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Abstract
Weibull distribution is widely used in various areas such as life tables, failure rates, and
definition of wind speed distribution. Therefore, parameter estimation for the Weibull
distribution is an important problem in many real data applications. The least square (LS),
the weighted least square (WLS) and the maximum likelihood (ML) are the most popular
methods for the parameter estimation in the Weibull distribution. In this study, based
on the LS, WLS and ML estimation methods, a multi-objective programming approach is
proposed for the parameter estimation of two-parameter Weibull distribution. This new
approach evaluates together LS, WLS and ML methods in the estimation process. NSGA-
II method, which is a multi-objective heuristic optimization method, is used to solve the
proposed multi-objective estimation model. To evaluate the applicability and performance
of the proposed approach, a detailed Monte Carlo simulation study based on deficiency
criteria and a real data application are designed. The results illustrated that the proposed
multi-objective programming approach provides quite accurate parameter estimates for
the two parameter Weibull distribution with respect to deficiency criteria.
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1. Introduction
It is a well-known fact that the Weibull distribution family, besides being flexible due

to imitating various distributions like the exponential or normal, can very well fit a wide
field of experimental observations. In addition to demonstrating a wide range of shapes
for density and hazard functions, it is also an important distribution used to analyze the
reliability of different types of systems. This distribution can be applied to two or three
parameters depending on the field of use and it is used in quality control, analysis of life
tables, failure rates, definition of wind speed distribution, and financial applications.
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The cumulative distribution function and the corresponding probability density function
of the two-parameter Weibull distribution is given by

Fx(x) = 1 − e
−( x

η
)θ

, x > 0, η > 0, θ > 0 (1.1)
and

fx(x) = θ

η
(x

η
)θ−1e

−( x
η

)θ

, x > 0, η > 0, θ > 0, (1.2)

respectively. In Equations (1.1) and (1.2), η is scale parameter and θ is shape parameter.
Because of the wide applications area, it is very important to determine the best pa-

rameter estimation method for this distribution. Successful applications of the Weibull
distribution depend on having acceptable statistical estimates of its hardly predictable
parameters. Several methods have been used for estimating the parameters of the Weibull
distribution. Various estimation methods for the Weibull parameters have been proposed
by many authors until today. The least squares (LS) method, weighted least squares
(WLS) method, maximum likelihood (ML) method, moments method and Bayesian meth-
ods are used to estimate the parameters of the Weibull distribution. The ML method is
the most popular way of estimating the parameters of the density function from observed
data for distributions. In addition to providing simple closed form solutions for estimates,
the LS method is computationally easier. Abbasi et al. [1] used the simulated anneal-
ing (SA) method to maximize the likelihood function value of the Weibull distribution
and estimate the parameters. Moreover, Abbasi et al. [2] proposed a hybrid variable
neighbourhood search and SA method to get better the performance of the SA method.
Örkcü et al. [15] presented a comprehensive study of different particle swarm optimization
(PSO) variants in the parameter estimation problem of the three-parameter Weibull dis-
tribution. The ML of Weibull distribution parameters were taken into account using PSO
by [3]. Markovic et al. [13] studied the nonlinear WLS estimation for the three-parameter
Weibull distribution. Hossain and Howlader [10] made comparisons between various LS
and ML estimators for the shape parameter and complete samples. Luus and Jammer [12]
showed that ML gave the most reliable parameter estimation compared to the LS method.
Davies [7] investigated the unbiased estimation of the Weibull scale parameter with a
function of n samples using linear LS. While Lei [11] and Chu and Ke [5] dealt with LS
and ML methods in their studies, Pobacikova and Sedliackova [16], Datsiou and Overend
[6] and, Nassar et al. [14] discussed the WLS method in addition to these methods.

LS, WLS and ML methods are based on different theoretical bases and have different
properties. While the likelihood function is maximized in ML based methods, the error
function is tried to be minimized in LS and WLS based methods. In either case, there
is only one objective function that is maximized or minimized. As an optimization tool,
classical approaches based on derivative are used as well as heuristic approaches such as
genetic algorithm, simulated annealing, and particle swarm optimization. LS, WLS and
ML methods can give different estimation results within the framework of their theoretical
basis. This study, based on the LS, WLS and ML estimation methods, proposes using
the multi-objective programming approach for the estimation of parameter of Weibull
distribution. In this way, the parameter estimation process in LS, WLS and ML methods
will be evaluated together, and it is aimed to obtain better estimation results. In this
study, Genetic Algorithm based Non-dominated Sorting Genetic Algorithm II (NSGA-
II) method, which is a multi-objective heuristic approach, is used to solve the formed
multi-objective programming estimation model. LS-WLS, LS-ML, WLS-ML and LS-WLS-
ML cases have been taken into consideration as the multi-objective estimation model
and the formed multi-objective programming estimation approaches have been compared
with the classical LS, WLS and ML methods. The results show that the multi-objective
optimization model, which takes LS, WLS and ML estimation procedures into account
together, gives more successful results than classical approaches in parameter estimation.
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To the best of our knowledge, this is the first study to use the NSGA-II method for
estimating the parameters of the two-parameter Weibull distribution.

The remainder of the paper is organized as follows. In Section 2, the LS, the WLS and
the ML estimations for two-parameter Weibull distribution presented, and the NSGA-II
method is introduced. A comprehensive Monte Carlo (MC) simulation study is carried
out and its results are given in Section 3. In Section 4, the application of the proposed
approach is examined on real life data. Section 5 summarizes the results of this work and
draws conclusions.

2. Parameter estimation for two-parameter Weibull distribution by NSGA-
II method

In this section, classical LS, WLS and ML estimation methods are briefly introduced and
the proposed multi-objective approach that takes these methods into account is presented.
In addition, the NSGA-II algorithm used in the solution of the proposed multi-objective
programming model is introduced.

2.1. Estimation methods
The notions of LS, WLS and ML estimators of parameters of the two-parameter Weibull

distribution are discussed in this section.
Let x1, x2, . . . , xn be a random sample of size n drawn from a probability density func-

tion in Equation (1.2).

2.1.1. Least square method. To convert the cumulative distribution function to a
linear function, Equation (2.1) is obtained by taking twice the logarithm of Equation
(1.1).

ln[− ln(1 − F (x))] = θ ln x − θ ln η (2.1)
If Y = ln[−ln(1 − F (x))], β0 = −θlnη, β1 = θ and X = ln x transformations are made,
Equation (2.2) can be written as follows:

Y = β0 + β1X. (2.2)

Considering X(1), X(2), . . . , X(n) as the order statistics of X1, X2, . . . , Xn and
x(1), x(2), . . . , x(n) as observed ordered observations, the mean rank given in Equation
(2.3) is used to estimate the values of the cumulative distribution function in Equation
(1.1).

F̂ (x(i)) = i

n + 1
, i = 1, 2, . . . , n (2.3)

Here, i denotes ith smallest value of x(1), x(2), . . . , x(n). By minimizing the function in
Equation (2.4), the estimates β̂0 and β̂1 of the regression parameters β0 and β1 are obtained
as

Ψ(β0, β1) =
n∑

i=1
(Yi − β0 − β1 ln x(i))2. (2.4)

2.1.2. Weighted least square method. By minimizing the function in Equation (2.5),
the estimates β̂0 and β̂1 of the regression parameters β0 and β1 are obtained as

Ψ(β0, β1) =
n∑

i=1
wi(Yi − β0 − β1 ln x(i))2. (2.5)

The weight factor wi in Equation (2.6) suggested by [4] is formulated as follows:

wi = [(1 − F̂ (x(i))) ln(1 − F̂ (x(i)))]2, i = 1, 2, ..., n. (2.6)
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2.1.3. Maximum likelihood method. Maximum likelihood estimators of the two-
parameter Weibull distribution in Equation (1.2) are found by maximizing the likelihood
or log-likelihood function in Equations (2.7) and (2.8), respectively.

L =
n∏

i=1
fx(xi; η, θ) =

n∏
i=1

θ

η
(x

η
)θ−1e

−( xi
η

)θ

(2.7)

Its logarithm is as follows:

ln L = n ln(θ

η
) +

n∑
i=1

[−(xi

η
)θ + (θ − 1) ln (xi

η
)]. (2.8)

2.2. Proposed multi-objective optimization approach
Proposed multi-objective optimization approach was created using the functions of LS,

WLS and ML methods. While it is desired to make the function minimum in LS and WLS
methods, it is desired to make maximum in ML method. Therefore, the additive inverse
of the ML function is taken.

The models created for LS-WLS, LS-ML, WLS-ML and LS-WLS-ML are specified in
Equations (2.9) - (2.12), respectively.

Minimize


∑n

i=1(ln[−ln(1 − F (x))] + θlnη − θ ln x(i))2

∑n
i=1 wi(ln[−ln(1 − F (x))] + θlnη − θ ln x(i))2

(2.9)

Minimize


∑n

i=1(ln[−ln(1 − F (x))] + θlnη − θ ln x(i))2

−n ln( θ
η ) −

∑n
i=1[−(xi

η )θ + (θ − 1) ln (xi
η )]

(2.10)

Minimize


∑n

i=1 wi(ln[−ln(1 − F (x))] + θlnη − θ ln x(i))2

−n ln( θ
η ) −

∑n
i=1[−(xi

η )θ + (θ − 1) ln (xi
η )]

(2.11)

Minimize



∑n
i=1(ln[−ln(1 − F (x))] + θlnη − θ ln x(i))2

∑n
i=1 wi(ln[−ln(1 − F (x))] + θlnη − θ ln x(i))2

−n ln( θ
η ) −

∑n
i=1[−(xi

η )θ + (θ − 1) ln (xi
η )]

(2.12)

In general, the main purpose of multi-objective optimization problems is to determine
the variable values that will give the best value to the objective functions, so there are
various approaches developed for the solution of the problem. In approaches such as
dimension reduction, a solution is tried to be reached by transforming the addressed ob-
jective functions into a single objective function. However, the result obtained is optimum
for one objective function but not for other functions. Therefore, there are alternative
solution sets, and these solutions are called Pareto optimal solutions instead of a single
optimal solution, which is called the ideal solution in the solution of the multi-objective
optimization problem.

In addition to offering a wide set of solutions, there are various approaches to obtain
Pareto solutions in which there is a compromised solution for all objective functions dis-
cussed. Multi-objective metaheuristic methods are important methods in obtaining Pareto
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solutions because they produce many solutions, and they do not use derivative calcula-
tions but provide a good approach to Pareto optimal solutions and can be easily applied
to optimization problems.

2.3. Non-dominated sorting genetic algorithm II (NSGA-II)
Genetic Algorithm based NSGA-II, besides being a multi-objective metaheuristic method,

is one of the most effective methods used in obtaining the Pareto solution set. The su-
periority of the NSGA-II method over other multi-objective genetic algorithms is its fast
non-dominated sorting and crowding distance. For these reasons, by obtaining different
solutions in the Pareto solution set, it reaches real Pareto values in a faster time [8, 9].
Algorithm steps for fast non-dominant sorting and crowding distance are given in Tables
1 and 2 [9].

Table 1. Fast non-dominated sort algorithm.

for each p∈P
Sp=∅
np=0
for each q∈P

if(p < q) then if p dominates q
Sp = Sp ∪ q add q to the set of solutions dominated by p

else if(q < p) then
np=np+1 increment the domination counter of p

if np=0 then p belongs to the first front
prank=1
F1=F1 ∪ p

i=1 initialize the front counter
while Fi ̸= 0

Q=∅ used to store the members of the next front
for each p∈Fi

for each q∈Sp

nq=nq-1
if nq=0 then q belongs to the next front

qrank=i+1
Q=Q ∪ q

i = i + 1
Fi= Q

Table 2. Crowding distance assignment algorithm.

l=|I| number of solution in I
for each i, set I[i]distance=0 initalize distance
for each objective m

I = sort(I, m) sort using each objective value
I[1]distance=I[l]distance=∞ so that boundary pointsare always selected
for i=2 to (l − 1) for all other points

(I[i + 1].m − I[i − 1].m)
(fmax

m − fmin
m )

In the NSGA-II method based on population-based searches, the search is started with
a set of solutions, each representing a possible solution to the problem, and better solu-
tions are tried to be obtained from the existing solution set. The best individuals of the
current population are selected, and a new population is created by crossing and mutation
operators. It continues to create a population for the predetermined number of iterations.
Algorithm steps and procedure for NSGA-II are given in Table 3 and in Figure 1 [8, 9].
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For more details of this procedure, the readers are encouraged to refer to the original
papers [8, 9].

Table 3. NSGA-II algorithm.

Rt=Pt ∪ Qt combine parent and offspring population
F =fast non-dominated sort (Rt) F =(F1,F2,...) all nondominated fronts of Rt

Pt+1=∅ and i=1
until Pt+1=Fi ≤ N until the parent population is filled

crowding distance assignment (Fi) calculate crowding distance in Fi

Pt+1=Pt+1 ∪ Fi include ith nondominated front in the parent pop
i=i+1 check the next front for inclusion

Sort(Fi,≺n) sort in descending order using ≺n

Pt+1=Pt+1 ∪ Fi[1:(N − |Pt+1|)] choose the first [1:(N − |Pt+1|)] elements of Fi

Qt+1=make new pop(Pt+1) use selection, crossover and mutation
to create a new population Qt+1

t = t + 1 increment the generation counter

Figure 1. NSGA-II procedure.

3. Simulation study
In this section, a comprehensive MC simulation study for examining the performance of

the proposed LS, WLS, ML, LS-WLS, LS-ML, WLS-ML and LS-WLS-ML multi-objective
programming estimation methods was performed. Performances of the different case are
compared with respect to their Deficiency Criterion (Def), see [17]. It is an important
scale used to test the efficiency of methods used for parameter estimation [18]. It is
defined as given in Equation (3.1). In addition, the mean squared error (MSE) values of
the parameters used in the calculation of Def criteria are as given in Equations (3.2) and
(3.3).

Def(η̂, θ̂) = MSE(η̂) + MSE(θ̂), (3.1)
where

MSE(η̂) = V ar(η̂) + Bias2(η̂) (3.2)
and

MSE(θ̂) = V ar(θ̂) + Bias2(θ̂). (3.3)
Furthermore, E2 value is used in comparison of parameter estimation results [2]. The

best solution among Pareto points in the parameter space for LS-WLS, LS-ML, WLS-ML
and LS-WLS-ML is obtained by choosing the point corresponding to the best E2 value of
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the prediction points. The E2 value given in Equation (3.4) is calculated as the sum of
the differences between the real parameter values and the estimated parameter values.

E2 =
n∑

i=1
[γ − γ̂]2 (3.4)

Real parameter values for the two-parameter Weibull distribution are to be (η, θ) =
(2, 2), (η, θ) = (2, 3) and (η, θ) = (3, 2) respectively. The sample size is taken n=100, 500,
1000 and 2500. LS, WLS, ML, LS-WLS, LS-ML, WLS-ML and LS-WLS-ML estimates
of the parameters for the two-parameter Weibull distribution are calculated using the
NSGA-II algorithm.

Parameter values for the NSGA-II algorithm are considered as Crossover Fraction =
0.8 and Pareto Fraction = 0.35. Population Size (Pop) is also considered to be 50, 100
and 250 respectively while the Search Space for η and θ is chosen as (0, inf).

The simulated mean and Def values for (η, θ) = (2, 2), (η, θ) = (2, 3), (η, θ) = (3, 2) are
given respectively in Tables 4 - 6. The simulation results show that the case formed by LS-
WLS-ML estimators has the best Def value for all cases. However, this case does not give
the best results in any case when compared to its parameter estimation. The reasons for
this situation are that achieving objectives in cases with more than one objective function
is difficult to compare to cases with an objective function, and the spread of predicted
values is less in multi-objective function cases when estimating parameters. However,
parameter estimation values in different situations are very close to each other. Regarding
this situation, the distributions of the parameter estimates obtained by MC are shown in
Figures 2 - 8 for the parameter (η, θ)=(2, 2).

When the simulation results are examined in terms of parameter estimates, it has been
observed that the WLS-ML case makes the best parameter estimation for most cases.
While n = 100 and n = 500, the best parameter estimation in all cases except Pop = 50
has been obtained with the WLS-ML case. In addition, the best estimation was again
obtained with WLS-ML when Pop = 250 for all parameter values, excluding (η, θ) = (2,
2) and n=2500. Apart from these cases, the best parameter estimates were obtained with
WLS and ML. Since it does not have the best predictor case for any situation, a case
including LS method is weak when compared to others in parameter estimation.

Figure 2. Distribution of parameter estimations obtained by MC simulation for
(η, θ)=(2,2) / LS.
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Figure 3. Distribution of parameter estimations obtained by MC simulation for
(η, θ)=(2,2) / WLS.

Figure 4. Distribution of parameter estimations obtained by MC simulation for
(η, θ)=(2,2) / ML.
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Figure 5. Distribution of parameter estimations obtained by MC simulation for
(η, θ)=(2,2) / LS-WLS.

Figure 6. Distribution of parameter estimations obtained by MC simulation for
(η, θ)=(2,2) / LS-ML
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Figure 7. Distribution of parameter estimations obtained by MC simulation for
(η, θ)=(2,2) / WLS-ML.

Figure 8. Distribution of parameter estimations obtained by MC simulation for
(η, θ)=(2,2) / LS-WLS-ML.
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Table 4. Simulation results for the estimation of the parameters (η, θ) = (2, 2).

Pop. Size Method
n=100 n=500

Scale Shape def Scale Shape def

50

LS 2,0201 1,8966 0,0648 2,0085 1,9699 0,0120
WLS 2,0071 1,9595 0,0547 2,0025 1,9945 0,0090
ML 1,9970 2,0258 0,0365 2,0016 2,0075 0,0070

LS-WLS 2,0104 1,9496 0,0340 2,0166 1,9814 0,1024
LS-ML 2,0039 1,9844 0,0286 2,0159 1,9875 0,0171

WLS-ML 1,9996 1,9984 0,0271 2,0030 1,9978 0,0069
LS-WLS-ML 1,9987 1,9809 0,0214 2,0024 1,9942 0,0045

100

LS 2,0109 1,8982 0,0608 2,0095 1,9671 0,0128
WLS 1,9958 1,9624 0,0475 2,0032 1,9892 0,0099
ML 1,9892 2,0228 0,0361 2,0024 2,0050 0,0072

LS-WLS 2,0001 1,9517 0,0305 2,0047 1,9860 0,0063
LS-ML 1,9908 1,9843 0,0255 2,0035 1,9941 0,0059

WLS-ML 1,9915 1,9992 0,0274 2,0020 1,9999 0,0058
LS-WLS-ML 1,9907 1,9791 0,0207 2,0017 1,9932 0,0047

250

LS 2,0227 1,9046 0,0638 2,0075 1,9629 0,0124
WLS 2,0074 1,9658 0,0492 2,0020 1,9901 0,0101
ML 2,0006 2,0298 0,0392 2,0002 2,0041 0,0073

LS-WLS 2,0103 1,9551 0,0331 2,0036 1,9849 0,0063
LS-ML 2,0017 1,9894 0,0271 2,0005 1,9931 0,0056

WLS-ML 2,0022 2,0019 0,0287 2,0008 1,9996 0,0059
LS-WLS-ML 2,0005 1,9827 0,0223 2,0006 1,9926 0,0046

Pop. Size Method
n=1000 n=2500

Scale Shape def Scale Shape def

50

LS 2,0027 1,9759 0,0058 2,0030 1,9905 0,0023
WLS 1,9992 1,9905 0,0046 2,0096 1,9964 0,0701
ML 1,9984 1,9991 0,0034 2,0006 2,0021 0,0015

LS-WLS 2,0034 1,9823 0,0060 2,0106 1,9891 0,0379
LS-ML 2,0136 1,9827 0,0186 2,0136 1,9893 0,0123

WLS-ML 1,9993 1,9945 0,0034 2,0016 1,9986 0,0019
LS-WLS-ML 1,9992 1,9918 0,0026 2,0023 1,9974 0,0014

100

LS 2,0041 1,9787 0,0062 2,0028 1,9908 0,0024
WLS 2,0006 1,9948 0,0050 2,0011 1,9993 0,0019
ML 2,0000 2,0011 0,0037 2,0006 2,0029 0,0015

LS-WLS 2,0021 1,9903 0,0033 2,0019 1,9963 0,0013
LS-ML 2,0012 1,9942 0,0032 2,0020 1,9983 0,0015

WLS-ML 2,0002 1,9990 0,0030 2,0007 2,0014 0,0012
LS-WLS-ML 2,0001 1,9950 0,0024 2,0006 1,9988 0,0009

250

LS 2,0032 1,9794 0,0058 2,0024 1,9899 0,0023
WLS 1,9998 1,9960 0,0049 2,0007 1,9994 0,0020
ML 1,9989 2,0033 0,0034 2,0001 2,0023 0,0014

LS-WLS 2,0007 1,9921 0,0029 2,0011 1,9971 0,0011
LS-ML 1,9992 1,9962 0,0026 2,0003 1,9986 0,0011

WLS-ML 1,9993 2,0002 0,0028 2,0002 2,0012 0,0011
LS-WLS-ML 1,9992 1,9962 0,0022 2,0002 1,9988 0,0008
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Table 5. Simulation results for the estimation of the parameters (η, θ) = (2, 3).

Pop. Size Method
n=100 n=500

Scale Shape def Scale Shape def

50

LS 2,0151 2,8683 0,1140 2,0055 2,9426 0,0236
WLS 2,0123 2,9428 0,1264 2,0044 2,9752 0,0306
ML 2,0060 3,0542 0,1006 2,0009 3,0005 0,0116

LS-WLS 2,0092 2,9294 0,0551 2,0040 2,9664 0,0136
LS-ML 2,0090 2,9779 0,0557 2,0042 2,9785 0,0147

WLS-ML 2,0032 3,0072 0,0483 2,0014 2,9897 0,0091
LS-WLS-ML 2,0036 2,9768 0,0354 2,0012 2,9842 0,0065

100

LS 2,0173 2,8546 0,1149 2,0046 2,9484 0,0247
WLS 2,0081 2,9442 0,0820 2,0000 2,9910 0,0187
ML 2,0025 3,0489 0,0681 1,9996 3,0072 0,0131

LS-WLS 2,0104 2,9326 0,0496 2,0014 2,9800 0,0094
LS-ML 2,0047 2,9816 0,0404 2,0004 2,9903 0,0087

WLS-ML 2,0049 3,0019 0,0437 1,9998 2,9997 0,0101
LS-WLS-ML 2,0038 2,9716 0,0308 2,0001 2,9897 0,0066

250

LS 2,0153 2,8439 0,1151 2,0033 2,9489 0,0228
WLS 2,0053 2,9367 0,0816 1,9988 2,9882 0,0180
ML 2,0005 3,0331 0,0582 1,9986 3,0046 0,0122

LS-WLS 2,0077 2,9262 0,0471 2,0000 2,9791 0,0092
LS-ML 2,0013 2,9776 0,0356 1,9990 2,9880 0,0082

WLS-ML 2,0015 2,9960 0,0398 1,9987 2,9980 0,0091
LS-WLS-ML 2,0013 2,9695 0,0277 1,9986 2,9881 0,0064

Pop. Size Method
n=1000 n=2500

Scale Shape def Scale Shape def

50

LS 2,0028 2,9647 0,0125 2,0015 2,9830 0,0045
WLS 2,0002 2,9914 0,0094 2,0004 2,9979 0,0033
ML 1,9997 3,0014 0,0061 1,9999 3,0021 0,0022

LS-WLS 2,0033 2,9781 0,0124 2,0112 2,9829 0,0950
LS-ML 2,0069 2,9783 0,0202 2,0053 2,9877 0,0110

WLS-ML 2,0007 2,9908 0,0114 2,0004 2,9972 0,0040
LS-WLS-ML 2,0001 2,9909 0,0045 2,0008 2,9943 0,0022

100

LS 2,0027 2,9689 0,0118 2,0021 2,9840 0,0044
WLS 1,9999 2,9982 0,0090 2,0006 2,9978 0,0036
ML 1,9996 3,0056 0,0063 2,0006 3,0007 0,0025

LS-WLS 2,0009 2,9889 0,0048 2,0013 2,9937 0,0019
LS-ML 2,0008 2,9939 0,0054 2,0013 2,9951 0,0022

WLS-ML 1,9997 3,0026 0,0047 2,0007 2,9989 0,0019
LS-WLS-ML 1,9998 2,9958 0,0033 2,0007 2,9965 0,0014

250

LS 2,0039 2,9657 0,0111 2,0021 2,9846 0,0045
WLS 2,0015 2,9961 0,0085 2,0008 2,9982 0,0036
ML 2,0007 3,0050 0,0056 2,0005 3,0031 0,0025

LS-WLS 2,0023 2,9876 0,0043 2,0011 2,9944 0,0018
LS-ML 2,0010 2,9942 0,0038 2,0007 2,9972 0,0017

WLS-ML 2,0009 3,0016 0,0041 2,0006 3,0014 0,0019
LS-WLS-ML 2,0010 2,9942 0,0028 2,0006 2,9974 0,0013
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Table 6. Simulation results for the estimation of the parameters (η, θ) = (3, 2).

Pop. Size Method
n=100 n=500

Scale Shape def Scale Shape def

50

LS 3,0235 1,8941 0,0764 3,0135 1,9644 0,0163
WLS 3,0015 1,9525 0,0656 3,0036 1,9909 0,0128
ML 2,9901 2,0229 0,0509 3,0028 2,0037 0,0106

LS-WLS 3,0103 1,9424 0,0492 3,0104 1,9823 0,0110
LS-ML 2,9954 1,9807 0,0399 3,0073 1,9915 0,0105

WLS-ML 2,9933 1,9985 0,0424 3,0031 1,9987 0,0087
LS-WLS-ML 2,9896 1,9757 0,0334 3,0034 1,9913 0,0076

100

LS 3,0331 1,8945 0,0797 3,0063 1,9660 0,0149
WLS 3,0105 1,9565 0,0614 2,9976 1,9916 0,0128
ML 2,9988 2,0224 0,0510 2,9959 2,0043 0,0099

LS-WLS 3,0146 1,9489 0,0450 3,0001 1,9858 0,0087
LS-ML 3,0012 1,9828 0,0396 2,9969 1,9926 0,0081

WLS-ML 3,0015 1,9967 0,0397 2,9962 1,9993 0,0083
LS-WLS-ML 2,9992 1,9763 0,0330 2,9957 1,9918 0,0069

250

LS 3,0367 1,9006 0,0756 3,0056 1,9621 0,0158
WLS 3,0165 1,9568 0,0625 2,9969 1,9910 0,0132
ML 3,0040 2,0260 0,0487 2,9944 2,0036 0,0101

LS-WLS 3,0200 1,9483 0,0442 2,9996 1,9851 0,0090
LS-ML 3,0041 1,9860 0,0366 2,9948 1,9917 0,0082

WLS-ML 3,0067 1,9998 0,0390 2,9954 1,9996 0,0084
LS-WLS-ML 3,0037 1,9776 0,0312 2,9949 1,9914 0,0069

Pop. Size Method
n=1000 n=2500

Scale Shape def Scale Shape def

50

LS 3,0056 1,9790 0,0072 3,0025 1,9917 0,0030
WLS 3,0003 1,9963 0,0060 2,9995 1,9995 0,0025
ML 2,9990 2,0029 0,0048 2,9995 2,0020 0,0020

LS-WLS 3,0044 1,9900 0,0051 3,0043 1,9938 0,0039
LS-ML 3,0045 1,9944 0,0066 3,0066 1,9966 0,0069

WLS-ML 3,0008 1,9992 0,0041 3,0007 2,0005 0,0021
LS-WLS-ML 3,0000 1,9960 0,0033 3,0006 1,9983 0,0018

100

LS 3,0066 1,9791 0,0075 3,0039 1,9891 0,0030
WLS 3,0004 1,9998 0,0063 3,0013 1,9987 0,0025
ML 2,9993 2,0047 0,0050 3,0004 2,0016 0,0019

LS-WLS 3,0023 1,9933 0,0042 3,0025 1,9959 0,0018
LS-ML 3,0007 1,9964 0,0043 3,0018 1,9980 0,0019

WLS-ML 2,9996 2,0022 0,0041 3,0008 2,0005 0,0016
LS-WLS-ML 2,9995 1,9964 0,0034 3,0009 1,9980 0,0014

250

LS 3,0061 1,9760 0,0077 3,0032 1,9887 0,0030
WLS 3,0009 1,9937 0,0062 3,0005 1,9983 0,0025
ML 2,9991 2,0015 0,0050 2,9996 2,0014 0,0019

LS-WLS 3,0022 1,9898 0,0043 3,0013 1,9962 0,0017
LS-ML 2,9993 1,9946 0,0042 2,9999 1,9978 0,0016

WLS-ML 2,9994 1,9985 0,0041 2,9999 1,9999 0,0016
LS-WLS-ML 2,9991 1,9943 0,0034 2,9999 1,9978 0,0013
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4. Application
In this section, the application of parameter estimation methods to the real data set is

investigated with the help of NSGA-II algorithm. Monthly measured wind speed data of
Basel/Switzerland, consisting of 743 observations, were used as a data set.

The Kolmogorov-Smirnov goodness of fit test was used to test the suitability of the
data set to the two-parameter Weibull distribution. According to KolmogorovSmirnov test
statistic value 0.04702 (p value: 0.07252), the Weibull distribution could be an appropriate
model for fitting these data. In this study, α = 0.05 is taken.

The best solution among Pareto points in the parameter space for LS-WLS, LS-ML,
WLS-ML and LS-WLS-ML given in Figures 9 and 10 is obtained by choosing the point
corresponding to the best logL value of the prediction points.

Figure 9. Pareto points in parameter space for LS-WLS, LS-ML and WLS-ML.

Figure 10. Pareto points in parameter space for LS-WLS-ML.

Parameter estimation values, logL and Akaike information criterion (AIC) for the con-
sidered methods are given in Table 7. It is clear that ML, LS-ML, WLS-ML and LS-WLS-
ML have the largest logL and also the smallest AIC values. Therefore, these cases make
the best parameter estimation besides giving trustworthy results. See also Figure 11, in
which a histogram and fitted densities are given.
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Table 7. Parameter estimation values, logL and AIC for wind speed dataset.

Method Scale Shape logL AIC
LS 13,5795 1,7414 -2437,8630 4879,7259

WLS 13,8614 1,7277 -2439,2178 4882,4355
ML 13,5472 1,7999 -2437,1186 4878,2372

LS-WLS 13,5795 1,7414 -2437,8637 4879,7274
LS-ML 13,5475 1,7999 -2437,1186 4878,2372

WLS-ML 13,5475 1,7999 -2437,1186 4878,2372
LS-WLS-ML 13,5464 1,7997 -2437,1186 4878,2373

Figure 11. Histogram and fitted densities for wind speed dataset.

5. Conclusion
In this study, based on ML and LS estimation methods, for the parameter estimation

of the two-parameter Weibull distribution, a multi-objective programming approach, is
proposed in which ML and LS methods are evaluated together in the estimation process.
NSGA-II method, which is a multi-objective heuristic optimization method, is used to
determine the variable values that will give the best value to the objective functions in
multi-objective optimization problems. Genetic Algorithm-based NSGA-II is one of the
most effective methods used in obtaining the Pareto solution set, and it reaches real Pareto
values faster by obtaining different solutions in the Pareto solution set due to its features
such as fast non-dominant sorting and crowding distance.

A comprehensive MC simulation study is conducted to test the performance of this
proposed approach. The simulation results show that the WLS-ML case makes the best
parameter estimation in most cases. In addition, a real data set was analyzed to show
the applicability of the proposed approach and gave the best estimation results in ML,
LS-ML and LS-WLS-ML cases as well as the WLS-ML case. Especially, the results show
that this proposed multi-objective programming approach is effective for estimating the
parameters of the two parameter Weibull distribution with respect to deficiency criteria.

As a future research, the proposed approach can be applied to estimate the parameters
of different statistical distributions.
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