate 
the data sets they derived.  They reported that piecewise 
regression models had higher R2 values and lower MSE 
values. Mulla reported that the use of piecewise regression 
modeling technique would provide significant benefit to the 
researcher in clinical trials, especially in studies on the dose 
and response of the drug given to the patient (32). For the 
said study, it was used records from 117 patients who were 
given serum albumin ranging from 1.1 to 5.1 g/100 mL. it 
was used the cubic piecewise regression model and a classical 
model, both created with the LSM method, and identified a 
knot determined by visual inspection for the cubic piecewise 
regression model. According to the results, it was reported 
that the cubic piecewise regression model predicted the whole 
of the blood concentration values of 60 patients with real-like 
accuracy; whereas the classical model only predicted the 
values of 25 patients with real-like accuracy, and the results 
of the remaining 35 patients contained considerably more 
significant differences than the real concentration values 
which gathered around the knot determined for piecewise 
regression. In our study, polynomial and piecewise regression 
models were created by using simulation data and real data 
sets, and the performances of these models were compared. In 
the simulation application, fixed knots determined according 
to the breakpoints created in the data production phase were 

Variable b sb t p

Constant 680 600 000 135 600 000 5.02 <0.001
x  -686 300 136 800 -5.02 <0.001
x2 173 34.52 5.01 <0.001

(x-1993)+ -5757 1431 -4.02 <0.001
(x-1993)+

2 -125 40.56 -3.08 0.004

Table 7. Piecewise regression with quadratic+quadratic structure 
parameter estimates

Model R2 MSE AIC BIC
Cubic 0.50 82 550 036 979.07 988.22
Quadratic+Quadratic 0.65 58 190 618 964.99 975.96

Table 8. R2, MSE, AIC and BIC values of generated regression 
models

Figure 4. Estimated and observed values of measles cases between 
1970-2015 by the regression models
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used. The number of knots for all piecewise regression models 
were set to one. Changeable knots were used in applications 
incluiding real data sets. Knot numbers were determined to 
be two in the study with the tuberculosis data set and one 
in the study with the measles data set.  In determining the 
changeable knots, first the number of knots to be used was 
decided after visual inspection, and the candidate knot areas 
were identified. After that, the points that provided the highest 
performance after trials were chosen as knots. If none of the 
points tested as knots in an area designated as the candidate 
area had a significant contribution to the model’s estimation 
strength, then no selection of knots was made from that area. 
According to the results of the applications performed by 
using both the simulation datasets and real datasets, it was 
seen that the performances of the piecewise regressions are 
better than polynomial regressions with higher R2 value and 
lower MSE, AIC, BIC values. 
Determination of appropriate knots is crucial for the 
estimations with high performance. Parkhurst et al. used 
regression models with both fixed and variable knots (33). 
They found that all the variable knot models have higher 
prediction power than the fixed knot models in the same 
structure. Seber and Wild and Eubank found that the use of 
unnecessarily high-degree polynomials for point intervals 
that are formed according to the most appropriate knots 
didn’t lead to a significant increase in R2, but also caused 
an excess of parameters and loss of degree of freedom (4, 
18). Wold pointed out some details about the determination 
of the number and location of knots and reported that each 
interval forming a piecewise regression must contain at 
least 4-5 observation points and thus the number of knots 
should be chosen as few as possible (19). Although the point 
distribution of the measles data set used in our study is more 
appropriate for the cubic structure, it is predicted by excellent 
performance through the use of the piecewise regression 
model with quadratic+quadratic structure formed according 
to optimal knot. Working with low-degree polynomials is 
desirable in terms of providing the process if it doesn’t lead to 
the need for an increase in the number of knots. In our study, it 
was observed that the position of the knot is closely related to 
the shape of the distribution and optimal degree polynomials 
were used for sub-intervals formed by using as few knots as 
possible. Also, it has been found that the contribution of the 
model to the performance is close to each other if any point in 
the candidate knot determined by visual inspection is selected 
as a knot. Firstly the number of knots should be determined, 
and then the candidate areas to select the knots should be 
decided. Afterwards, the position of the knots should be 
identified and the knots providing the best prediction strength 
should be selected by trials from candidate regions.

Conclusion
Although researches in the field of health mostly prefer 
polynomial regression methods, this study showed through 
applications that data analysis by piecewise regressions 
with optimal knot provides statistical superiority. The future 
studies should consider the piecewise regression method as 

a powerful alternative for all data sets where the relationship 
between the dependent and independent variables would 
be examined. Furthermore, the use of piecewise regression 
should be extended for estimations with higher performance 
in health-related researches.

Presented as an oral presantation at the "4th International 
Researchers, Statisticians and Young Statisticians Congress 
(IRSYSC)" on April 28-30, 2018.

References
1. Freedman DA. Statistical models: theory and practice. 
Cambridge University Press. New York, 2009; 41-60.
2. Freund RJ, Wilson WJ, Sa P. Regression analysis. Academic 
Press. 2nd ed. New York, 2006; 270-95.
3. Hartley HO, Booker A. Nonlinear least-squares estimation. 
The Annals of mathematical statistics 1965; 36(2): 638-50.
4. Seber G, Wild C. Nonlinear regression. Hoboken: John 
Wiley & Sons Google Scholar, 2003, 325-65.
5. Park SH. Experimental designs for fitting segmented 
polynomial regression models. Technometrics 1978; 20(2): 
151-4.
6. Wainer H. Piecewise regression: A simplified procedure. 
British Journal of Mathematical and Statistical Psychology 
1971; 24(1): 83-92.
7. Eubank R. Approximate regression models and splines. 
Communications in Statistics-Theory and Methods 1984; 
13(4): 433-84.
8. Gallant AR, Fuller WA. Fitting segmented polynomial 
regression models whose join points have to be estimated. 
Journal of the American Statistical Association 1973; 
68(341): 144-7.
9. Berberoglu B, Berberoglu CN. Modeling the Structural 
Shifts in Real Exchange Rate with Cubic Spline Regression 
(CSR). Turkey 1987-2008. International Journal of Business 
and Social Science 2011; 2(17).
10. De Boor C, Rice JR. Least squares cubic spline 
approximation, II-variable knots. West Lafayette, Purdue 
University, 1968; 4-13.
11. Poirier DJ. Piecewise regression using cubic splines. 
Journal of the American Statistical Association 1973; 
68(343): 515-24.
12. Porth RW. Application of least square cubic splines to 
the analysis of edges [The Master of Science Degree Thesis]. 
New York , Rochester Institute of Technology, 1984; 23-51.
13. Schwetlick H, Schütze T. Least squares approximation by 
splines with free knots. BIT Numerical mathematics 1995; 
35(3): 361-84.
14. Draper NR, Smith H. Applied regression analysis. John 
Wiley & Sons. 3rd ed. Vol 326. New York, 2014; 158-75.
15. Harrell FE, Lee KL, Califf RM, Pryor DB, Rosati RA. 
Regression modelling strategies for improved prognostic 
prediction. Statistics in medicine 1984; 3(2): 143-52.



151

Comparison of piecewise and polynomial Varol et. al.

16. Chan S-h. Polynomial spline regression with unknown 
knots and AR (1) errors [Doctoral Thesis]. Columbus, The 
Ohio State University, 1989; 22-38.
17. De Boor C, Rice JR. Least squares cubic spline 
approximation I-Fixed knots. West Lafayette, Purdue 
University, 1968; 2-19.
18. Eubank RL. Nonparametric regression and spline 
smoothing. CRC press. 2nd ed. Vol 157. New York, 1999; 
227-308.
19. Wold S. Spline functions in data analysis. Technometrics 
1974; 16(1): 1-11.
20. Hawkins DM. On the choice of segments in piecewise 
approximation. IMA Journal of Applied Mathematics 1972; 
9(2): 250-6.
21. Ruppert D. Selecting the number of knots for penalized 
splines. Journal of computational and graphical statistics 
2002; 11(4): 735-57.
22. Agarwal GG, Studden W. An algorithm for selection of 
design and knots in the response curve estimation by spline 
functions. West Lafayette, Purdue University Department of 
Statistics, 1978; 78-85.
23. Marsh LC, Cormier DR. Spline regression models. Sage. 
London, 2001; 7-58.
24. Powell M. The local dependence of least squares cubic 
splines. SIAM Journal on Numerical Analysis 1969; 6(3): 
398-413.

25. Smith PL. Splines as a useful and convenient statistical 
tool. The American Statistician 1979; 33(2): 57-62.
26. Wegman EJ, Wright IW. Splines in statistics. Journal of 
the American Statistical Association 1983; 78(382): 351-65.
27. Genç A, Oktay E, Alkan Ö. İhracatın İthalatı Karşılama 
Oranlarının Parçalı Regresyonlarla Modellenmesi. Atatürk 
Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 2012; 16(1): 
497-511.
28. Markov D. Information content in stock market technical 
patterns: A spline regression approach [Doctoral Thesis]. 
South Bend, University of Notre Dame, 2003; 58-72.
29. Marsh LC. Estimating the number and location of knots 
in spline regressions. Journal of Applied Business Research 
1986; 2(2): 60-70.
30. Studden WJ, VanArman D. Admissible designs for 
polynomial spline regression. The Annals of Mathematical 
Statistics 1969; 40(5): 1557-69.
31. Hurley D, Hussey J, McKeown R, Addy C, editors. An 
evaluation of splines in linear regression. The 132nd Annual 
Meeting; 2004 Nov 6-10; Washington.
32. Mulla Z. Spline regression in clinical research. West 
indian medical journal 2007; 56(1): 77-9.
33. Parkhurst A, Spiers D, Hahn G. Spline models for 
estimating heat stress thresholds in cattle. Conference on 
Applied Statistics in Agriculture: 14th Annual Conference 
Proceedings. 2002, 137-48; New York.


