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ABSTRACT

Objective: Hearing loss (HL) is one of the most prevalent chron-
ic conditions in children and has consequences in speech, lan-
guage, education, and social functioning which impede the qual-
ity of life. Due to the major involvement of the genetic factors in 
HL, especially non-syndromic HL (NSHL), genetic diagnosis and 
genetic counseling have a major impact on early management 
of the affected individuals and their families. Herein, we report 
the GJB2 gene variants and their frequencies in NSHL cohort at 
a tertiary health center between 2002-2021 to contribute for the 
future genetic counseling of Turkish NSHL patients. 

Materials and Methods: Two exons of the GJB2 gene were am-
plified in 402 NSHL patients by two separate PCR reactions and 
sequenced using the Sanger technique. 

Results: We found 13 different GJB2 variants in 35% (141/402) 
of the patients with NSHL. 53.9% were homozygous and 33.3% 
were compound heterozygous for the most common (59.21%) 
variant, c.35delG. Approximately 13% of the patients were found 
to carry the variants in the heterozygous state. The most fre-
quent GJB2 variant c.35delG was followed by c.71G>A (6.38%), 
c.-23+1G>A (3.54%) and c.233delG (2.48%). We found heterozy-
gous p.Asp50Glu (c.150C>A) alteration in four of eight patients 
with keratitis, ichthyosis, deafness (KID) and palmoplantar kera-
toderma (PPK) syndrome.

Conclusion: Our results further emphasize the well-known 
prevalance of the GJB2 c.35delG alteration being the most pre-

ÖZET

Amaç: İşitme kaybı, çocukluk çağındaki en önemli kronik sağlık 
sorunlarından biridir ve yaşam kalitesini konuşma, eğitim ve sos-
yal ilişki sorunlarına yol açarak azaltır. Özellikle non-sendromik 
işitme kaybında genetik faktörlerin rolü etkilenmiş kişi ve aileleri-
nin genetik tanı ve genetik danışma aşamalarında doğru yönlen-
dirilmesi açısından kilit bir rol oynar. Bu nedenle, non-sendromik 
işitme kaybı olan hasta ve ailelerinin önümüzdeki yıllarda genetik 
tanı ve danışmasına katkıda bulunmak amacıyla, bu çalışmada, 
2002-2021 yılları arasında sinirsel tip işitme kaybı tanısı alan has-
talardaki GJB2 gen varyantlarını ve sıklıklarını sunmaya çalıştık. 

Gereç ve Yöntem: GJB2 geninin iki ekzonu, 402 hasta DNA’sın-
da iki ayrı PCR ile çoğaltıldı ve Sanger yöntemi ile dizilendi.

Bulgular: Non-sendromik işitme kaybı olan olguların %35’inde 
(141/402) GJB2 geninde 13 farklı değişim saptadık. Hastaların 
%53,9’u en yaygın (%59,21) varyant olan c.35delG değişimini ho-
mozigot taşırken, %33,3’ü birleşik heterozigot olarak taşıyordu. 
Yaklaşık %13’ünde ise değişim heterozigot olarak belirlendi. Ça-
lışma grubumuzda en yaygın GJB2 varyantı olan c.35delG değişi-
mini sırasıyla c.71G>A (%6,38), c.-23+1G>A (%3,54) ve c.233delG 
(%2,48) değişimleri izlemiştir. Keratit-ihtiyoz-sağırlık (KID) ve pal-
moplantar keratoderma (PPK) sendromu tanılı sekiz hastanın dör-
dünde heterozigot p.Asp50Glu (c.150C>A) değişimi saptandı. 

Sonuç: Sonuçlarımız, Türkiye’deki non-sendromik işitme kaybı 
hastalarındaki c.35delG varyantının uzun zamandır bilinen bas-
kınlığını bir kez daha göstermektedir. Ayrıca, tek mutant alel 
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INTRODUCTION 

Hearing loss (HL) is one of the important health problems 
with social and psychological outcomes. Though both 
environmental and genetic factors are involved in the eti-
ology of HL, hereditary factors are responsible for more 
than 70% of the cases. HL is classified as syndromic and 
non-syndromic, depending on the presence or the ab-
sence of accompanying findings, respectively. Non-syn-
dromic HL (NSHL), which constitutes most of the cases 
(70-80%), is further subdivided by mode of inheritance as 
autosomal recessive, autosomal dominant, X-linked, and 
mitochondrial HL. Autosomal recessive NSHL (ARNSHL) 
constitutes 80% of NSHL (1). Bi-allelic variants in any 
one of the identified over 100 genes are known to cause 
ARNSHL. This considerable number of genes responsi-
ble for hearing loss shows the hearing mechanism’s com-
plex structure which involves channel proteins, integral 
membrane protein, adhesion molecules, enzymes and 
extracellular matrix components (2). However, the most 
frequent mutations causative for ARNSHL are found in 
the GJB2 gene. 

The GJB2 (CX26, GenBank M86849, OMIM: *121011) 
gene encodes connexin protein providing a chemical 
connection of the cell with neighboring cells or extracel-
lular space. The main task of GJB2 in the hearing system 
is to modulate the potassium ion recycling which is re-
quired for the action potentials of hair cells in the organ 
of Corti (3-6). Generally, loss-of-function mutations of the 
GJB2 gene cause autosomal recessive non-syndromic 
hearing loss (ARNSHL). In contrast, gain-of-function mu-
tations of the GJB2 gene are responsible for the autoso-
mal dominant keratitis, ichthyosis, deafness (KID) or pal-
moplantar keratoderma (PPK) syndrome, characterized 
by extensive hyperkeratotic lesions in the skin, keratitis 
leading to a loss of visual acuity and profound progres-
sive deafness (7).

Diversity in the clinical manifestations of GJB2 variants 
can mainly explain the genotype-phenotype correlation. 
The nonsense mutations causing early truncation and 
missense mutations preventing the formation of gap 
junctions may be responsible for profound hearing loss. 
Some other particular alterations do not impair the forma-
tion of functional gap junctions but reduce conductance 
levels and alter gating properties, causing mild or mod-
erate hearing loss (8-10). On the other hand, GJB2 muta-
tions like p.Asp50Glu (c.150C>A), p.Gly12Arg (c.34G>C), 

p.Ala40Val (c.119C>T), and p.Gly45Glu (c.134G>A) which 
are associated with KID/PPK do not seem to impair the 
gap junction formation, but they mildly affect gap junc-
tion channel properties (11, 12).

ARNSHL’s prevalence depends on the frequency of carri-
ers in the population. Knowing the frequency and types 
of mutation in a population allows early therapeutic in-
tervention. As a result of recent developments in genet-
ic technology, the diagnostic approach to patients with 
hearing loss now includes Whole Exome Sequencing 
(WES) after scanning of the GJB2 gene. Thus, for the ap-
propriate implementation of the GJB2 gene scanning in 
a population, the variant frequency data may need to be 
updated. In this regard, we aimed to investigate the fre-
quency and spectrum of GJB2 gene variants in our NSHL 
patients diagnosed with GJB2-related disease (ARNSHL). 

MATERIALS AND METHODS

The bilateral hearing-loss patients with clinical findings 
that suggest a possible traumatic or infectious causative, 
and unilateral hearing-loss patients were excluded from 
the study. The patients with a syndromic form of hearing 
loss, except for those with KID or PPK, were also excluded. 

Peripheral blood samples of 2 ml were collected upon 
approval of the patients and families for genetic testing. 
DNA isolations were performed by using commercial kits 
according to the instructions (Mammalian Blood and Cells 
and Tissue DNA Isolation Kit, Roche). Two exons of the 
GJB2 gene were amplified by three separate PCR reac-
tions using specific primers (Table 1). To perform an ef-
ficient sequencing, the second exon of the GJB2 gene, 
which has a relatively large size (681 bp), was amplified 
and sequenced with two separate PCRs. All PCR reac-
tions were carried out with 2.5 mM MgCl2, 0.2 µM of each 
primers, 0.2 µM of each dNTP, 1U Taq DNA polymerase 
(Thermo Fisher Scientific) and 100 ng genomic DNA. Pu-
rification of the PCR products was performed with Exonu-
clease and Alkaline Phosphatase enzymes (Thermo Fish-
er Scientific). Sanger sequencing reactions were carried 
out with an automated sequencer (ABI 3500). An analysis 
of sequencing data was performed with the SeqScape 
software (SeqScape v3.0) using the GJB2 reference re-
quence (NM_004004.6) fetched from the USCS Genome 
Browser (https://genome-euro.ucsc.edu/). The study was 
approved by the Ethics Committee of Istanbul University, 
Istanbul Faculty of Medicine (Date: 22.01.2021, No: 108).

dominant variant in the Turkish NSHL patients. The high rate of 
mono-allelic state could be considered as coincidental due to 
high allelic heterogeneity of NSHL, or possibly suggestive for 
digenic inheritance.

Keywords: Sensorineural hearing loss, GJB2 gene, c.35delG al-
teration, mutation frequency

saptanan hastaların oranı, non-sendromik işitme kaybının alelik 
heterojenitesi nedeniyle rastlantısal olarak değerlendirilebilece-
ği gibi, digenik kalıtımı da düşündürebilir.

Anahtar Kelimeler: Sinirsel tip işitme kaybı, GJB2 geni, c.35delG 
değişimi, mutasyon sıklığı
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RESULTS

Among 402 families with at least one member clinical-
ly diagnosed with ARNSHL based on pedigree, 35% 
(141/402) were found to carry the pathogenic variant in 
the GJB2 gene. Of these, 53.9% were homozygous, and 
33.3% were compound heterozygous for the identified 
variants. Approximately 13% of the patients were found 
to carry a single (mono-allelic) GJB2 variant (Table 2).

We identified 13 different GJB2 gene variants in our co-
hort (Table 2). The GJB2 gene variants most frequently 
observed were c.35delG (59.2%), c.71G>A (6.38%), c.-
23+1G>A (3.54%), c.233delC (2.48%) and c.358_360del-
GAG (1.77%). Five variants (c.35delG, c.71G>A, c.-
23+1G>A, c.358_360delGAG and c.233delC) were found 

in the homozygous state, seven were found to be com-
pound heterozygotes, c.35delG being the most frequent 
one. One patient was found to be compound hetero-
zygous, involving different alleles other than c.35delG. 
Eighteen (12.7%) of the patients were found to carry a sin-
gle GJB2 variant, most frequently (55%) being c.35delG. 

Allele (Figure 1) and genotype frequencies (Table 3) con-
sistently showed that c.35delG variant predominates the 
cohort either in homozygous or in compound heterozy-
gous state. The c.71G>A variant was the second most 
frequent one. 

In eight patients clinically diagnosed with KID syndrome 
four were found to carry c.150C>A (p. Asp50Glu). 

Table 1: Primers used to amplify non-coding and coding two exons of GJB2 gene

Primer Exon Sequence
Lenghth 

(bp)
Tm (oC)

Expected PCR 
product size (bp)

GJB2_F1
1

5’-GTGCGGTTAAAAGGCGCCA-3’ 19 66.4
265

GJB2_R1 5’-GGCAACCGCTCTGGGTCT-3’ 18 63.8

GJB2_F2-I
2

5’-CTCCCTGTTCTGTCCTAGCT-3’ 20 56.2
840

GJB2_R2_I 5’-GACTGAGCCTTGACAGCTGA-3’ 20 59.3

GJB2_F2-II
2

5’-CTCCCTGTTCTGTCCTAGCT-3’ 20 56.2
804

GJB2_R2-II 5’-CCCTCTCATGCTGTCTATTTC-3’ 21 56.5

bp: Base pair, Tm: Melting temparature 

Table 2: Patient allele counts of GJB2 variants revealed in the NSHL cohort

Mutation
Patient counts

Allele 
count

Allele
frequency

Reference
Homozygous

Compound 
heterozygous

Mono-allelic

c.35delG (p.G12Vfs*2) 67 23 10 167 76.82 13

c.71G>A (p.W24*) 3 12 0 18 8.19 14

c.-23+1G>A 2 3 3 10 4.56 15

c.233delC (p.L79Cfs*3) 2 3 0 7 3.18 16

c.358_360delGAG (p.E120del) 2 0 1 5 2.73 17

c.167delT (p.L56Rfs*26) 0 2 0 2 0.91 18

c.269T>C (p.L90P) 0 1 1 2 0.91 13

c.327_328delGG (p.E110Dfs*4) 0 1 0 1 0.45 19

c.439G>T (p.E147*) 0 1 0 1 0.45 20

c.94C>T (p.R32C) 0 1 0 1 0.45 21

c.487A>G (p.M163V) 0 0 1 1 0.45 22

c.551G>C (p.R184P) 0 0 1 1 0.45 18

c.239A>G (p.Q80R) 0 0 1 1 0.45 33

Total 76 (53.91%) 50 (33.33%) 18 (12.76%) 220
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DISCUSSION

Here we report, the variant spectrum and frequency of 

the GJB2 gene in NSHL patients with GJB2-related en-

tities (ARNSHL or KID/PPK). Our results were consistent 

with the previous studies conducted in Turkiye or in 

neighboring countries. The most frequent variant was 
c.35delG, which was identified in more than half of our 
patients. This mutation is the most common pathogen-
ic variant found among Caucasians, Mediterraneans, 
and different European populations (12, 23-27). Though 
c.35delG was reported as the most frequent alteration by 
different studies in various countries, its frequency was 
not the same among populations. The variable frequen-
cy of c.35delG among different populations can be ex-
plained by the founder effect. Many studies suggest that 
the c.35delG allele originated from South Europe, Italy 
(28). Interestingly, the frequency of this variant displays 
a geographic gradient as observed by its frequency de-
crease from Southern to Northern Europe and from West-
ern to Eastern Asia (29). This geographic gradient can be 

observed even in some individual countries. In Iran, for 
instance, the frequency of the c.35delG is highest in the 
North-West and lowest in the South-East populations, 
consistent with the findings of neighboring countries like 
Turkiye and Pakistan (30). A similar frequency range for 

Table 3: Patients with different GJB2 allele genotypes in the cohort

Genotype (HGVS*) Zygosity Patient count (%)

c.[35delG];[35delG] Homozygous 67 (56.78)

c.[35delG];[71G>A] Compound Heterozygous 12 (10.17)

c.[35delG];[35=] Heterozygous 10 (8.47)

c.[35delG];[233delC] Compound Heterozygous 3 (2.54)

c.[71G>A];[71G>A] Homozygous 3 (2.54)

c.[35delG];[-23+1G>A] Compound Heterozygous 3 (2.54)

c.[-23+1G>A];[-23=] Heterozygous 3 (2.54)

c.[358_360delGAG];[358_360delGAG] Homozygous 2 (1.69)

c.[35delG];[167delT] Compound Heterozygous 2 (1.69)

c.[233delC];[233delC] Homozygous 2 (1.69)

c.[-23+1G>A];[-23+1G>A] Homozygous 2 (1.69)

c.[358_360delGAG];[358_360=] Heterozygous 1 (0.85)

c.[35delG];[327_328delGG] Compound Heterozygous 1 (0.85)

c.[35delG];[439G>T] Compound Heterozygous 1 (0.85)

c.[35delG];[94C>T] Compound Heterozygous 1 (0.85)

c.[269T>C];[358_360 delGAG] Compound Heterozygous 1 (0.85)

c.[269T>C];[269=] Heterozygous 1 (0.85)

c.[487A>G];[487=] Heterozygous 1 (0.85)

c.[551G>C];[551=] Heterozygous 1 (0.85)

c.[239A>G];[239=] Heterozygous 1 (0.85)

*: Human Genome Variation Society (http://varnomen.hgvs.org/recommendations/DNA/)

Figure 1: Allele frequency of GJB2 variants identified in 
the cohort.
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c.35delG variant has been observed in different cities of 
Turkiye ranging from 5% to 53% (31). 

HL is a health problem, although being nonlethal it pos-
es life quality issues. Though the recent developments in 
HL treatment partly begin to overcome these limitations, 
the psychological outcomes of the disease can not be ig-
nored. The current solutions to this problem include ear-
ly diagnosis, management, follow-up, educational and 
social support for the families, genetic counseling, and 
possible cochlear implantation. Due to the high rate of 
heredity in HL, genetic counseling has a major impact on 
new cases before genetic testing. On the other hand, the 
high ratio of autosomal recessive inheritance calls atten-
tion to consanguineous marriages. Many studies suggest 
that the variability in the frequency of some GJB2 variants 
in different populations resulted from the founder effect 
for the frequent variants and consanguineous marriages 
for the rare variants (15, 29, 31). Within our cohort, five 
alterations in a homozygous state were consistent with 
their high frequency of consanguineous marriages in the 
population from Turkiye. As a result of high allele frequen-
cy, c.35delG was found in 87% and 46% of the patients 
at homozygous and compound heterozygous state, re-
spectively. These ratios may clinically have importance 
because c.35delG mutation has been shown to have 
significantly severe hearing impairment in homozygous 
patients, compared with 35delG/non-35delG compound 
heterozygotes (8). Interestingly, one of our patients who 
was in a compound heterozygous state had two different 
mutations (c.[269T>C;358_360delGAG]) other than the 
most frequent one (c.35delG). Taken together with the 
high ratio of compound heterozygosity, this finding sug-
gests that ARNSHL is a health problem not restricted to 
consanguineous marriages. 

Some GJB2 mutations reported previously from Turkiye 
were not found in our patient cohort (32). These variants 
include c.360_362delGAT (p.delE120), c.310_323del14, 
c.299_300delAT, c.517C>T (p.P173S) and c.238C>A 
(p.Q80K). This discrepancy supports the idea that the 
GJB2 variant spectrum and frequencies vary by geo-
graphic origins and the size of the cohorts. Even in the 
same cohort, the spectrum of variants can fluctuate by 
the method used and by the size of the cohort. For in-
stance, compared to our previous report, we observed 
in this present study an additional ten rare variants and 
one frequent variant (c.-23+1G>A) in the GJB2 gene due 
to the inclusion of the non-coding exon of GJB2 and the 
analysis of a higher number of patients (33). 

The finding that 12.7% of our patients had a single mu-
tant allele of the GJB2 gene suggests some possibili-
ties, like the presence of a second mutation that might 
be located in a non-coding or regulatory regions of the 
GJB2 gene. Another possibility is that the bi-allelic mu-

tations responsible for the disease might be located in 
a different gene other than the GJB2. In the latter case, 
the mutation we found in the GJB2 gene might be just 
a coincidental variant carried by the patient. However, 
digenic inheritance involving the GJB2 gene should 
also be considered to explain mono-allelic GJB2 gene 
variants in the patients. Digenic inheritance in ARNSHL 
was reported by previous studies (34, 35). Mono-allelic 
variant carriers of the GJB2 gene were shown to cause 
ARNSHL with the presence of other mono-allelic vari-
ants in another gene like GJB6, GJB3, MITF, TMPRSS3, 
GJB4, GJA1, and GJC3 (36-40). However, there are con-
flicting data regarding TMPRSS3/GJB2 digenic inheri-
tance (41). Despite all the supporting publications, the 
molecular mechanism underlying the digenic ARNSHL 
remains to be elucidated. Considering all these data, 
we can at least say that, to elucidate the molecular eti-
ology of ARNSHL in the patients with mono-allelic GJB2 
mutation, digenic inheritance should be kept in mind. 
For such patients, exome sequencing is presently rec-
ommended for genetic diagnosis. However, to confirm 
the digenic inheritance, a segregation analysis of the 
candidate variants in the patient’s family is also need-
ed. Besides, digenic inheritance carries a possibility of 
a lead to an incorrect exclusion of the variant in segre-
gation analysis. 

In addition to the patients with ARNSHL, we analyzed 
the GJB2 gene in the patients with KID/PPK syndrome. 
Of eight patients clinically diagnosed with KID/PPK, four 
were found to carry p.D50N (c.150C>A) variant in hetero-
zygous state. Though this study covered only the GJB2 
gene, variants in other connexin genes like GJB6 (CX30), 
GJB4 (CX30.3), GJB3 (CX31), and GJA1 (CX43) that are 
expressed in epidermis and appendages, are known to 
cause skin disorders (42). However, only GJB6 variants are 
known to cause KID/PPK or an overlapping Clouston syn-
drome (43). Like GJB2, GJB6 also has allelic heterogene-
ity, and pathogenic GJB6 variants can cause autosomal 
recessive and dominant deafness or type 2 ectodermal 
dysplasia 2 (Clouston type). Therefore, sequencing of the 
GJB6 gene should be included in the diagnostic algo-
rithm of the HL patients with skin lesions.

The GJB2 gene has two exons, and most pathogen-
ic GJB2 variants, including c.35delG, are located in the 
second exon of the gene. Therefore, sequencing of this 
exon is expected to detect most of the causative vari-
ants. Consistent with previous studies, sequencing of 
the second exon was sufficient for the diagnosis of most 
patients. However, our patients’ third most frequent mu-
tation (c.-23+1G>A) is located in the splicing site of the 
non-coding first exon. Sequencing of this non-coding 
exon is also required to increase the diagnostic yield of 
the patients with ARNSHL. 
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In summary, sequencing only the coding exons of the 
GJB2 gene would lead to molecular diagnosis in ap-
proximately 33% of the patients. Further, including the 
non-coding exon would yield an additional 2% diagnostic 
rate. To identify pathogenic variants in the remaining 65% 
of the cases, it seems necessary to implement NGS tech-
niques, due to the possible digenic inheritance and mul-
tigenic etiology of NSHL. Increasing the availability and 
decreasing the cost of the NGS have made it the most 
favorable technique for the diagnosis of genetic diseas-
es in the past years. Depending on the GJB2 mutation 
spectrum and frequency in a population, NGS seems to 
be a recommendable method after excluding the most 
frequent mutations by Sanger sequencing. It should be 
noted that the NGS technique may reveal some coinci-
dental variants that could be confusing for the clinician. 

The efficiency of NGS in the diagnosis of HL depends 
both on the cohort and the covered genes. Depending 
on the patient selection criteria (like ethnicity, with or 
without positive family history), a positive diagnostic rate 
was reported to range from 10 to 83% (44). Similarly, in 
a large multiethnic cohort including 1119 unrelated pa-
tients who were tested with NGS gene panel (targeted 
genomic enrichment and massively parallel sequencing), 
it was shown that screening of 89 genes increased the 
diagnostic rate by 2% compared to the screening of 66 
genes. This difference was stated to account for 4% of 
all positive diagnoses (45). Considering the remarkable 
contribution rate (18%) of gross copy number changes 
in hearing loss, we can deduce that the MLPA technique 
may also need to be implemented for the diagnostic al-
gorithm of NSHL (35). 

In conclusion, our update on NSHL cohort for GJB2-re-
lated entities has supported the previous knowledge 
about the most frequent GJB2 pathogenic variants and 
revealed the possibility of compound heterozygosity of 
the rare variants and potential digenic inheritance. 
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