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Abstract
In this study, a new testing procedure is proposed to compare two linear regression models
based on a computational approach test when the variances are not assumed equal. This
method is based on restricted maximum likelihood estimators and some simple compu-
tational steps. To assess performance of the proposed test, it was compared with some
existing tests in terms of power and type I error rate of the test. The simulation study
reveals that the proposed test is a better alternative than some existing tests in most
cases considered. Besides, an illustration of the proposed test was given by using a sample
dataset.
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1. Introduction
In many statistical applications, one of the most popular problems is the equality of

the parameters of several independent populations or models fitted on these populations.
There are many studies on this topic such as comparison of proportions, means, variance,
stationary processes, and regression models, some of which are [14,20–22,27].

Regression models are widely applied to the measurement of economic relationships in
econometrics where data are usually collected over a period. For this reason, it may be
desirable to reveal whether the same relationship remains stable or not in different periods.
For example, economic relations may be examined during pre-world war II and post-world
war II to find out if they remain the same or not. Sometimes models developed in one
period may lose their effectiveness as conditions change. The regression model, which is
established before the economic crisis, cannot reflect the conditions after the economic
crisis. Thus, a regression model before the economic crisis can change over time and can
no longer be valid. Thus, it should be known whether it remains the same or not.
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Regression models are also applied in many fields, such as medical studies, sport
branches, etc. Researchers in medical studies may want to determine whether there is
a significant difference between the regression models based on the effect of smoking on
life expectancy for male and female populations. This difference can emerge by testing
the equality of two linear regression models using statistical analysis.

Chow [5] proposed a test statistic called classical F test to test the equality of two linear
regression models under the assumption of homogeneity of error variances. However, this
assumption may unlikely be satisfied in many real-life problems. If the variances are not
equal, the type I error probability of Chow test is negatively affected and gets higher
than its nominal level. Consequently, testing the equality of regression models by using
Chow test under heteroscedasticity may give quite inaccurate results. For this reason,
when the assumption of homogeneity is not valid, several modifications of Chow test and
new testing methods have been proposed in the literature. Toyoda [33] investigated the
accuracy of the Chow test under heteroscedasticity and proposed a new test by altering
the rejection region of the Chow test. Jayatissa [17] established a test for testing the
equality of two linear regression models under heteroscedasticity. Conerly and Mansfield
[6] suggested an approximate test by modifying the Chow statistic. Watt [34] proposed
another alternative test called the Wald test and compared it numerically with Jayatissas
test. He found out that the Wald test was powerful but had unreliable size for small
samples. Schmidt and Sickles [29] examined Toyoda’s approximation and found that the
type I error rates of this approximation were not close to the nominal level especially
when the two sample sizes and the two variances were very different. One of the most
widely used tests, called weighted F test, was proposed by Goldfeld and Quandt [12],
Kadiyala and Gupta [18], and Gupta [13]. However, this test does not work well for small
samples. Ali and Silver [1] proposed two approximate tests to compare regression models
based on usual F test and likelihood ratio test for the unequal variance case. Thursby
[31] compared several exact and approximate tests for the equality of two linear regression
models under heteroscedasticity. Moreno et al. [23] proposed a Bayesian solution to the
problem of testing the equality of two linear regression models when the error variances
were unknown and arbitrary. Oberhelman and Kadiyala [24] made some modifications of
the standard F-test for large samples commonly used to test the equality of two linear
regression models when the variances of the regression errors are not equal. Recently, there
are many studies for testing the equality of regression models in several heteroscedasticity
normal regression models [28,32,35].

The bootstrap procedure can be used to achieve higher-order- accurate inference in
hypothesis testing problem. Third-order accuracy is obtained by inference procedures
based on estimation of the sampling distribution of an appropriate statistic under the
model in which the nuisance parameters are defined as their restricted maximum likelihood
values for the given value of the interest parameter, see [8]. The Bootstrap procedure can
also be applied to test the equality of two linear regression models. Tian et al. [32]
offered a testing procedure based on Parametric Bootstrap (PB) approach to test the
equality of regression models in several heteroscedasticity normal regression models. The
Computational Approach Test (CAT) is an alternative PB method and based on restricted
maximum likelihood estimation under null hypothesis. One of the advantages of this
procedure is that it does not require the knowledge of any sampling distribution.

The aim of this paper is to obtain a procedure based on the CAT method to test the
equality of two linear regression models under heteroscedasticity. The CAT method was
firstly introduced by [26]. The CAT offers a proper solution especially when the type I
error probability of traditional approaches is not close the nominal level. As mentioned
in the references given above, type I error probabilities of most of the traditional tests
are not close to the nominal level in many cases. For this reason, the CAT method can
be very useful in this problem to adjust the type I error probability, especially in small
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sample sizes. Some studies related to the CAT are available in the literature. Pal et
al. [26] applied the CAT to Gamma and Weibull distributions for hypothesis testing and
interval estimations. Chang and Pal [3] also used the CAT for testing the equality of two
normal population means under heteroscedasticity. For Poisson and Gamma models, a
testing procedure based on the CAT was given by [2, 4]. To test the equality of normal
means under heteroscedasticity, a new testing procedure using the CAT was given by
[9]. In another study, Gökpınar et al. [10] also proposed the CAT for the equality of
several inverse Gaussian means under heterogeneity of scale parameters. In addition,
Gökpınar and Gökpınar [11] used the CAT to test the equality of several log normal
means. Since the CAT procedure is a good alternative for various testing procedures in
these studies, the CAT method was applied to the equality of the two regression models
under heteroscedasticity. Although it is easy to know the distribution of test statistic for
the equality of two linear regression models under the assumption of homogeneity of error
variances, in many real problems, this assumption is not satisfied. For this reason, in this
study, we focus on a test statistic for the equality of two linear regression models when this
assumption is not satisfied. We propose a test statistic based on CAT approach. This test
has several advantageous especially for small sample size since the p-value of this proposed
test statistic is obtained by CAT approach.

The rest of this study was organized as follows. In Section 2, the Chow test, Toyoda test,
Wald test, weighted F test, and PB test were briefly introduced. In Section 3, the concept
of the CAT procedure and a test based on this procedure to compare two linear regression
models when the variances are not assumed equal was given. In Section 4, a simulation
study was presented to assess the type I error rates and powers of the proposed test and
the tests mentioned above. Furthermore, a numerical example was given in Section 5 and
concluding remarks were summarized in Section 6.

2. Test statistics
In this section, some testing methods were given to test the equality of the two linear

regression models under heteroscedasticity. Let two independent regression models with
size n1 and n2 be as follows, respectively.

Yi = Xiβi + εi, i = 1, 2 (2.1)
Here, Yi is a ni × 1 vector of observations, Xi is a known ni × p design matrix of rank p,
βi is a p × 1 vector of parameters and ϵi is a ni × 1 vector of error terms.

Error terms ϵi (i = 1, 2) are distributed as normal with zero means and σ2
i (i = 1, 2),

which are arbitrary. To test the equality of the parameter vectors, the following hypotheses
were given as

H0 : β1 = β2 H1 : β1 ̸= β2. (2.2)
Under H0, the following function can be written as

Y =
(

Y1
Y2

)
=
(

X1
X2

)
β +

(
ε1
ε2

)
= Xβ + ε, (2.3)

where β1 = β2 = β, ϵ ∼ (0,
∑

),
∑

=
(

σ2
1In1 0
0 σ2

2In2

)
.

Residual sum of the squares of the model which was given in Eq.2.3 can be defined as
follows:

e′e = Y ′
[
I − X

(
X ′X

)−1
X ′
]

Y

= ε′
[
I − X

(
X ′X

)−1
X ′
]

ε

= ε′ [I − PX ] ε,
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where PX = X (X ′X)−1 X ′ is a hat matrix. Under H1, the residual sum of the squares
can also be defined as follows:

e′
iei = Y ′

i

[
I − Xi

(
X ′

iXi
)−1

X ′
i

]
Yi = Y ′

i [I − PXi ] Yi, i = 1, 2

where PXi = Xi (X ′
iXi)−1 X ′

i, i = 1, 2 are hat matrices for each model. Unrestricted
residual sum of the squares can be obtained as follows:

e′
1e1 + e′

2e2 = Y ′
1 [I − PX1 ] Y1 + Y ′

2 [I − PX2 ] Y2 = Y ′ [I − PX∗ ] Y,

where X∗ =
(

X1 0
0 X2

)
and PX∗ =

(
PX1 0

0 PX2

)
. Since [I − PX∗ ] X∗ = 0 unrestricted

residual sum of the squares can be written as
e′

1e1 + e′
2e2 = ε′ [I − PX∗ ] ε.

In the rest of this section, the most widely used test statistics for this problem are pre-
sented.

2.1. Chow test
To test the equality of two linear regression models under homogeneity of error variances,

the Chow test statistic can be obtained as follows:

F =
[e′e − e′

1e1 − e′
2e2]/p

[e′
1e1 + e′

2e2]/(n1 + n2 − 2p)
=

ε′ [PX∗ − PX ] ε/p

ε′ [1 − P X∗ ] ε/(n1 + n2 − 2p)
(2.4)

The test statistic given in Eq.2.4 has F distribution with degrees of freedom p and
(n1 + n2 − 2p) respectively when σ2

1 = σ2
2 under H0 [5].

Toyoda [33] showed that the Chow test is well behaved even under heteroscedasticity
as long as at least one of the two sample sizes is very large. However, for two small
sample sizes, the type I error rates of this test is affected considerably from even moderate
heteroscedasticity.

2.2. Toyoda test
Toyoda test was obtained using Satterhwaite approximation as follows:

F ∗ =
[e′e − (e′

1e1 + e′
2e2)]/p

(e′
1e1 + e′

2e2)/f2
=

ε′ [PX∗ − PX ] ε/p

ε′ [1 − P X∗ ] ε/(n1 + n2 − 2p)
, (2.5)

where f2 = [(n1−p)σ̂2
1+(n2−p)σ̂2

2]2

(n1−p)σ̂4
1+(n2−p)σ̂4

2
. F ∗ statistic is distributed as F with degrees of freedom

p and f2 [33]. Schmidt and Sickles [29] found out that Toyodas approximation has a
reasonable accuracy only when the two variances are of the same order of magnitude and
the sample sizes are also of the same order of magnitude.

2.3. Wald test
The Wald test statistic was initially suggested by [17, 34]. This statistic is defined as

follows:

W =
(
β̂1 − β̂2

)′ (
σ̂2

1
(
X ′

1X1
)−1 + σ̂2

2
(
X ′

2X2
)−1

)−1 (
β̂1 − β̂2

)
, (2.6)

where β̂i = (X ′
iXi)−1 X ′

iYi and σ̂2
i = (Yi−Xiβ̂i)′(Yi−Xiβ̂i)

(ni−p) are least squares estimators of βi

and σ2
i (i = 1, 2), respectively. The Wald test statistic is approximately distributed as

χ2
p. Watt [34] compared Jayatissa [17]’s test numerically with the Wald test and found
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out that the Wald test was powerful for large samples but has unreliable size for small
samples. This result was confirmed both theoretically and numerically by [16].

2.4. Weighted F test
Weighted F test is a modification of the Wald test and can be given as follows:

Fw = W

p
(2.7)

This test statistic is distributed as F with degrees of freedom p and n1 + n2 − 2p [13].

2.5. Parametric bootstrap test
Tian et al. [32] provided the PB method for testing Eq. 2.2. In this paper, the algorithm

of this method was given for only two groups.
Step 1: Let S2

i = σ̂2
i and the observed value t of T given below is calculated as

T =
2∑

i=1
S−2

i

(
β̂i − β̂

)′ (
X ′

iXi
) (

β̂i − β̂
)

=
2∑

i=1
S−2

i β̂i
′ (

X ′
iXi

)
β̂i−β̂′

( 2∑
i=1

S−2
i

(
X ′

iXi
))

β̂

=
2∑

i=1
S−2

i Xiβ̂2
i −

2∑
i=1

S−2
i Xiβ̂2.

(2.8)

Step 2: Independent pseudo numbers are generated from Zi = (Zi1, . . . , Zip) ∼ MN (0, Ip)
and Ui ∼ χ2

(ni−p), i = 1, 2.

Step 3: TP B value is calculated as follows:

TP B =
2∑

i=1
s−2Z ′

iZi

−
( 2∑

i=1

(ni − p)
siUi

(
X ′

iXi
)1/2

Zi

)′( 2∑
i=1

(ni − p)
s2

i Ui

(
X ′

iXi
))−1( 2∑

i=1

(ni − p)
siUi

(
X ′

iXi
)1/2

Zi

)

Step 4: Step 2-3 are repeated many times, say m, and estimated p-value are calculated as
follows:

p̂ =
m∑

j=1

(
T j

P B > t
)

m

For a given level α, the PB test rejects the null hypothesis when the p̂ is less than α.

3. The computational approach test
To understand the CAT better, we first presented the general framework of this method.

Then, we presented the newly proposed testing method based on the CAT to test the
equality of two linear regression models under heteroscedasticity.

Let U1, U2, . . . , Un be a random sample having a probability density function f (u/θ),
where the functional form of f is assumed to be known and θ =

(
θ(1), θ(2)

)
is an unknown

vector in parameter space Θ. θ(1) and θ(2) are the parameter of interest and nuisance
parameter, respectively. The problem of interest is to test H ′

0 : θ(1) = θ
(1)
0 versus a

suitable alternative. To test H ′
0 : θ(1) = θ

(1)
0 against H ′

1, H ′
0 was first expressed as
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H
′∗
0 : η

(
θ(1), θ

(1)
0

)
= 0 against H

′∗
1 , where η is a scalar valued function. The general

methodology of the CAT for testing H
′∗
0 : η

(
θ(1), θ

(1)
0

)
= 0 against a suitable alternative

at a desired level α was given through the following steps [26].
(1) Obtain maximum likelihood estimations (MLEs) of the parameters θ(1) and θ(2).
(2) Obtain a suitable η

(
θ(1), θ

(1)
0

)
and the MLEs of η, η̂ = η̂

(
θ̂(1), θ

(1)
0

)
can be used

as a test statistic.
(3) Under Ho, find the MLEs of θ(2) parameter, which is denoted by θ̃(2).
(4) Generate artificial sample U1, U2, . . . , Un from f (u/θ

(1)
0 , θ̃(2)) arge number of times,

say m times. For each of these replicated samples, recalculate the MLE η, η̂(j)

where j = 1, . . . , m.
(5) Estimate the p-value as p̂ =

∑m
j=1

(η̂(j)>η̂)
m . In the case of p̂ < α, H0 is rejected.

There are two important points to obtain this algorithm; the first of which is to obtain
a suitable η and the second one is to obtain RMLEs of the parameters under H0. Accord-
ingly, before we carry out the CAT to test the equality of two linear regression models
under heteroscedasticity, we first need to find the RMLEs of the model parameters as
given in Theorem 3.1.

Theorem 3.1. The RMLEs of the model parameters β, σ2
1 and σ2

2 were given as follows:

β̃ =
[(
∑n1

i=1 X1iX
′
1i)

σ̃2
1

+ (
∑n2

i=1 X2iX
′
2i)

σ̃2
2

]−1 (∑n1
i=1 Y1iX

′
1i

σ̃2
1

+
∑n2

i=1 Y2iX
′
2i

σ̃2
2

)

σ̃2
1 = 1

n1

[
n1∑
i=1

(
Y1i − X ′

1iβ̃
)2
]

σ̃2
2 = 1

n2

[
n2∑
i=1

(
Y2i − X ′

2iβ̃
)2
]

Proof. The restricted log-likelihood function under H0 can be obtained as follows:

ln (L) = −n1 + n2
2

ln (2π) − n1
2

ln
(
σ2

1

)
− n2

2
ln
(
σ2

2

)
− 1

2σ2
1

[
n1∑
i=1

Y 2
1i − 2β

n1∑
i=1

Y1iX
′
1i + β′

(
n1∑
i=1

X1iX
′
1i

)
β

]

− 1
2σ2

2

[
n2∑
i=1

Y 2
2i − 2β

n2∑
i=1

Y2iX
′
2i + β′

(
n2∑
i=1

X2iX
′
2i

)
β

]

The score functions of the parameters β, σ2
1 and σ2

2 are as follows:

ln (L)
∂β

= S (β) = − 1
2σ2

1

[
−2

n1∑
i=1

Y1iX
′
1i+2β′

n1∑
i=1

X1iX
′
1i

]

− 1
2σ2

2

[
−2

n2∑
i=1

Y2iX
′
2i+2β′

n2∑
i=1

X2iX
′
2i

] (3.1)

ln (L)
∂σ2

1
= S

(
σ2

1

)
= − n1

2
(
σ2

1
) + 1

2
(
σ2

1
)2
[

n1∑
i=1

(
Y1i − X ′

1iβ
)2] (3.2)

ln (L)
∂σ2

2
= S

(
σ2

2

)
= − n2

2
(
σ2

2
) + 1

2
(
σ2

2
)2
[

n2∑
i=1

(
Y2i − X ′

2iβ
)2] (3.3)
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Using these score functions, the RMLEs of the parameters can be obtained as follows:

β̃ =
[(
∑n1

i=1 X1iX
′
1i)

σ̃2
1

+ (
∑n2

i=1 X2iX
′
2i)

σ̃2
2

]−1 (∑n1
i=1 Y1iX

′
1i

σ̃2
1

+
∑n2

i=1 Y2iX
′
2i

σ̃2
2

)

σ̃2
1 = 1

n1

[
n1∑
i=1

(
Y1i − X ′

1iβ̃
)2
]

σ̃2
2 = 1

n2

[
n2∑
i=1

(
Y2i − X ′

2iβ̃
)2
]

�
As seen in Theorem 3.1, there are no close forms of the RMLEs of the parameters.

For this reason, some iterative algorithms should be used to obtain the RMLEs of the
parameters. In this study, Fisher-Scoring algorithm was used to obtain these estimators.
Fisher scoring algorithm is a modified version of Newton-Raphson method, especially
to obtain the MLEs of the parameters. This algorithm uses the expected information
matrix, while Newton-Raphson algorithm uses the observed information matrix. This
makes Fisher scoring less dependent on specific data values. Knight [19] and Schworer and
Hovey [30] pointed out the differences between the Newton-Raphson and Fisher scoring
algorithms:

(1) The convergence of the Newton-Raphson algorithm is often faster when both algo-
rithms converge, while Fisher scoring algorithm is more robust and will converge
when Newton-Raphson algorithm does not.

(2) The radius of the convergence for the Fisher scoring algorithm is often larger which
suggests that the choice of an initial estimate is less important for the Fisher
scoring algorithm. For these reasons, we used Fisher scoring algorithm to obtain
the RMLEs. The ith iteration of this algorithm can be given as follows:

θi+1 = θi + γ
{

I (θ) + S (θ) S (θ)′
}−1

S (θ) , i = 0, 1, 2, . . .

where 0 < γ < 1 is an arbitrary constant, S (θ) is the score vector of the parameters, and
I (θ) is the expected value of the information matrix, J (θ). In this problem, the parameter
vector θ is

(
β, σ2

1, σ2
2
)
. The elements of the score vector are given at Eq.3.1, Eq. 3.2 and

Eq. 3.3. The information matrix and its expectation of this model are also needed to use
this algorithm. The information matrix and its expectation were given as follows:

J(β, σ2
1, σ2

2) =

a b1 b2
0 c1 0
0 0 c2

 ,

where
a =

∑n1
i=1 X1iX

′
1i

σ2
1

+
∑n2

i=1 X2iX
′
2i

σ2
2

,

b1 =
∑n1

i=1 Y1iX
′
1i(

σ2
1
)2 − β′ (

∑n1
i=1 X1iX

′
1i)(

σ2
1
)2 ,

b2 =
∑n2

i=1 Y2iX
′
2i(

σ2
2
)2 − β′ (

∑n2
i=1 X2iX

′
2i)(

σ2
2
)2 ,

c1 = − n1
2
(
σ2

1
) + 1

2
(
σ2

1
)3
[

n1∑
i=1

(
Y1i − X ′

1iβ
)2]

,

c2 = − n2
2
(
σ2

2
) + 1

2
(
σ2

2
)3
[

n2∑
i=1

(
Y2i − X ′

2iβ
)2]

,

and
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I
(
β, σ2

1, σ2
2

)
= E

(
J
(
β, σ2

1, σ2
2

))
=


∑n1

i=1 X1iX
′
1i

σ2
1

+
∑n2

i=1 X2iX
′
2i

σ2
2

0 0
0 n1−2p

2(σ2
1)2 0

0 0 n2−2p

2(σ2
2)2


(3.4)

The score vector of θ = (β, σ2
1, σ2

2) can also be rewritten as follows:

S
(
β, σ2

1, σ2
2

)
=
(
S (β) , S

(
σ2

1

)
, S
(
σ2

1

))
, (3.5)

where

S (β) =
2∑

j=1

1
σ2

j

nj∑
i=1

YjiX
′
ji − β′

2∑
j=1

nj∑
i=1

XjiX
′
ji,

S
(
σ2

1

)
= − n1

2
(
σ2

1
) + 1

2
(
σ2

1
)2
[

n1∑
i=1

(
Y1i − X ′

1iβ
)2]

,

S
(
σ2

1

)
= − n2

2
(
σ2

2
) + 1

2
(
σ2

2
)2
[

n2∑
i=1

(
Y2i − X ′

2iβ
)2]

.

For the initial value of θ, θ0 was taken as

θ0 =
(
β̃(0), σ̃2

1(0), σ̃2
2(0)

)
=
{(

X ′X
)−1

X ′Y,
1

n1 − p

[
n1∑
i=1

(
Y1i − X ′

1iβ̃(0)
)2
]

,
1

n2 − p

n2∑
i=1

(
Y2i − X ′

2iβ̃(0)
)2
}

.

(3.6)

Remark 3.2. We observed that when γ s close to the upper bound, the length of the
steps from θi to θi+1 can be great. Thus, when the initial value of θ0 is far from the
optimal value, it might wildly oscillate and not converge at all. For this reason, this case
is sometimes remedied by making smaller steps. However, the length of the steps from
θi to θi+1 can be smaller by taking γ too close to 0 and this causes the optimal value to
converge very slowly. When we took γ = 0.1 or this case, we observed in our simulation
study that the Fisher Scoring algorithm converges in a few iterations with the initial value
defined above. This algorithm can be summarized as given:

Algorithm 1: (Fisher-Scoring Algorithm for the RMLEs of the parameters for the equality
of two linear regression models):

(1) Obtain the initial value of the maximum likelihood estimation as given in Eq. 3.6:

θ0 =
(
β̃(0)σ̃

2
1(0), σ̃2

2(0)

)
β̃(0) =

(
X ′X

)−1
X ′Y )

σ̂2
1(0) = 1

n1 − p

[
n1∑
i=1

(
Y1i − X ′

1iβ̃0
)2
]

σ̂2
2(0) = 1

n2 − p

n2∑
i=1

(
Y2i − X ′

2iβ̃0
)2

(2) Using Step 1, obtain I (θ0) and S (θ0) as given in Eq. 3.4 and Eq.3.5.
(3) Using Eq. 3.4, obtain θi+1, i = 1, 2, 3, . . ..
(4) Repeat the Steps (1-3) until |θi+1 − θi| < ε.
(5) The RMLEs of the parameters β, σ2

1, σ2
2 under H0 are θi+1 =

(
β̃(i+1), σ̃2

1(i+1), σ̃2
2(i+1)

)
.
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Remark 3.3. As previously mentioned, one of the two important points to apply the
CAT method is to obtain a suitable test statistic denoted as η. Davison and Hinkley
[7] expressed that the likelihood-based methods (the Wald, likelihood ratio and Score
tests) are the most appropriate tests for the PB method. The Wald, likelihood ratio, and
Score tests are all asymptotically optimal and provide good properties in large samples.
Although these tests are equivalent in large samples, they are different in small samples.
Therefore, it is important for a test to not only perform well only on large samples, but
also well in small samples. Ohtani and Toyoda [25] compared the size-corrected Wald,
likelihood ratio, and Score tests by Monte Carlo experiments to test the equality of two
linear regression models under heteroscedasticity in small sample sizes. Their study showed
that the size-corrected Wald and Score tests perform quite well. However, it is known that
the Wald test depends only on MLEs of parameters while the Score test depends on both
MLEs and restricted MLEs under the null hypothesis. Thus, the calculation of the Score
test is quite complicated. Besides, the size correction of a test depends on the nominal
level of the type I error. Recomputation of size correction of a test is required for each
different nominal level of the type I error. However, this case is not practical in real world
problems. At this point, the CAT procedure can be very useful for this kind of problems
adjusting the type I error rates of any test automatically. For this reason, we carried out
the CAT to test the equality of two linear regression models under heteroscedasticity using
the Wald test statistic in Eq. 2.6.

The CAT for the equality of two linear regression models can be given as:

Algorithm 2: (the CAT for the equality of two linear regression models):
(1) Obtain the unrestricted MLE for θ̂ =

(
β̂1, β̂2, σ̂2

1, σ̂2
2

)
as follows:

β̂1 =
(
X ′

1X1
)−1

X ′
1Y1, β̂2 =

(
X ′

2X2
)−1

X ′
2Y2,

σ̂2
1 = 1

n1 − p

[
n1∑
i=1

(
Y1i − X ′

1iβ̂1
)2
]

, and σ̂2
2 = 1

n2 − p

[
n2∑
i=1

(
Y2i − X ′

2iβ̂2
)2
]

.

(2) Obtain the test statistic η̂ as follows:

η̂ =
(
β̂1 − β̂2

)′ (
σ̂2

1
(
X ′

1X1
)−1 + σ̂2

2
(
X ′

2X2
)−1

)−1 (
β̂1 − β̂2

)
.

(3) Obtain RMLE for θ̃ =
(
β̃, σ̃2

1, σ̃2
2

)
using Algorithm 1 under H0.

(4) Generate artificial sample using RMLEs.

Ŷ1 = β̃X1 + ε∗
1, ε∗

1 ∼ N
(
0, σ̃2

1

)
Ŷ2 = β̃X2 + ε∗

2, ε∗
2 ∼ N

(
0, σ̃2

2

)
(5) Calculate η̃ for the generated artificial sample given in Step 4.
(6) Repeat Step 4-5 for large number of times, say m times.
(7) Estimate the p-value as p̂ =

∑m
j=1

(η̂(j)>η̃)
m . In the case of p̂ < α, H0 is rejected.

Remark 3.4. The CAT is a PB method since resampling is generated from the para-
metric model ε∗

i ∼ N
(
0, σ̃2

i

)
, i = 1, 2. Artificial sample is generated to mimic the null

distribution of η̂. Thus, the cut-off point of η̂ is an approximation of the true critical
value based on the null model, under H0. The CAT does not require any knowledge of
the complex sampling distribution of a test statistic and finds the critical region automat-
ically. The proposed CAT heavily depends on computations and simulations, but with the
computational resources available today, this method can be used effectively. As a result,
the CAT can be said to be easy to implement and compute.
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4. Simulation study
In this section, the proposed test (CAT) was compared with the Chow (C) test, Toyoda

(T) test, Wald (W) test, weighted F (WF) test, and PB test in terms of their estimated
type-I error rates and powers of test. For this purpose, the explanatory variables p=1,
2, and 3 were considered as different combinations of equal and unequal sample sizes
(n = (n1, n2)). The standard deviations of the regression models (σ = (σ1, σ2)) equal to
(1,4) and (1,8), respectively. To estimate the powers of tests, we took three different
parameter combinations of regression coefficients. To estimate the type-I error rates and
powers of all tests under the specified nominal level α=0.05, 5000 random numbers were
generated for errors with sample size ni (i = 1, 2) from the normal distribution. m= 5000
was also taken to estimate the p-values of the CAT and PB test. The simulation study
was conducted in MATLAB. The estimated type-I error rates are presented in Table 1-
Table 3.

Table 1. The type I error rates of the all tests when p=1.

σ = (1, 4) σ = (1, 8)
n C T W WF PB CAT C T W WF PB CAT
5,5 0.077 0.031 0.150 0.111 0.087 0.047 0.075 0.022 0.159 0.115 0.086 0.047
10,10 0.060 0.018 0.095 0.076 0.064 0.047 0.063 0.014 0.096 0.078 0.063 0.046
15,15 0.055 0.016 0.074 0.064 0.057 0.048 0.053 0.012 0.072 0.062 0.051 0.044
25,25 0.061 0.015 0.069 0.063 0.058 0.052 0.057 0.012 0.067 0.060 0.054 0.048
50,50 0.053 0.012 0.057 0.055 0.052 0.048 0.055 0.007 0.057 0.054 0.051 0.048
5,10 0.019 0.010 0.096 0.074 0.070 0.048 0.013 0.003 0.098 0.074 0.067 0.049
5,15 0.007 0.003 0.082 0.065 0.063 0.052 0.005 0.002 0.083 0.067 0.065 0.053
10,15 0.031 0.010 0.084 0.070 0.064 0.052 0.028 0.007 0.079 0.068 0.062 0.050
15,25 0.019 0.005 0.067 0.060 0.057 0.051 0.016 0.004 0.068 0.062 0.057 0.052
15,50 0.002 0.001 0.058 0.054 0.054 0.050 0.000 0.000 0.061 0.056 0.056 0.052
10,5 0.180 0.072 0.165 0.134 0.093 0.052 0.209 0.045 0.171 0.142 0.087 0.047
25,5 0.353 0.153 0.169 0.153 0.088 0.049 0.413 0.086 0.165 0.152 0.080 0.047
15,10 0.121 0.031 0.102 0.084 0.067 0.051 0.120 0.022 0.096 0.081 0.065 0.049
25,15 0.135 0.029 0.081 0.072 0.059 0.048 0.133 0.017 0.078 0.069 0.055 0.045
50,15 0.259 0.067 0.086 0.081 0.064 0.054 0.284 0.040 0.084 0.080 0.064 0.054

As seen from Table 1, when sample sizes are equal and small, the type I error rates of
the CAT are close to the nominal level α. However, the type I error rates of the others are
far away than the nominal level α. The type I error rates of the T test are much smaller
than the nominal level, whereas those of the others are much greater than the nominal
level. As sample sizes increase, the type I error rates of all tests are close to the nominal
level α, whereas the T test seems to have much lower type I error rates than the nominal
level α, even for large sample sizes.

When the sample sizes and variances are proportional, the type I error rates of the CAT
are close to the nominal level α regardless of sample sizes. While the type I error rates of
the W, WF, and PB tests are greater than the nominal level α in the cases of small sample
sizes, these values of tests are close to the nominal level α in the cases of large sample
sizes. As for the C and T tests, the type I error rates of these tests are much smaller than
the nominal level α in the cases of all sample sizes. When the sample sizes and variances
are in reverse order, the CAT appears to have type I error rates closer to the nominal level
for all sample sizes. The others are much greater than the nominal level. It is also seen
that the type I error rates of all the considered tests are not affected by the increase in
variances.

As seen from Table 2 and Table 3, as the value of p increase, except for the CAT, the
type I error rates of the others somewhat increase. The results of p=2 and p=3 are the
same as the results of p=1 in terms of interpretation.
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Table 2. The type I error rates of the all tests when p=2.

σ = (1, 4) σ = (1, 8)
n C T W WF PB CAT C T W WF PB CAT
5,5 0.087 0.038 0.233 0.131 0.092 0.052 0.094 0.028 0.232 0.132 0.084 0.044
10,10 0.069 0.018 0.121 0.088 0.071 0.043 0.081 0.014 0.137 0.101 0.074 0.053
15,15 0.061 0.017 0.091 0.070 0.060 0.044 0.069 0.011 0.098 0.081 0.064 0.050
25,25 0.062 0.011 0.078 0.066 0.060 0.053 0.063 0.006 0.074 0.065 0.057 0.049
50,50 0.059 0.009 0.066 0.061 0.056 0.053 0.053 0.003 0.059 0.055 0.049 0.044
5,10 0.017 0.008 0.133 0.079 0.072 0.057 0.014 0.006 0.131 0.082 0.074 0.053
5,15 0.004 0.002 0.113 0.069 0.063 0.059 0.002 0.001 0.098 0.068 0.064 0.051
10,15 0.028 0.008 0.098 0.073 0.068 0.049 0.025 0.005 0.101 0.073 0.062 0.048
15,25 0.015 0.003 0.071 0.058 0.056 0.044 0.014 0.002 0.076 0.060 0.054 0.050
15,50 0.001 0.000 0.062 0.054 0.054 0.052 0.002 0.000 0.066 0.059 0.059 0.056
10,5 0.256 0.114 0.244 0.189 0.112 0.046 0.309 0.066 0.257 0.198 0.086 0.044
25,5 0.539 0.237 0.256 0.230 0.101 0.050 0.633 0.136 0.249 0.224 0.083 0.046
15,10 0.149 0.033 0.124 0.095 0.067 0.044 0.165 0.022 0.127 0.098 0.066 0.049
25,15 0.161 0.029 0.091 0.078 0.054 0.046 0.191 0.023 0.100 0.086 0.064 0.055
50,15 0.367 0.076 0.100 0.092 0.067 0.052 0.418 0.033 0.098 0.088 0.057 0.045

Table 3. The type I error rates of the all tests when p=3.

σ = (1, 4) σ = (1, 8)
n C T W WF PB CAT C T W WF PB CAT
5,5 0.087 0.038 0.233 0.131 0.092 0.052 0.094 0.028 0.232 0.132 0.084 0.044
10,10 0.069 0.018 0.121 0.088 0.071 0.043 0.081 0.014 0.137 0.101 0.074 0.053
15,15 0.061 0.017 0.091 0.070 0.060 0.044 0.069 0.011 0.098 0.081 0.064 0.050
25,25 0.062 0.011 0.078 0.066 0.060 0.053 0.063 0.006 0.074 0.065 0.057 0.049
50,50 0.059 0.009 0.066 0.061 0.056 0.053 0.053 0.003 0.059 0.055 0.049 0.044
5,10 0.017 0.008 0.133 0.079 0.072 0.057 0.014 0.006 0.131 0.082 0.074 0.053
5,15 0.004 0.002 0.113 0.069 0.063 0.059 0.002 0.001 0.098 0.068 0.064 0.051
10,15 0.028 0.008 0.098 0.073 0.068 0.049 0.025 0.005 0.101 0.073 0.062 0.048
15,25 0.015 0.003 0.071 0.058 0.056 0.044 0.014 0.002 0.076 0.060 0.054 0.050
15,50 0.001 0.000 0.062 0.054 0.054 0.052 0.002 0.000 0.066 0.059 0.059 0.056
10,5 0.256 0.114 0.244 0.189 0.112 0.046 0.309 0.066 0.257 0.198 0.086 0.044
25,5 0.539 0.237 0.256 0.230 0.101 0.050 0.633 0.136 0.249 0.224 0.083 0.046
15,10 0.149 0.033 0.124 0.095 0.067 0.044 0.165 0.022 0.127 0.098 0.066 0.049
25,15 0.161 0.029 0.091 0.078 0.054 0.046 0.191 0.023 0.100 0.086 0.064 0.055
50,15 0.367 0.076 0.100 0.092 0.067 0.052 0.418 0.033 0.098 0.088 0.057 0.045

As a result, the type I error rates of the CAT are close to the nominal level α regardless of
sample sizes, variance configuration, and the relation between sample sizes and variances.
When sample sizes and variances are proportional, the type I error rates of the C and T
tests are much smaller than the nominal level α. On the other hand, those of the C and
T tests are much greater when sample sizes and variances are in reverse order. That is,
the C and T tests are negatively affected by this situation. The W, WF, and PB tests
have the type I error rates closer to nominal level when the sample sizes and variances
are proportional and sample sizes are large. On the other hand, when sample sizes and
variances are in reverse order, the W, WF, and PB tests appear to have greater type I error
rates than nominal level α. That is, these tests are negatively affected by this situation.
The powers of the tests are given in Table 4-9.

While the powers of the tests were interpreted, the tests, which had greater type I error
rates than %6 given in Table 1-Table 3, were disregarded. Thus, the powers of these tests
were denoted by ****.

As can be seen from Table 4–Table 9, the CAT seems to be more powerful than the
other tests having lower type I error rates than %6 especially in the case of small and
equal sample sizes. The powers of the PB and WF tests appear to be a bit more powerful
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than the CAT, in the case of equal and large sample sizes and when the sample sizes and
variances are proportional for large sample sizes. On the other hand, when sample sizes
and variances were in reverse order, these tests were disregarded since the WF and PB
tests have greater type I error rates than nominal level α. Thus, the CAT seems to be
more powerful than the other tests in this case, regardless of sample size. The powers of
all the tests are negatively affected from the increases in values of variance and as seen
from tables, the powers of all tests are smaller. The CAT appears to be more powerful
than the others in this case. When sample sizes increase, the powers of the PB test are
a bit more powerful than the CAT. The powers of all the tests are negatively affected by
the increases in values of variances and those of the tests are smaller. As expected, the
powers of all tests increase when the difference among β values increase. As the values of
p increase, all the tests are negatively affected by this case, and the powers of the tests
decrease. The interpretation obtained from the cases of higher value of p are the same as
those of the cases of p=1.

Table 4. The power of rates of the all tests when p=1, β1 = 1, β2 = 2.

σ = (1, 4) σ = (1, 8)
n C T W WF PB CAT C T W WF PB CAT
5,5 **** 0.040 **** **** **** 0.059 **** 0.024 **** **** **** 0.051
10,10 **** 0.046 **** **** **** 0.100 **** 0.016 **** **** **** 0.058
15,15 0.146 0.046 **** **** 0.156 0.133 0.078 0.014 **** **** 0.079 0.067
25,25 0.218 0.085 **** 0.236 0.229 0.213 0.096 0.023 **** **** 0.098 0.087
50,50 0.382 0.179 0.407 0.398 0.392 0.383 0.138 0.034 0.151 0.144 0.139 0.136
5,10 0.034 0.017 **** **** **** 0.093 0.019 0.007 **** **** **** 0.059
5,15 0.017 0.007 **** **** **** 0.125 0.009 0.004 **** **** **** 0.069
10,15 0.078 0.030 **** **** 0.157 0.135 0.039 0.009 **** **** **** 0.075
15,25 0.100 0.044 0.245 0.228 0.222 0.204 0.032 0.009 **** **** 0.106 0.097
15,50 0.055 0.028 0.381 0.367 0.364 0.348 0.007 0.002 **** 0.151 0.150 0.142
10,50 **** **** **** **** **** 0.067 **** 0.052 **** **** **** 0.057
25,50 **** **** **** **** **** 0.068 **** **** **** **** **** 0.050
15,10 **** 0.070 **** **** **** 0.108 **** 0.030 **** **** **** 0.062
25,15 **** 0.098 **** **** 0.165 0.144 **** 0.029 **** **** 0.080 0.068
50,15 **** **** **** **** **** 0.150 **** 0.056 **** **** **** 0.071

Table 5. The power of rates of the all tests when p=1, β1 = 1, β2 = 4.

σ = (1, 4) σ = (1, 8)
n C T W WF PB CAT C T W WF PB CAT
5,5 **** 0.135 **** **** **** 0.219 **** 0.043 **** **** **** 0.096
10,10 **** 0.295 **** **** **** 0.509 **** 0.059 **** **** **** 0.177
15,15 0.737 0.470 **** **** 0.737 0.708 0.265 0.087 **** **** 0.279 0.254
25,25 0.923 0.774 **** 0.926 0.920 0.913 0.427 0.170 **** **** 0.441 0.424
50,50 0.997 0.986 0.997 0.997 0.997 0.997 0.736 0.435 0.747 0.740 0.736 0.726
5,10 0.258 0.151 **** **** **** 0.479 0.067 0.030 **** **** **** 0.183
5,15 0.241 0.155 **** **** **** 0.632 0.042 0.021 **** **** **** 0.260
10,15 0.559 0.357 **** **** 0.722 0.690 0.156 0.064 **** **** **** 0.274
15,25 0.783 0.607 0.920 0.912 0.908 0.900 0.231 0.100 **** **** 0.437 0.417
15,50 0.862 0.779 0.995 0.995 0.995 0.994 0.170 0.092 **** 0.715 0.717 0.703
10,5 **** **** **** **** **** 0.244 **** 0.089 **** **** **** 0.108
25,5 **** **** **** **** **** 0.239 **** **** **** **** **** 0.095
15,10 **** 0.387 **** **** **** 0.521 **** 0.089 **** **** **** 0.184
25,15 **** 0.628 **** **** 0.756 0.735 **** 0.138 **** **** 0.296 0.268
50,15 **** **** **** **** **** 0.727 **** 0.210 **** **** **** 0.266
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Table 6. The power of rates of the all tests when p=2, β1 = (1, 1), β2 = (1, 2).

σ = (1, 4) σ = (1, 8)
n C T W WF PB CAT C T W WF PB CAT
5,5 **** 0.043 **** **** **** 0.055 **** 0.031 **** **** **** 0.048
10,10 **** 0.032 **** **** **** 0.071 **** 0.019 **** **** **** 0.061
15,15 **** 0.033 **** **** **** 0.092 **** 0.009 **** **** **** 0.063
25,25 **** 0.039 **** **** **** 0.151 **** 0.011 **** **** 0.084 0.074
50,50 0.307 0.098 **** **** 0.314 0.292 0.117 0.013 0.131 0.121 0.117 0.107
5,10 0.023 0.010 **** **** **** 0.082 0.017 0.007 **** **** **** 0.058
5,15 0.009 0.004 **** **** **** 0.099 0.003 0.002 **** **** **** 0.063
10,15 0.056 0.021 **** **** **** 0.099 0.030 0.005 **** **** **** 0.063
15,25 0.054 0.015 **** 0.169 0.162 0.140 0.024 0.006 **** **** 0.085 0.071
15,50 0.016 0.007 **** 0.279 0.278 0.259 0.003 0.001 **** 0.121 0.119 0.110
10,5 **** **** **** **** **** 0.056 **** **** **** **** **** 0.046
25,5 **** **** **** **** **** 0.057 **** **** **** **** **** 0.049
15,10 **** 0.051 **** **** **** 0.070 **** 0.027 **** **** **** 0.059
25,15 **** 0.063 **** **** 0.127 0.100 **** 0.028 **** **** **** 0.059
50,15 **** **** **** **** **** 0.099 **** 0.044 **** **** 0.074 0.056

Table 7. The power of rates of the all tests when p=2, β1 = (1, 1), β2 = (1, 4).

σ = (1, 4) σ = (1, 8)
n C T W WF PB CAT C T W WF PB CAT
5,5 **** 0.092 **** **** **** 0.122 **** 0.040 **** **** **** 0.066
10,10 **** 0.157 **** **** **** 0.323 **** 0.041 **** **** **** 0.123
15,15 **** 0.289 **** **** **** 0.541 **** 0.048 **** **** **** 0.183
25,25 **** 0.570 **** **** **** 0.817 **** 0.085 **** **** 0.344 0.311
50,50 0.994 0.950 **** **** 0.992 0.991 0.618 0.247 0.642 0.629 0.617 0.595
5,10 0.124 0.069 **** **** **** 0.319 0.035 0.016 **** **** **** 0.114
5,15 0.106 0.066 **** **** **** 0.492 0.017 0.008 **** **** **** 0.171
10,15 0.379 0.180 **** **** **** 0.528 0.099 0.023 **** **** **** 0.175
15,25 0.612 0.377 **** 0.853 0.844 0.813 0.128 0.038 **** **** 0.341 0.305
15,50 0.657 0.508 **** 0.982 0.982 0.981 0.064 0.026 **** 0.605 0.603 0.576
10,50 **** **** **** **** **** 0.115 **** **** **** **** **** 0.063
25,5 **** **** **** **** **** 0.116 **** **** **** **** **** 0.064
15,10 **** 0.250 **** **** **** 0.332 **** 0.056 **** **** **** 0.125
25,15 **** 0.435 **** **** 0.629 0.556 **** 0.083 **** **** **** 0.182
50,15 **** **** **** **** **** 0.549 **** 0.143 **** **** 0.215 0.175

Table 8. The power of rates of the all tests when p=3, β1 = (1, 1, 1), β2 = (1, 1, 2).

σ = (1, 4) σ = (1, 8)
n C T W WF PB CAT C T W WF PB CAT
10,10 **** 0.030 **** **** **** 0.052 **** 0.015 **** **** **** 0.048
15,15 **** 0.026 **** **** **** 0.075 **** 0.012 **** **** 0.076 0.058
25,25 **** 0.027 **** **** 0.156 0.121 **** 0.006 **** **** **** 0.066
50,50 0.254 0.056 **** 0.278 0.267 0.232 0.104 0.011 **** 0.108 0.099 0.088
10,15 0.044 0.013 **** **** **** 0.081 0.030 0.006 **** **** **** 0.058
15,25 0.038 0.008 **** 0.158 0.150 0.119 0.018 0.003 **** **** 0.082 0.065
15,50 0.007 0.003 **** 0.240 0.237 0.217 0.001 0.000 **** 0.099 0.096 0.085
15,10 **** 0.062 **** **** **** 0.062 **** 0.029 **** **** **** 0.053
25,15 **** 0.059 **** **** **** 0.084 **** 0.021 **** **** **** 0.058
50,15 **** **** **** **** **** 0.105 **** 0.045 **** **** **** 0.057

Overall, the proposed CAT has type I error rates quite close to the nominal level α
regardless of sample sizes, variance configurations, the number of explanatory variable
and the relation of sample sizes and variances. Furthermore, the CAT appears to be more
powerful than the other tests for all the considered situations.
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Table 9. The power of rates of the all tests when p=3, β1 = (1, 1, 1), β2 = (1, 1, 4).

σ = (1, 4) σ = (1, 8)
n C T W WF PB CAT C T W WF PB CAT
10,10 **** 0.112 **** **** **** 0.209 **** 0.028 **** **** **** 0.086
15,15 **** 0.196 **** **** **** 0.391 **** 0.031 **** **** 0.185 0.130
25,25 **** 0.442 **** **** 0.798 0.732 **** 0.046 **** **** **** 0.233
50,50 0.987 0.891 **** 0.987 0.986 0.981 0.549 0.158 **** 0.576 0.561 0.522
10,15 0.276 0.110 **** **** **** 0.398 0.068 0.016 **** **** **** 0.125
15,25 0.484 0.249 **** 0.785 0.775 0.709 0.084 0.019 **** **** 0.306 0.243
15,50 0.488 0.334 **** 0.972 0.972 0.966 0.023 0.007 **** 0.533 0.529 0.487
15,10 **** 0.189 **** **** **** 0.216 **** 0.044 **** **** **** 0.087
25,15 **** 0.333 **** **** **** 0.411 **** 0.061 **** **** **** 0.129
50,15 **** **** **** **** **** 0.415 **** 0.124 **** **** **** 0.137

5. Numerical example
In this section of the paper, the use of test statistics given in Section 2 and the CAT

statistic are demonstrated on numerical example. A real data about house insulation
given by [15] was used. This data set was collected in the 1960s by Derek Whiteside of the
UK Building Research Station. The weekly gas consumption (in 1000 cubic feet) and the
average temperature (in degrees Celsius) were recorded for 26 weeks before and 30 weeks
after the insulation of the cavity wall. This data set is given in Table 10.

Table 10. The dataset of average outside temperature and gas consumption for
before and after insulation.

Before insulation
Average outside -0.8, -0.7, 0.4, 2.5, 2.9, 3.2, 3.6, 3.9, 4.2, 4.3,
temperature 5.4, 6, 6, 6, 6.2, 6.3, 6.9, 7, 7.4, 7.5, 7.5, 7.6,
(0◦C) 8, 8.5, 9.1, 10.2
Gas consumption 7.2, 6.9, 6.4, 6, 5.8, 5.8, 5.6, 4.7, 5.8, 5.2, 4.9,
(1000cubic feet) 4.9, 4.3, 4.4, 4.5, 4.6, 3.7, 3.9, 4.2, 4, 3.9, 3.5,

4, 3.6, 3.1, 2.6

After insulation
Average outside -0.7, 0.8, 1, 1.4, 1.5, 1.6, 2.3, 2.5, 2.5, 3.1, 3.9,
temperature 4, 4, 4.2, 4.3, 4.6, 4.7, 4.9, 4.9, 4.9, 5, 5.3, 6.2,
(0◦C) 7.1, 7.2, 7.5, 8, 8.7, 8.8, 9.7
Gas consumption 4.8, 4.6, 4.7, 4, 4.2, 4.2, 4.1, 4, 3.5, 3.2, 3.9,
(1000cubic feet) 3.5, 3.7, 3.5, 3.5, 3.7, 3.5, 3.4, 3.7, 4, 3.6, 3.7,

2.8, 3, 2.8, 2.6, 2.7, 2.8, 1.3, 1.5

We would like to find out how gas consumption is related with the outside temperature,
that is, we aim to estimate a simple gas consumption function. Besides, it is also aimed
to examine how this relationship changes after insulation. In other words, we tried to
find out whether a structural change in the gas consumption occurred after the insulation
was performed. To solve these problems, following functional relationship between the
weekly gas consumption and the average outside temperature before (B) and after (A)
wall insulation were specified, respectively.

(Gas consumption)B = 6.854 − 0.393(average outside temperature)B

(Gas consumption)A = 4.724 − 0.278(average outside temperature)A

The estimated sample variances are 0.079 and 0.126, respectively and the scatter plots of
the data set is given in Figure 1. As seen in Figure 1, there is an evidence of homogeneity.
In addition, the Levene test for homoscedasticity gives p-value as 0.545. A standard
analysis yields a p-value of 0.000 for the common intercept hypothesis and 0.001 for the
common slope hypothesis. That is, there is a significant difference in terms of the existence
of insulation. The structural change in gas consumption regarding insulation was tested
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by using the CAT, C, T, W, WF, and PB tests in Section 2. Table 11 presents the test
statistics and p-values of the tests.

Figure 1. The scatter plots for data set given in Table 10.

Table 11. The results of all the tests.

Chow Toyoda Wald WF PB CAT
Test statistics 0.3278 0.3214 0.3528 0.3528 0.3528 0.3358
p-values 0.5693 0.5732 0.5525 0.5550 0.5548 0.6768

The p-values indicate that the tests do not reject the H0 given in Eq. 2.2 at nominal
level 0.05. That is, all tests indicate that there is no significant difference in the gas
consumption function in terms of the existence of insulation. In this case, we may justify
the use of pooled regression. Except for the CAT, p-values of all tests are close to each
other. The CAT does not reject H0 with greater p value compared to the other tests.

6. Discussion and conclusions
In this study, the problem of comparing two linear regression models when the variances

are not assumed equal was considered. For this problem, a test based on the CAT method
was proposed and was compared with the C, T, W, WF, and PB tests. In the simulation
study, the explanatory variables p=1, p=2, and p=3 with different combinations of equal
and unequal sample sizes and different variances were considered.

According to the simulation study, it is seen that the power and type I error rates
of our proposed test is quite encouraging compared with the other tests reported in the
literature. For this reason, the proposed CAT is a better alternative test for comparing
two linear regression models under heteroscedasticity. Currently, we are also studying the
test based on CAT for comparing several linear regression models under heteroscedasticity
and hopefully this will be reported in a future publication.

The CAT method can be applied in many hypothesis testing problems with nuisance
parameters. The success of the CAT depends on the selection of the test statistic and the
resampling done from the restricted model for obtaining the bootstrap distribution of the
test statistic, under null hypothesis. In CAT method, the RMLEs of parameters may not
be available in closed form, for this reason, the iteration methods were frequently used.
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However, it is difficult to apply the CAT method in some hypothesis testing problems in
where RMLEs are not obtained even by iteration methods. For this reason, maybe it can
be used an alternative statistic rather than the MLE and RMLE.

Acknowledgment. We thank the two anonymous referees for their helpful comments
and suggestions on an earlier draft, which helped us greatly in improving the presentation
of the content of this paper.
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