

ARAŞTIRMA / RESEARCH

Epidemiologic analysis of pediatric maxillofacial trauma

Pediatrik maksillofasiyal travmaların epidemiyolojik analizi

İbrahim Tabakan¹D, Ömer Kokaçya¹D, Cengiz Eser¹D, Eyüp Gencel¹D

¹Cukurova University Faculty of Medicine, Department of Plastic Reconstructive and Aesthetic Surgery, Adana, Turkey

Cukurova Medical Journal 2021;46(3):1293-1299

Öz

Abstract

Purpose: This study aimed to analyze epidemiology and the treatment approaches for pediatric maxillofacial trauma patients who presented to the Department of Plastic, Reconstructive, and Aesthetic Surgery during 5 years period.

Materials and Methods: Age and gender distributions of the patients were determined. Duration of hospitalization, etiology of trauma, location of the fracture, and treatment methods applied was determined, and the results of these treatments and complications that developed were evaluated.

Results: The fractures were the most common at the age of 17 years (18.3%). The most common cause of trauma in patients operated for maxillofacial trauma was fall (48.3%). Most operations were performed in the age range of 12–17 years (50.6%), and panfacial fractures were the most frequently operated fracture localization (27.58%).

Conclusion: The simplest and most effective treatment should be applied for pediatric maxillofacial trauma. While conservative treatments may be sufficient in minimally displaced fractures, open reduction and internal fixation methods are applied in fractures with greater displacement. Fixation materials must necessarily be removed since they prevent bone growth. The use of bioabsorbable plates has been limited in recent years due to their high costs.

Keywords: Pediatric maxillofacial trauma, panfacial fracture, age, gender, fall

INTRODUCTION

Pediatric maxillofacial traumas are usually limited to soft tissue. However, compared to adults, facial bone fractures are rarely encountered in children. This is because the facial bones in children are less calcified than in adults, the maxillofacial region has a smaller size than the skull, and young children are especially Amaç: Bu çalışmanın amacı beş yıl boyunca Plastik, Rekonstrüktif ve Estetik Cerrahi Anabilim Dalına başvuran pediatrik maksillofasiyal travma hastalarının epidemiyolojisinin ve tedavi yaklaşımlarının analiz edilmesidir.

Gereç ve Yöntem: Hastaların yaş ve cinsiyet dağılımları belirlendi. Hastanede yatış süresi, travmanın etyolojisi, fraktürün yeri, uygulanan tedavi yöntemleri tespit edilirken bu tedavilerin sonuçları ve gelişen komplikasyonlar değerlendirildi.

Bulgular: Kırıkların en sık görüldüğü yaş 17'ydi (%18,3). Maksillofasiyal travma nedeniyle opere edilen hastalarda en sık travma nedeni düşmeydi (%48,3). En fazla opere edilen yaş aralığı 12-18 (%50,6), en fazla opere edilen kırık lokalizasyonu panfasiyal kırıklardı (%27,58).

Sonuç: Çocukluk çağı maksillofasiyal travmalarda en basit ve en etkili tedavinin uygulanması gerekir. Az deplasmanlı kırıklarda konservatif tedaviler yeterli olabilirken daha fazla deplasman olan kırıklarda açık redüksiyon ve internal tespit yöntemleri uygulanmaktadır. Kemik büyümesini engellediğinden dolayı tespit materyallerin mutlaka çıkarılması gereklidir. Son yıllarda eriyebilen plakların yüksek maliyetleri nedeniyle kullanımı kısıtlı olmaktadır.

Anahtar kelimeler: Pediatrik maksillofasiyal travma, panfasiyal fraktür, yaş, cinsiyet, düşme

better protected against trauma than adults. Since the maxillofacial sinuses are not aerated and the facial fat pads are more abundant in children, these patients require more severe trauma exposure than adults for maxillofacial fractures to occur¹⁻⁶.

Bone elasticity is quite high in the pediatric group. Thus, the possibility of greenstick fractures is

Yazışma Adresi/Address for Correspondence: Dr. Ömer Kokacya, Cukurova University Faculty of Medicine, Department of Plastic Reconstructive and Aesthetic Surgery, Adana, Turkey Email: kokacya@yahoo.com Geliş tarihi/Received: 19.04.2021 Kabul tarihi/Accepted: 29.07.2021 Çevrimiçi yayın/Published online: 30.07.2021

Kokaçya et al.

quite high in facial trauma. Since it is difficult to detect greenstick fractures with X-ray, computed tomography becomes very important in diagnosis⁵.

The main goal of treatment in both adult and childhood maxillofacial fractures are the anatomical and functional stabilization of the fractured Previously, closed reduction segments. and maxillomandibular fixation were the treatment of choice for pediatric maxillofacial fractures, including displaced fractures7. But recently, as in adults, closed reduction methods such as wire or arch bar fixation and open reduction methods are used. Since facial development continues in childhood, fixation methods are controversial in the treatment of maxillofacial fractures and conservative approaches are gaining importance. Therefore, the treatment approaches differ from adults.

Previous studies on pediatric maxillofacial traumas revealed that the etiologies of injury vary between countries. There is a lack of studies on this subject in Turkey. Çukurova University Faculty of Medicine Plastic, Reconstructive, and Aesthetic Surgery Clinic is an important center where the treatment of maxillofacial traumas is done frequently. This study aims to review the epidemiology, etiology, and trauma mechanisms of pediatric maxillofacial trauma patients in our region. In addition, we aimed to determine the treatment methods and costs, discuss the post-treatment complications, and contribute to the literature by comparing them with adult maxillofacial traumas.

MATERIALS AND METHODS

This study followed the Declaration of Helsinki on medical protocol and ethics and the Regional Ethical Review Board approved the study (14.02.2020/96). Eighty-seven patients in the pediatric age group who were operated on for facial bone fractures due to maxillofacial trauma Department of Plastic, Reconstructive and Aesthetic Surgery at our 2014 2018 university between and were retrospectively reviewed. Patients under the age of 18 years with orbital, zygoma, maxilla and mandibular fractures were included in the study. Then, patients' files were retrospectively evaluated according to age, gender, type of injury, location and number of fractures, administered treatments, intensive care hospitalization, and complications. The follow-up period ranged from 6 months to 3 years. 27 patients who were not treated surgically and followed up with

conservative treatment were excluded from the study. In addition, 4 patients with complex injuries due to gunshot wounds and subsequently repaired with soft tissue and bone flaps were also excluded from the study.

Procedure

Routine maxillofacial examinations of all patients were performed and 3D maxillofacial tomography was taken before the operation. In the infants, CT scans were performed under sedation. All operations were performed under general anesthesia. Titanium microplate and screw were used for fractures of the orbit, zygoma, maxilla and mandible, and wire or arch used for maxillomandibular bar were fixation. Postoperative antibiotics and analgesics were prescribed and a soft diet was recommended. After discharge, the patients were called to the outpatient clinic regularly for 4 weeks, and the maxillofacial examinations were repeated. If needed, fracture lines were checked with X-ray or maxillofacial CT in the postoperative period.

Statistical analysis

We used the IBM SPSS 25 program to analyze data (SPSS Inc., Chicago, IL, USA). We presented the mean according to the distribution of the data for quantitative variables and the number of cases (percentage) for qualitative ones. We used the Fisher exact test to compare categorical groups with each other. The reason for using the Fisher exact test is that the minimum theoretical frequency is below five. All analyzes were performed at the 95% confidence level.

RESULTS

A total of 65 males (74.7%) and 22 females (25.3%) were included in the study. The mean age of the patients was 10.78 years, and the youngest patient operated on was 6-months old. The fractures were most common at the age of 17 years (18.3%), and the most common cause at this age was motorcycle accidents. The most common cause of trauma in patients operated with a maxillofacial fracture in our clinic was fall in both genders (48.3%), the second most common cause was a motorcycle accident in boys (16.1%), and non-vehicle traffic accidents in girls (3.4%) (Table 1). When we classified the ages as 0–5, 6–11 and 12–17 years, the group that was most commonly operated due to facial fractures was

between 12- and 17-years old (50.6%); the second most commonly operated age group was between 6and 11-years old (28.7%); and the least commonly operated group was between 0 and 5-years old (20.7%). There was a significant relationship between age groups and gender (p=0.03). The majority of boys is higher than girls in all age groups. Especially in the 12-17 age group, this rate reaches the highest level with 86.4%.

Table 1. Distribution of etiology by gender

Etiology		Boy	Girl	Total
Fall	n	30	12	42
	%	34.5	13.8	48.3
In-vehicle traffic accidents	n	5	2	7
	%	5.7	2,3	8
Non-vehicle traffic accidents	n	4	3	7
	%	4.6	3.4	8
Motorcycle accident	n	14	2	16
	%	16.1	2.3	18.4
Other	n	12	3	15
	%	13.8	3.4	17.2
Total	n	65	22	87
	%	74.7	25.3	100

There was a significant relationship between the causes of trauma and age groups (p<0.001). Individuals who came to the hospital due to falls are mostly in the 0-5 age group. The second most cases of falls are seen in the 6-11 age group. The patients who admitted due to accidents (in-vehicle and out-of-vehicle traffic accidents and motorcycle accidents) were mostly observed between the ages of 12-17. Individuals who admitted to the hospital due to other conditions (beating and sports injuries) were mostly between the ages of 12-17.

The most commonly operated fracture localization was classified as panfacial fractures (fractures on at least 3 different locations) in 24 patients (27.58%), and the second most common localization was unilateral condylar fracture accompanied by symphysis or parasymphysis fracture (11.49%) in 10 patients, and unilateral corpus fracture accompanied by a ramus or angulus fracture in 10 patients (11.49%) (Table 2). Overall, mandibular fractures were the most common fractures (54 patients, 62%).

The length of hospital stay of the patients ranged from 1 day to 90 days. 11.5% of the patients were

followed up in intensive care in the preoperative or postoperative period.

Table	2.	Distribution	of	facial	bone	fractures	by
localiz	atic	on					

Location of fracture	n	%
Isolated single condyle	7	8.04
Isolated bilateral condyle	2	2.29
Symphysis	4	4.59
Parasymphysis	7	8.04
Orbital floor	6	6.89
Condyle+symphysis/parasy	10	11.49
mphysis		
Alveolus	1	1.14
Maxilla	3	3.44
Panfacial	24	27.58
Corpus+ ramus/angulus	10	11.49
Corpus+parasymphysis	6	6.89
Bilateral condyle+	5	5.74
mandibular		
Parasymphysis+ orbita	2	2.29
Total	87	100

Table 3. Distribution of patients by the operation methods

Operation	n	%
Arch bar	12	13.79
Open reduction-internal fixation	31	35.63
Closed reduction of zygoma + open reduction-internal fixation	2	2.29
Arch bar + open reduction internal fixation	22	25.28
Intermaxillary fixation screw + open reduction internal fixation	4	4.59
Condylectomy + open reduction internal fixation + arch bar	1	1.14
Open reduction internal fixation + arch bar / intermaxillary fixation with different operation	3	3.44
other	5	5.74
gap arthroplasty + open reduction- internal fixation + arch bar	1	1.14
Arch bar + intermaxillary fixation screw with different operations	2	2.29
Cartilage graft/Medpor	4	4.59
Total	87	100

Operations were most commonly performed as open reduction internal fixation (35.6%) and arch bar application with open reduction internal fixation (25.3%). Other patients were operated on using methods such as closed reduction of zygoma, orbital floor repair (with autogenous or alloplastic material),

Kokaçya et al.

gap arthroplasty, intermaxillary fixation screw, and intermaxillary fixation (Table 3). In the postoperative follow-up of the patients, complications such as hematoma, bleeding, plate-screw exposition, displacement of the arch bar, and suture separation were observed.

DISCUSSION

According to a study performed by Grunwaldt et al. in 772 pediatric patients, the age range of 0–5 years is the age group in which facial fractures are the least common⁸. This is because they are under adult supervision, and fractures in this age group are due to daily activities. Children between the ages of 6 and 11 are the second group in which fractures are most common, and maxillofacial fractures generally result from motor vehicle accidents, games, and bicycle accidents in this age group. The age group of 12–17 years is the group in which facial fractures are most commonly detected in pediatric patients due to starting to drive cars, participation in sports activities, and involvement in incidents of violence are often encountered in this age group^{8, 9}.

In the present study, 22 of 87 children were girls (25.3%) and 65 of them were boys (74.7%). When the patients were divided into 3 different groups according to the same age ranges, the most commonly operated patient group was the age group of 12–17 years (50.6%), and the least commonly operated group was the age group of 0–5 years (20.7%). These results are similar to those seen in the study by Grundwalt et al. In addition, the most common cause of fracture of the facial bones in these patients was falls, which is consistent with the literature.

It is difficult to perform an optimal examination in pediatric patients, especially because of a lack of patient cooperation and communication at young ages. For this reason, imaging methods are important in the evaluation of fractures and computed tomography is usually used. Following an appropriate physical examination and stabilization of the patient, it is performed by taking into account intracranial and cervical spinal injuries, cranial bone fractures, soft tissue incisions, and abrasions, as well as body and extremity injuries. In this age group, CT examination should be requested at the slightest suspicion of a fracture⁹. Unlike adults, cranial and cervical spinal injuries are rare in this age group. In a study conducted by Xun et al., 2966 pediatric patients with craniomaxillofacial trauma have been examined, and accompanying cervical spinal damage has been detected in only 5 of them (0.169%), and the rarity of this condition in this age group compared to adults has been associated with anatomical differences¹⁰. We did not find any cervical spinal nerve damage in our patient group.

Considering the rapid healing of the facial skeleton, mostly conservative approaches are recommended in the literature for orbital and zygomatic fractures in children. In non-displaced or minimally displaced fractures, conservative treatment and follow-up are sufficient without surgical treatment. In the displaced, early fractures, closed reduction alone can be sufficient^{11, 12}. We treated 2 of our patients with closed reduction alone at this site. Patients with complete dissociation were treated with similar principles in adult age. In zygomatico-orbital fractures, open reduction, and internal fixation should be applied if diplopia and/or endophthalmitis are seen or if there are orbital wall changes. Orbital trapdoor fractures are orbital floor fractures that limit eve movements, lead to diplopia, and are characterized by herniation and compression of orbital contents. Early treatment is often recommended in these fractures. According to a study conducted by Gerbino et al., in the long-term follow-up of 24 patients operated for diplopia, residual diplopia has been detected in only 1 of 12 (8.3%) patients operated within the first 24 hours, and residual diplopia has been detected in 4 of 4 (100%) patients operated after 96 hours and later¹³. According to the results of this study, they have suggested that pediatric orbital trapdoor fractures are surgical emergencies that should be operated on within the first 24 hours. Our approach to these fractures is to treat them as soon as the general condition of the patient allows. Since recovery is rapid in children, the repair is recommended to be performed within the first 4 days. It should be kept in mind that late repairs, especially in the zygomaticoorbital region, may result in reduced treatment success and make recovery more difficult. In the reconstruction of the orbital floor fractures, nonresorbable alloplastic materials such as porous polyethylene, titanium mesh, polyester urethane, or resorbable alloplastic materials such as poly-L-lactide are used as well as autogenous tissues¹⁴⁻¹⁷. Because porous polyethylene implant (Medpor) is durable, it is used very often in orbital reconstruction. However, complications including inflammation, infection, cyst, and abscess have been widely reported in the

long-term¹⁸⁻²⁰. Although titanium mesh has advantages such as high biocompatibility and easy shaping, complications including orbital adhesion, limitation in eye movements, and diplopia have been reported²¹⁻²³. We used autogenous cartilage graft in 2 of the 4 patients that we operated on due to orbital floor fracture, and we used a porous polyethylene implant in 2 of them. Residual diplopia was observed in 1 patient and ectropion, which improved the following massage was found in 1 patient.

To avoid bone development problems in the future, it is important to make minimal intervention to the periosteum and muscle adhesions while treating fractures of the facial bones in children. Approaches in which fractures can be reduced and stabilized with minimal dissection should be adopted as a basic principle^{11, 24}. If rigid fixation has been applied in pediatric patients, the issue of removing plate screws is very controversial. In some publications, plate screws have been reported to cause regional growth restriction and removal is therefore needed, while in other publications it has been reported that removal would be unnecessary^{11, 12, 24, 25}. Haug et al. have reported that microplates can be used in periorbital fractures and that the growth of periorbital region ceases after 2 years of age and the microplates used in this region do not need to be removed²⁴. We use microplates in zygomatico-orbital fractures and do not remove the plates. In maxilla and mandible fractures, we performed secondary surgery for removal of the plates.

The maxilla is the least commonly injured bone in pediatric facial traumas²⁶. Due to greater flexibility of the facial bones, immature sinuses, and differences in teeth and tooth development, pediatric maxilla fractures are not similar to classical LeFort fracture types as in adults²⁷. Treatment of maxilla fractures is based on two basic requirements. The first is to avoid damaging bone growth, and the second is to achieve sufficiently stable fixation. During patient evaluation before treatment, life-threatening conditions are addressed with priority, as in any trauma. Airway, breathing, and circulation is evaluated. Head, neck, cervical spine, and soft tissues are examined. Bleeding control and intervention are performed. Greenstick fractures of the maxilla are more common in children, and a good recovery can be achieved with a conservative approach27. In the treatment of minimally displaced fractures, 2-3 weeks of closed reduction with maxillomandibular fixation is sufficient. Ivy loop is used to ensure occlusion.

Semirigid fixation should be applied in displaced fractures^{11, 28, 29}. We performed closed reduction with ivy loop or arch bar in minimally displaced maxilla fractures, and open reduction internal fixation with titanium microplates in displaced fractures. We performed the operations with as little dissection as possible, using minimal plate screws and trying not to damage the teeth. Since ivy loop and arch bar applications damage the teeth and gums, we have been recently performing intermaxillary fixation by placing a bracket system in older children.

Mandibular fractures are the most common fractures in pediatric facial traumas³⁰. The fracture was detected in at least one mandibular region in 54 of 87 patients treated in our clinic (panfacial fractures were evaluated independently from this group). The most common location for fracture of the mandible is condyle in children. In our series, 24 of 54 patients with mandibular fractures have at least one fracture in the condylar area (27.5% of all fractures). Children under the age of 3 with condylar trauma are at high risk of joint ankylosis. Inadequate treatment in condylar fractures can cause growth restriction, while excessive immobilization may lead to mandibular hypomobility³¹. Open reduction should be performed if occlusion cannot be achieved due to the fractured condylar segment, the condylar segment has been displaced toward the middle cranial fossa, or in the presence of a foreign body. Conservative approach may be applied in greenstick and minimally displaced fractures³²⁻³⁵. In addition, if the fracture is intracapsular, our approach is observation, soft diet, and physical therapy. In the greenstick and minimally displaced fractures of the mandibular angulus, body, ramus, and symphysis regions other than the condyle, we recommend observation and a soft diet as in the basic approaches. We use monocortical rigid fixation in displaced fractures.

In recent years, bioabsorbable plates made of polyglycolic acid and polylactic acid have been used in pediatric patients. These plates are preferred to prevent growth restriction in the facial bones, and because there is no need for a second surgery to remove them²⁴. In a study by Eppley, it is reported that fixation with a 1.5 mm bioabsorbable plate and at least 2 screws can be sufficient for stabilization in mandibular fractures. However, the difficulties in shaping bioabsorbable plates and their lower resistance make it difficult to use them in mandibular fractures. In zygomatic and orbital fractures, the large size of bioabsorbable plates makes it more difficult to

Kokaçya et al.

use them³⁶. Another factor that prevents the use of bioabsorbable plates is their high cost. The total cost of a single bioabsorbable plate (450 USD/piece) and 2 bioabsorbable screws (125 USD/piece) is 700 USD for a simple mandibular fracture. The approximate cost of a titanium plate (30 USD/piece) and 2 titanium screws (10 USD/piece) that can be used in the same type of fracture is 50 USD. We prefer titanium plates due to the high cost of bioabsorbable plates and we perform a second surgery to remove the plates.

This study has some limitations. First, the relationship between the etiology of the injuries and the localization of the fractures could not be revealed. In addition, the fact that different surgeons evaluated the patients over the years and their treatment approaches could vary between medical staff.

In conclusion, pediatric maxillofacial traumas are less common than in adults. In this patient group, the primary treatment approach is conservative, and if surgical treatment is indicated, the simplest and most effective method should be chosen. To avoid problems in bone development in the subsequent years, it is necessary to cause minimal damage to the tissues, to perform minimal dissection, and to protect especially the locations of adhesion of the muscles and the periosteum as much as possible. In recent years, the use of bioabsorbable plates in the internal fixation of maxillofacial fractures has become widespread. However, these plates cannot be used in our clinic due to their high costs; titanium plates are preferred instead, and these plates are removed in a secondary surgery after 2-3 months.

Hakem Değerlendirmesi: Dış bağımsız.

REFERENCES

- Chandra SR, Zemplenyi KS. Issues in pediatric craniofacial trauma. Facial Plast Surg Clin North Am. 2017;25:581-91.
- Gassner R, Tuli T, Hächl O, Moreira R, Ulmer H. Craniomaxillofacial trauma in children: a review of 3,385 cases with 6,060 injuries in 10 years. J Oral Maxillofac Surg. 2004;62:399-407.
- Vyas RM, Dickinson BP, Wasson KL, Roostaeian J, Bradley JP. Pediatric facial fractures: current national incidence, distribution, and health care resource use. J Craniofac Surg. 2008;19:339-49.
- Imahara SD, Hopper RA, Wang J, Rivara FP, Klein MB. Patterns and outcomes of pediatric facial fractures in the United States: a survey of the National Trauma Data Bank. J Am Coll Surg. 2008;207:710-6.
- Haug RH, Foss J. Maxillofacial injuries in the pediatric patient. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90:126-34.
- Hatef DA, Cole PD, Hollier LH, Jr. Contemporary management of pediatric facial trauma. Curr Opin Otolaryngol Head Neck Surg. 2009;17:308-14.
- Zimmermann CE, Troulis MJ, Kaban LB. Pediatric facial fractures: recent advances in prevention, diagnosis and management. Int J Oral Maxillofac Surg. 2006;35:2-13.
- Grunwaldt L, Smith DM, Zuckerbraun NS, Naran S, Rottgers SA, Bykowski M et al. Pediatric facial fractures: demographics, injury patterns, and associated injuries in 772 consecutive patients. Plast Reconstr Surg. 2011;128:1263-71.
- Braun TL, Xue AS, Maricevich RS. Differences in the management of pediatric facial trauma. Semin Plast Surg. 2017;31:118-22.
- Xun H, Lopez J, Darrach H, Redett RJ, Manson PN, Dorafshar AH. Frequency of cervical spine injuries in pediatric craniomaxillofacial trauma. J Oral Maxillofac Surg. 2019;7: 423-32.
- Posnick JC, Wells M, Pron GE. Pediatric facial fractures: evolving patterns of treatment. J Oral Maxillofac Surg. 1993;51:836-44.
- Bartlett SP, DeLozier JB, 3rd. Controversies in the management of pediatric facial fractures. Clin Plast Surg. 1992;19:245-58.
- Gerbino G, Roccia F, Bianchi FA, Zavattero E. Surgical management of orbital trapdoor fracture in a pediatric population. J Oral Maxillofac Surg. 2010;68:1310-6.
- Ellis E, 3rd, Tan Y. Assessment of internal orbital reconstructions for pure blowout fractures: cranial bone grafts versus titanium mesh. J Oral Maxillofac Surg. 2003;61:442-53.
- Cordewener FW, Bos RR, Rozema FR, Houtman WA. Poly(L-lactide) implants for repair of human orbital floor defects: clinical and magnetic resonance imaging evaluation of long-term results. J Oral Maxillofac Surg. 1996;54:9-13.

Yazar Katkıları: Çalışma konsepti/Tasarımı: İT, ÖK, CE, EG; Veri toplama: İT, ÖK, CE, EG; Veri analizi ve yorumlama: İT, ÖK, CE, EG; Yazı taslağı: İT, ÖK, CE, EG; İçeriğin eleştirel incelenmesi: İT, ÖK, CE, EG; Son onay ve sorumluluk: İT, ÖK, CE, EG; Teknik ve malzeme desteği: IT, ÖK, CE, EG; Süpervizyon: İT, ÖK, CE, EG; Fon sağlama (mevcut ise): yok.

Etik Onay: Bu çalışma için Çukurova Üniversitesi Tıp Fakültesi Girişimsel Olmayan Klinik Araştırmalar Etik Kurulundan 14.02.2020 tarih ve 96/26 sayılı karan ile etik onay alınmıştır.

Çıkar Çatışması: Yazarlar çıkar çatışması beyan etmemişlerdir. Finansal Destek: Yazarlar finansal destek beyan etmemişlerdir

Author Contributions: Concept/Design : İT, ÖK, CE, EG; Data acquisition: İT, ÖK, CE, EG; Data analysis and interpretation: İT, ÖK, CE, EG; Drafting manuscript: İT, ÖK, CE, EG; Critical revision of manuscript: İT, ÖK, CE, EG; Final approval and accountability: İT, ÖK, CE, EG; Technical or material support: İT, ÖK, CE, EG; Supervision: İT, ÖK, CE, EG; Securing funding (if available): n/a. Ethical Approval: Ethical approval was obtained for this study from the Çukurova University Faculty of Medicine Non-Invasive Clinical Research Ethics Committee with the decision dated 14.02.2020 and numbered 96/26.

Peer-review: Externally peer-reviewed.

Conflict of Interest: Authors declared no conflict of interest. Financial Disclosure: Authors declared no financial support

Cilt/Volume 46 Yıl/Year 2021

- Abumanhal M, Ben-Cnaan R, Feldman I, Keren S, Leibovitch I. Polyester urethane implants for orbital trapdoor fracture repair in children. J Oral Maxillofac Surg. 2019;77:126-31.
- Al-Sukhun J, Lindqvist C. A comparative study of 2 implants used to repair inferior orbital wall bony defects: autogenous bone graft versus bioresorbable poly-L/DL-Lactide [P(L/DL)LA 70/30] plate. J Oral Maxillofac Surg. 2006;64:1038-48.
- Ozturk S, Sengezer M, Isik S, Turegun M, Deveci M, Cil Y. Long-term outcomes of ultra-thin porous polyethylene implants used for reconstruction of orbital floor defects. J Craniofac Surg. 2005;16:973-7.
- Aryasit O, Ng DS, Goh ASC, Woo KI, Kim YD. Delayed onset porous polyethylene implant-related inflammation after orbital blowout fracture repair: four case reports. BMC Ophthalmol. 2016;16:94.
- Song X, Li L, Sun Y, Fan X, Li Z. Long-term infectious complications of using porous polyethylene mesh for orbital fracture reconstruction. Medicine (Baltimore). 2016;95:e3819.
- Al-Khdhairi OBH, Abdulrazaq SS. Is orbital floor reconstruction with titanium mesh safe? J Craniofac Surg 2017;28:e692-94.
- Yi WS, Xu XL, Ma JR, Ou XR. Reconstruction of complex orbital fracture with titanium implants. Int J Ophthalmol. 2012;5:488-92.
- Kersey TL, Ng SG, Rosser P, Sloan B, Hart R. Orbital adherence with titanium mesh floor implants: a review of 10 cases. Orbit. 2013;32:8-11.
- Haug RH, Cunningham LL, Brandt MT. Plates, screws, and children: their relationship in craniomaxillofacial trauma. J Long Term Eff Med Implants. 2003;13:271-87.
- Lin KY, Bartlett SP, Yaremchuk MJ, Grossman RF, Udupa JK, Whitaker LA. An experimental study on the effect of rigid fixation on the developing craniofacial skeleton. Plast Reconstr Surg.

1991;87:229-35.

- Anderson PJ. Fractures of the facial skeleton in children. Injury. 1995;26:47-50.
- 27. Yu J, Dinsmore R, Mar P, Bhatt K. Pediatric maxillary fractures. J Craniofac Surg. 2011;22:1247-50.
- Koltai PJ, Rabkin D. Management of facial trauma in children. Pediatr Clin North Am. 1996;43:1253-75.
- Iizuka T, Thorén H, Annino DJ, Jr., Hallikainen D, Lindqvist C. Midfacial fractures in pediatric patients. Frequency, characteristics, and causes. Arch Otolaryngol Head Neck Surg. 1995;121:1366-71.
- Iida S, Matsuya T. Paediatric maxillofacial fractures: their aetiological characters and fracture patterns. J Craniomaxillofac Surg. 2002;30:237-41.
- Lund K. Mandibular growth and remodelling processes after condylar fracture. A longitudinal roentgencephalometric study. Acta Odontol Scand Suppl. 1974;32:3-117.
- 32. Lindahl L. Condylar fractures of the mandible. I. Classification and relation to age, occlusion, and concomitant injuries of teeth and teeth-supporting structures, and fractures of the mandibular body. Int J Oral Surg. 1977;6:12-21.
- Lindahl L, Hollender L. Condylar fractures of the mandible. II. a radiographic study of remodeling processes in the temporomandibular joint. Int J Oral Surg. 1977;6:153-65.
- Feifel H, Albert-Deumlich J, Riediger D. Long-term follow-up of subcondylar fractures in children by electronic computer-assisted recording of condylar movements. Int J Oral Maxillofac Surg 1992;21:70-6.
- Thorén H, Iizuka T, Hallikainen D, Nurminen M, Lindqvist C. An epidemiological study of patterns of condylar fractures in children. Br J Oral Maxillofac Surg. 1997;35:306-11.
- Eppley BL. Use of resorbable plates and screws in pediatric facial fractures. J Oral Maxillofac Surg. 2005;63:385-91