

SUPPLEMENTAL MEDICINES-NUTRITIONS USED BY HEALTH PERSONNEL IN THEIR OWN COVID-19 TREATMENT SCHEDULE

Jale Akgol¹

¹Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Medical Pharmacology, Afyonkarahisar, Turkey

ORCID: J.A. 0000-0002-9163-3991

Corresponding author: Jale Akgol, E-mail: jale.akgol@afsu.edu.tr

Received: 11.12.2021; Accepted: 06.06.2022; Available Online Date: 29.09.2022 ©Copyright 2021 by Dokuz Eylül University, Institute of Health Sciences - Available online at https://dergipark.org.tr/en/pub/jbachs

Cite this article as: Akgol J. Supplemental Medicines-Nutritions Used by Health Personnel in their Own Covid-19 Treatment Schedule. J Basic Clin Health Sci. 2022; 6: 824-835.

ABSTRACT

Purpose: In this study, with a view to investigating drug use behaviors of healthcare personnel who had Covid-19 infection in the first 1 year of the pandemic, it was aimed to determine the additional drugs and nutritional supplements they used in their own treatment.

Material and Methods: This is a descriptive cross-sectional study. The data were obtained through an online survey voluntarily completed under pandemic conditions by doctors, dentists, nurses, pharmacists, and other health personnel who declared that they had Covid-19.

Results: The study consisted of 405 individuals. 98% of healthcare personnels preferred to support their treatment. The medicines and herbal products that the participants started to use by their own decisions, without the advice of the physician who examined them, and the frequency of their use were vitamin C 53.3%, vitamin D 48.1%, acetylsalicylic acid 26.7%, paracetamol 23%, zinc 26.4%, multivitamin 19%, acetylcysteine 14.8%, famotidine 14.3%, subcutaneous heparin 12.6%. As for herbal products, inhaling thyme oil was noted in 11.6%, drinking thyme oil 10.1%, consuming ginger 14.3% of the participants. Non-prescription support products were found to be beneficial in 44.4%.

Conclusion: Almost all of the participants took a supplement with the intention to support the treatment. The fact that one out of two participants declared that they benefited from over-the-counter supplements reveals that further studies are needed to support the rational use of over-the-counter products in the treatment of Covid-19.

Keywords: Covid-19, healthcare personnel, medicine, herbal products, nutritions

INTRODUCTION

The new type of Coronavirus (nCoV-2019, Covid-19) has become an important health crisis by affecting the whole world very shortly after it emerged in Wuhan, China in December 2019 (1). Covid-19 has infected more than 128 million people in 219 countries of the world and caused the death of more than 2.8 million people in one year since the declaration of Covid-19 as a global "pandemic" on March 11, 2020, (2). Significant negative effects were felt not only physically but also spiritually, socially, culturally, and

economically at a devastating level, and they still continue (3).

Covid-19 is the third epidemic of the coronavirus family after SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome). It followed the outbreaks of AIDS in 1981 in Central and South Africa, SARS in 2003 in Asia, Influenza (H1N1) in 2009, MERS originating in 2012 in the Middle East, and Ebola in 2014 in West Africa, and Zika Virus in 2016 in Brazilian//Brasil (4).

The virus directed scientists to seek solutions for the prevention and treatment of the disease from the moment it was diagnosed. The medicines that were tested and used in other viruses during previous outbreaks, but whose SARS-CoV-2 effectiveness was not yet investigated, received emergency approvals just at the beginning of the pandemic (5). Herbal and medicinal products with antiviral, immunomodulatory, and anti-inflammatory effects were evaluated in terms of their potential use, without sufficient evidence of their effectiveness on Covid-19. Countries published guidelines defining treatment protocols. At the point we have reached today, the vaccine is applied in large populations, but there is no curative treatment of Covid-19 with proven effectiveness and safety. Medications are used due to their partial contributions to morbidity, mortality, and hospitalization rates. More than 5000 drug trials have been completed or continue to be conducted as reported on Clinicaltrials.gov (6-7).

It requires a certain process to obtain the results in a scientific research. Misleading information with no evidence-based support, circulating in the field of uncertainties of this dangerous disease involves the risk of directing the individuals towards incorrect traditional methods of prevention or healing, or supplemental products. The World Health (WHO) defined Organization the spread of misinformation about Covid-19 as infodemic (8). Healthcare personnel, working under serious risk during the Covid-19 pandemic. is а more advantageous group in terms of accessing information and medicines. With a view to investigating the drug use behaviors in the first 1 year of the pandemic in a group of professional healthcare personnel, including physicians, nurses and auxiliary personnel, who had Covid-19 disease, it was aimed in this study to determine their treatment compliance and additional drugs and nutritional supplements that they used for their own treatment and reveal their scientific basis with the support of the literature.

MATERIAL AND METHODS

This is a descriptive cross-sectional study. The data were obtained through a 15-question online survey, completed voluntarily by the doctors, dentists, nurses, pharmacists, and other health personnel who declared that they had Covid-19. In order to find the necessary and sufficient sample size needed, the unknown prevalence was accepted as 50%, at 5% deviation, and 95% confidence level, and the

minimum number of people was calculated as 384 by the Open Epi program. The rate of failure to access to individuals was accepted as 20% and it was aimed to reach 460 health workers. In total, 405 people of the target group were reached. Ethics committee study was approval of the obtained from Afyonkarahisar Clinical Research Ethics Committee with the decision number 2021/11 and date 08.01.2021. In addition, the permission of the Ministry of Health was also obtained prior to the study, by applying to the Scientific Research Studies Platform on COVID-19 with the form numbered 2020-12-08T13 34 59. The surveys were completed before the start of the vaccination program in Turkey.

The survey constituted of questions including sociodemographic data, symptoms, presence of any chronic disease, Reverse Transcription–Polymerase Chain Reaction (RT-PCR) results, prescribed medicines, drugs that they started to use on their own, supplementary medicine, and whether they took the medicines or supplements on time, whether they discontinued treatment, and their experiences with medications.

The data were analyzed using the SPSS 21 (Statistical Package for the Social Sciences) package program. The data obtained in the study were expressed as numbers and percentages, and the non-conformity of the data to the normal distribution was evaluated with histogram graphics and the Kolmogorov-Smirnov test. The Chi-square test was used to compare qualitative data, and p<0.05 value was considered statistically significant.

RESULTS

The study consisted of 405 participants, where 78.3% were female and 21.7% were male, and the mean age was 39.31 years with a standard deviation of ± 8.9, the youngest was 21 and the oldest was 63 years old. Specialist doctors constituted 33.6% of the sample, nurses 23.5%, family practitioners 14.3%, academicians 9.6%, general practitioners 5.9%, and dentists, pharmacists, and other health personnel 18.7%. A positive RT-PCR test was noted by 84.4% of the volunteers, and 6.9% declared that they had asymptomatic Covid-19. Inpatient treatment was required in 8.9% of the participants. Muscle and joint pains were reported in 63.5%, loss of smell and taste in 56.3%, nasal discharge or congestion in 44%, severe headache in 38.3%, fever in 35.1%, sore throat in 28.6%, anorexia in 28.4%, lung involvement

		Age Groups									Chi-Square		
		21-30 31-40			41-50 5			1+	To	tal	Analysis		
		n	%	n	%	n	%	n	%	n	%	x ²	р
Favipiravir	Y	43	65,2	128	81,0	119	85,6	39	92,9	329	81,2		
	Ν	23	34,8	30	19,0	20	14,4	3	7,1	76	18,8	16,673	0,001
Hydroxychloroquine	Υ	12	18,2	34	21,5	30	21,6	8	19,0	84	20,7		
	Ν	54	81,8	124	78,5	109	78,4	34	81,0	321	79,3	0,454	0,929
Antibiotic/Quinolone	Y	4	6,1	20	12,7	28	20,1	11	26,2	63	15,6		
group	Ν	62	93,9	138	87,3	111	79,9	31	73,8	342	84,4	11,383	0,01
Antibiotic/	Υ	2	3,0	7	4,4	5	3,6	2	4,8	16	4,0		
Penicilin group	Ν	64	97,0	151	95,6	134	96,4	40	95,2	389	96,0	*	0,927
Antibiotic/ Uncertain	Υ	3	4,5	7	4,4	15	10,8	7	16,7	32	7,9		
Group	Ν	63	95,5	151	95,6	124	89,2	35	83,3	373	92,1	9.667	0.022
Remdesivir	Υ	0	0,0	0	0,0	1	,7	1	2,4	2	,5	.,	- / -
	Ν	66	100,0	158	100,0	138	99,3	41	97,6	403	99,5	*	0.142
Lopinavir-Ritonavir	Υ	0	0,0	1	.6	0	0,0	0	0,0	1	.2		
	Ν	66	100.0	157	99.4	139	100.0	42	100.0	404	, 99.8	*	1
Acetylcysteine	Y	8	12.1	29	18.4	24	17.3	7	16.7	68	16.8		
	Ν	58	87.9	129	81.6	115	82.7	35	83.3	337	83.2	1 33	0 722
Subcutaneous Heparin	Y	9	13.6	44	27.8	51	36.7	19	45.2	123	30.4	1,00	0,722
	Ν	57	86.4	114	72.2	88	63.3	23	54.8	282	69.6	16 231	0.001
Acetylsalicylic acid	Y	2	3.0	29	18.4	35	25.2	9	21.4	75	18.5	10,231	0,001
	N	64	97.0	120	81.6	104	74.8	33	78.6	330	81.5	1/ 010	0.002
Dipyridamole	Y	2	30	12.5	6	10 4	22	1	24	7	17	14,019	0,002
Dipyridamolo	N	64	97.0	157	,0 00 /	136	97.8	41	97.6	308	08.3	*	0.240
Vitamin D	Y	1/	21.2	107	25.0	150	32.4	12	28.6	112	27.7		0,349
Vitanini D	N	52	78.8	117	74 1	40	67.6	30	20,0 71 /	203	723	2 164	0.267
Vitamin C	Y	11	16.7	117	28.5	50	36.0	17	71, 4 40.5	123	30.4	3,104	0,307
Vitalilli O	N	55	93.3	112	20,5	80	64.0	25	40,5 50.5	282	60,4	10.010	0.017
Magnesium	V	55	7.6	10	63	10	7.2	20	1 9	202	67	10,210	0,017
Magnosiam	N	61	7,0	1/10	0,3	120	02.8	2 40	4,0	279	0,7	*	0.047
Zinc		7	92,4 10.6	20	93,7 10.7	129	92,0 19.0	40	9J,Z	570	14.2		0,947
2110	N	50	90.4	120	07.2	111	92.0	26	95.7	247	05 7	0.00	0 45 4
Famotidine	V	09	09,4	130	12.2	27	02,0	10	22 0	547	1/ 0	2,62	0,454
1 amounie	N	2	3,0	107	13,3	110	19,4	20	23,0	245	14,0	40 500	0.000
Colchicine		04	97,0	137	2.00	112	00,0	32	70,2	345	00,2	12,586	0,006
Colonicine	N	I CE	1,5	0 150	3,2	120	0,0	3 20	7,1	306	2,2		0.040
Corticostoroide		60	96,5	155	90,0	139	100,0	39	92,9	390	97,0	^	0,019
Conticosteroids	N	0	0,0	150	3,0	100	5,0	11	20,2	24	5,9		0.0004
Omora 3		00	100,0	152	96,2	132	95,0	31	73,8	301	94,1	^	0,0001
Offiega-5		0	0,0	450	1,3	3	2,2	10	0,0	5	1,2		
Nacasan druga far		66	100,0	156	98,7	130	97,8	42	100,0	400	98,8	*	0,772
chronic diseases		0	0,0	13	8,2	15	10,8	9	21,4	3/	9,1		0.00-
Deresstame		66	100,0	145	91,8	124	89,2	33	/8,6	368	90,9	14,897	0,002
Paracetamol	Y	29	43,9	/2	45,6	51	36,7	14	33,3	166	41,0		
New standard of the	N	37	56,1	86	54,4	88	63,3	28	66,7	239	59,0	3,688	0,297
inflammatory drugs	Y	8	12,1	12	7,6	22	15,8	5	11,9	47	11,6		
	Ν	58	87,9	146	92,4	117	84,2	37	88,1	358	88,4	4,913	0,178
x ²⁼ chi squared ;n= number; p=p value, Y= Yes, N= No, n= number													

Table 1. Drugs prescribed for the treatment of Covid 19- age relationship

in 23%, severe cough in 19.3%, and diarrhea in 15.3% of the participants.

Also, 25.4% of the participants declared that they had a chronic disease. The rate of those who use the necessary drugs for chronic diseases is significantly higher (14.6%) among family physicians and general practitioners (p<0.05). Favipiravir was prescribed to 81.2% of the participants. The rate of those who use the drug "Favipiravir" is significantly higher (92.9%) in the group over 51 years old, this rate is 65.2%, with the lowest in the 21-30 age group (p<0,05). Besides that, 20.7% stated that they were prescribed hydroxychloroquine, 15.6% a quinolone group antibiotic, 11.9% an antibiotic from the penicillin group or any group that they did not know the name. The antibiotic prescription rate was found to be significantly higher in the group over 51 years of age (p<0.05). Prescription rates of subcutaneous heparin, vitamin C, acetylsalicylic acid, famotidine, colchicine, and methylprednisolone were found to be significantly higher in the older age group (p<0.05) (Table-1). Furthermore, 41% noted that they were prescribed paracetamol, 30.4% subcutaneous heparin, 30.4% vitamin C, 26.9% vitamin D, 18.5% acetylsalicylic acid, 16.8% acetylcysteine, 14.8% famotidine, 14.3% zinc, 11.6% other nonsteroidal anti-inflammatory drugs, 6.7% magnesium, 5.9% corticosteroid, 2.2% anakinra, 1.7% dipyridamole, 1.2% omega 3. Additionally, tocilizumab use was reported by one patient, remdesivir by two, and lopinavir-ritonavir by one. As for the relationship between occupational fields and prescribed drugs, a significant dependency is observed between the use of supplemental heparin by specialist physicians and academicians (p<0.05). The rate of those who use subcutaneous heparin is significantly higher (40.6%) among those who are specialist doctors and academicians.

Of the healthcare professionals with Covid-19, 98% had a positive attitude to support their treatment regime. The participants also received drugs and herbal products on their own, without any advice by the physician they consulted, including vitamin C (53.3%), vitamin D (48.1%), acetylsalicylic acid (23%), (26.7%), paracetamol zinc (26.4%), magnesium (12.6%),multivitamin (19%), acetylcysteine (14.8%), famotidine (14.3%), subcutaneous (heparin 12.6%), probiotic-prebiotic containing products (11.1%), omega 3 (6.9%) and hydroxychloroquine (1.5%). As for herbal products, they noted inhaling thyme oil (11.6%), drinking thyme oil (10.1%), consuming ginger (14.3%), products containing black elderberry (5.9%), inhaling lavendermelissa-peppermint oil (4.2%), drinking black cumin oil (3.2%). They increased consuming garlic by 16.5% and kefir by 8.1%. About 5% of them used mixed teas including herbs such as olive leaves, green tea, and linden as well as bee products such as propolis and pastes recommended by herbalists. Moreover, 0.5% received homeopathy while 2.2% received ozone therapy. Table 2 shows the drugs-herbal products and occupational groups that people started on their own for treatment support and the situations in which a significant dependency relationship was found between them.

Although 91.4% of the volunteers declared that they paid attention to taking their medication regularly, 13.3% occasionally neglected to take their medications, while 17.3% stopped using them when they started to feel better. However, 11.4% declared that they stopped using their medication due to drugrelated reasons. As for non-prescription supplemental drugs, 44.4% of the participants benefited from them, 24.4% did not benefit at all, and 31.1% were not sure. Besides that, 4.9% stated that they misused their prescription drugs. The rate of saying "I agree" to the statement that I have benefited greatly from the supportive treatments I received without a prescription was significantly higher (54.9%) among those who were Family Physicians and General Practitioners (p<0.05). Drug-related adverse effects were not reported by 43.7%, but 34.3% experienced mild whereas 9.4% serious side effects. The relationship between occupational groups and drug experience is given in Table 3.

DISCUSSION

With the emergence of the Covid-19 outbreak, the absence of a proven standard antiviral treatment proved to be very challenging for the healthcare workers, fighting in the midst of the pandemic (9). The results of a meta-analysis published in May 2020 revealed that one out of every four healthcare staff working under pandemic conditions experienced anxiety-depression and one out of every three had insomnia (10). The World Health Organization reported that the incidence of Covid-19 infections among healthcare workers was 10% in the first 3 months of the pandemic, while it was below 5% in June 2020 and around 2.5% in September 2020 (11). According to an Italian study, 20% of healthcare staff working in Covid-19 clinics were infected in the first 2 months of the pandemic (12). Guidelines were

Table 2. Therapies you start yourself for the treatment of Covid-19

	Profession										
		Spec	ialist	Fam	nily	Nurs	es and				
	Doctor +		Physician+		other health				Chi-Square		
	Academic Doctor		Gen	eral	pers	sonnel	Total		Analysis		
			Practit	Practitioner							
		n	%	n	%	n	%	n	%	x ²	n
Hydroxychloroquine	Y		1.1	0	0.0	4	2.7		1.5	~	~
	Ĥ	173	98.9	82	100.0	144	97.3	399	98.5	*	0.313
Remdesivir	Υ	1	.6	0	0,0	0	0,0	1	.2		
	Н	174	99,4	82	100,0	148	100,0	404	99,8	*	1
Subcutaneous Heparin	Υ	28	16,0	15	18,3	8	5,4	51	12,6	11,21	
	Н	147	84,0	67	81,7	140	94,6	354	87,4	2	0,004
Acetylsalicylic acid	Υ	43	24,6	26	31,7	39	26,4	108	26,7		
	Н	132	75,4	56	68,3	109	73,6	297	73,3	1,466	0,481
Dipyridamole	Υ	2	1,1	0	0,0	0	0,0	2	,5		
	Н	173	98,9	82	100,0	148	100,0	403	99,5	*	0,682
Vitamin D	Υ	84	48,0	45	54,9	66	44,6	195	48,1		
	Н	91	52,0	37	45,1	82	55,4	210	51,9	2,238	0,327
Vitamin C	Y	95	54,3	49	59,8	72	48,6	216	53,3		
	Н	80	45,7	33	40,2	76	51,4	189	46,7	2,728	0,256
Magnesium	Y	26	14,9	9	11,0	16	10,8	51	12,6		
	H	149	85,1	73	89,0	132	89,2	354	87,4	1,437	0,487
Zinc	Y	51	29,1	28	34,1	28	18,9	107	26,4		
	H	124	70,9	54	65,9	120	81,1	298	73,6	7,469	0,024
Famotidine	Y	24	13,7	20	24,4	14	9,5	58	14,3		
	H	151	86,3	62	/5,6	134	90,5	347	85,7	9,679	0,008
Sniffing essential oils of plants such as	Y	8	4,6	3	3,7	6	4,1	1/	4,2	0,128	0,938
lavender, lemon baim, peppermint oli	H	167	95,4	/9	96,3	142	95,9	388	95,8	,	,
Paracetamol	Y	40	22,9	1/	20,7	36	24,3	93	23,0	-	0.004
Negeteneidel enti inflemenentene duran	H	135	//,1	65	79,3	112	/5,/	312	//,0	0,387	0,824
Nonsteroidal anti-inflammatory drugs		25	14,3	12	14,6	8	5,4	45	11,1	7.005	0.004
Apotylovotoino		150	00,7	10	00,4	140	94,0	360	00,9	7,095	0,021
Acetylcysteine	T L	30	17,1	10	22,0	126	0,1	245	14,0	0.226	0.000
Colchicipo		140	02,9	2	70,0	130	91,9	545	05,2	9,330	0,009
Colonicine		174	,0	2	2,4	146	08.6	400	08.8	*	0.256
Corticosteroids	V	3	99,4 1 7	5	97,0 6.1	140	90,0 7	400	30,0		0,330
Controsteroids	H	172	98.3	77	93.9	147	99.3	396	97.8	*	0.038
Omega-3	Y	13	7 4	9	11 0	6	<u> </u>	28	69		0,000
onlogu o	н	162	92.6	73	89.0	142	95.9	377	93.1	4 055	0 132
Multivitamins	Y	32	18.3	17	20.7	28	18.9	77	19.0	.,	0,102
	H	143	81.7	65	79.3	120	81.1	328	81.0	0.218	0.897
Inhaling thyme oil	Y	36	20.6	19	23.2	21	14.2	76	18.8	-,	
	Н	139	79.4	63	76.8	127	85.8	329	81.2	3.452	0.178
Drink thyme oil	Υ	17	9,7	11	13,4	13	8,8	41	10,1	,	
	Н	158	90,3	71	86,6	135	91,2	364	89,9	1,3	0,522
Drinking Black Seed Oil	Υ	4	2,3	4	4,9	5	3,4	13	3,2		
-	Н	171	97,7	78	95,1	143	96,6	392	96,8	*	0,504
Drinking Kefir	Υ	10	5,7	9	11,0	14	9,5	33	8,1		
	Н	165	94,3	73	89,0	134	90,5	372	91,9	2,601	0,272
Using probiotics and prebiotics	Υ	16	9,1	14	17,1	15	10,1	45	11,1		
	Н	159	90,9	68	82,9	133	89,9	360	88,9	3,78	0,151
Increasing garlic consumption	Υ	20	11,4	13	15,9	34	23,0	67	16,5		
	Н	155	88,6	69	84,1	114	77,0	338	83,5	7,776	0,02
Eating ginger		15	8,6	12	14,6	31	20,9	58	14,3		
Consuming Turmeric Using elderberry extract		160	91,4	70	85,4	117	79,1	347	85,7	8,976	0,011
		8	4,6	3	3,7	6	4,1	17	4,2		
		167	95,4	79	96,3	142	95,9	388	95,8	5,382	0,068
		13	7,4	9	11,0	2	1,4	24	5,9	10,01	0.00-
	H	162	92,6	73	89,0	146	98,6	381	94,1	5	0,007
Ozone Therapy		8	4,6	0	0,0	1	,7	9	2,2		0.004
2=_h;		167	95,4	82	100,0	147	99,3	396	97,8		0,024
x ²⁼ chi squared ;n= number; <i>p</i> = <i>p</i> value, Y= Yes, N= No, n= number											

		Specialist		Family		Nurses and					
		Doctor +		Physician+		other					
		Academic		General		health					
		Doctor		Practitioner		personnel		Total		Chi-Square Analysis	
		n	%	n	%	n	%	n	%	<i>x</i> ²	р
I have not	l agree	84	48,0	41	50,0	52	35,1	177	43,7		
experienced	I'm undecided	27	15,4	12	14,6	22	14,9	61	15,1		
any side effects with the drugs	I do not agree	64	36,6	29	35,4	74	50,0	167	41,2	8,364	0,079
I experienced	l agree	63	36,0	34	41,5	42	28,4	139	34,3		
mild side	I'm undecided	23	13,1	5	6,1	20	13,5	48	11,9		
to medication	I do not agree	89	50,9	43	52,4	86	58,1	218	53,8	6,587	0,159
I've had serious side effects with medication	l agree	17	9,7	5	6,1	16	10,8	38	9,4		
	I'm undecided	12	6,9	7	8,5	18	12,2	37	9,1		
	I do not agree	146	83,4	70	85,4	114	77,0	330	81,5	4,39	0,356
I have accidentally used drugs outside of the recommended form	l agree	8	4,6	3	3,7	9	6,1	20	4,9		
	I'm undecided	4	2,3	1	1,2	4	2,7	9	2,2		
	I do not agree	163	93,1	78	95,1	135	91,2	376	92,8	*	0 903
I benefited greatly from the supportive treatments I received without a	l agree	62	35,4	45	54,9	73	49,3	180	44,4		0,000
	I'm undecided	74	42,3	22	26,8	30	20,3	126	31,1		
	I do not agree										
		39	22,3	15	18,3	45	30,4	99	24,4		
prescription.										22,855	0,0001
Total		175	100,0	82	100,0	148	100,0	405	100,0		
x ²⁼ chi squared ;n											

Table 3. Occupational groups-drug experience relationship

prepared in some countries, in which some treatment protocols were recommended within the framework of the national diagnostic treatment guidelines. Almost all of the healthcare professionals (98%) who participated in this study, used another drug or herbal product in addition to the recommendations presented in these guidelines.

Hydroxychloroquine was the drug that became the topic at the first step. It was the first drug approved for immediate use in the treatment of SARS-Cov-2 due to its known immunomodulatory and antiinflammatory activity, and also because it was observed to prevent the fusion between viral and cellular membranes as well as viral replication inside the cell, during SARS-CoV-2 (13). Although it was studied in a very small sample, the mention of its effectiveness in Covid-19 made this drug the most popular drug at the beginning of the pandemic (14). Although its benefits have been controversial due to its potential risks, such as cardiac arrhythmiainducing effects as well as inconsistencies in clinical trial results, many countries including the USA, India

and Turkey included it in the treatment guidelines. A meta-analysis study compiling 15 studies conducted in 2019-2020 involving totally 10,659 patients, revealed that hydroxychloroguine can not improve clinical outcomes in Covid-19 treatment (15). The World Health Organization discontinued hydroxychloroguine/chloroguine of arm the SOLIDARITY study, carried out with a view to evaluating the effects of hydroxychloroquine, lopinavir/ritonavir, remdesivir, and interferon on 11,330 patients in 30 cities and 405 hospitals on 6 continents, due to the first results of the study published in June (on June 19, 2020), revealing the ineffectiveness of the drug (16). Hydroxychloroquine was excluded from the May 2021 update of Turkish treatment guidelines (17). In our study, one out of every 5 participants reported that they used this drug. Favipiravir usage rate was over 80%. It is noticeable that the rate of hydroxychloroquine use among healthcare professionals was considerably low. Favipiravir continues to be the used in the current treatment guidelines of many countries. Favipiravir, a

purine analogue prodrug, is a RNA-dependent RNA polymerase inhibitor approved for use in the treatment of influenza (18). А multicenter, randomized controlled, and prospective study published in November 2020 in Japan, showed that favipiravir led to a numerical reduction in viral load in RT-PCR results, of the swab samples taken on Day 6 from asymptomatic and mildly symptomatic Covid-19 patients (19). Again another study showed that favipiravir reduced viral load not only in the upper respiratory tract but also in the lungs (20). Many studies conducted with favipiravir indicated that it clinical improvement and reduced enhanced hospitalization rates (21-24). On the other hand, further randomized controlled trials are needed to determine the dose and the duration of treatment in critically ill groups, considering study designs so far including mostly the individuals with mild and moderate infections, and inadequate evidence values of some studies, as well as the limitations of the studies (25,26). Given that favipiravir was initiated in all Covid-19 positive cases, it is apparent that 18.2% of our sample did not use it. In this study, there is an increase in the rate of not using favipiravir, especially in the younger group.

The only drug approved by the FDA for treatment is Remdesivir It is an RNA polymerase inhibitor. It is recommended to be used in Covid-19 patients over 12 years of age and over 40 kg body weight and requiring hospitalization (27). It has not been licensed yet commercially available by the Ministry of Health in Turkey. Therefore, this drug was not discussed in detail in this study.

Another important finding of our study is that antibiotics containing the penicillin or quinolone group were initiated in 27.5% of our sample. Although secondary bacterial coinfection of Covid-19 is quite low, the rate of empirical antibiotic use is considerably high in Covid-19 cases. In our study, we see an increase in antibiotic use rates in the older age group. In a meta-analysis covering a period from May 2020 on and including 3338 patients, the rate of empirical antibiotic use was 71.9% although co-infection rate was determined as 3%, secondary bacterial infection as 14.3%, risk of infection in the intensive care unit as 8% (28). Every year, 700 000 people worldwide die as a result of getting infected with drug-resistant bacteria. Irrational drug use (IDU) is a serious condition that affects public health (29). In this respect, it is very important to prevent unnecessary antibiotic therapy in Covid- 19.

WHO recommends the use of steroids in severe and critical patients but not in mild cases, based on randomized controlled trials using steroids in the suppression of hyperinflammation of Covid-19 infection (30). It was determined that steroids were used at lower rates in our sample with respect to inpatients.

Famotidine is a drug that reduces gastric acid secretion. There are observational studies in the literature showing that Famotidine can reduce clinical deterioration associated with intubation or death in hospitalized Covid-19 patients (31). A randomized controlled trial is still ongoing in this topic (32). The rate of adding famotidine to their treatment was 14% in our sample group.

Although no curative agent has been found for the treatment of Covid-19 yet, symptomatic treatment has been the most common treatment approach. Today, we know that the cytokine storm is the main pattern determining the clinical picture in Covid-19 infection, through immunogenic damage on the endothelium and alveolar tissues (33). In this respect, hypotheses regarding the contribution of immunomodulatory agents to the treatment became a current issue. In particular, high-dose vitamin C (Ascorbic acid) was investigated in the treatment of Covid-19 due to its inhibitory roles on TNF alpha and IL-6 as well as its regulatory features in the proliferation of T cells, B cells and Natural Killer cells (34). There are studies in the literature showing that high-dose intravenous vitamin C can improve pulmonary functions and reduce the progression to acute respiratory distress syndrome in critically ill patients (35-37). There is no evidence that oral doses of vitamin C reduce the risk of SARS-CoV-2 infections in normal healthy populations. There is no sufficient evidence for oral administration of vitamin C, except in the elderly, people with low vitamin C levels, and high-energy exercisers (38,39). It was observed that one out of every two people participating in our study used vitamin C supplementation in their treatment.

Although studies indicate that unsaturated fatty acids, B group vitamins, minerals such as zinc, iron, selenium and prebiotic probiotic products have promising therapeutic values on possible supportive roles in Covid-19 prophylaxis and treatment due to their antioxidant, immunomodulatory, and immune functions-improving properties, this effect is not definitive. Completion of nutritional deficiencies can be corroborated for today. High morbidity and mortality rates were noted in groups with nutritional deficiencies. However, the concluding data suggest that Covid-19 prophylaxis or treatment should not be diet or micronutrients (40, 41). This study shows that those with Covid-19 infection added the mentioned support products to their treatment at high rates.

There are studies in the literature correlating the prognosis in Covid-19 with low levels of vitamin D in addition to the factors such as advanced age, male gender, obesity, and comorbidities (42-45). This study was not intended to investigate the results of vitamin D levels. More evidence is available in scientific studies regarding the effectiveness of vitamin D on Covid-19 in comparison to other supplementary treatments (46).

Thrombotic complications are common in Covid-19 patients. The main pathological feature of the SARS-CoV-2 virus is that it triggers the release of proinflammatory cytokines, activates the immune response, and leads to microvascular and macrovascular thrombosis and platelet aggregation via the coagulation cascade (47). The use of acetylsalicylic was questioned after some studies reported that using NSAIDs worsens the prognosis of Covid 19 (48). Acetylsalicylic acid, as an antiinflammatory, analgesic, antiviral and antiplatelet agent, has been a highly controversial drug. Studies revealed that it can reduce mortality and thrombotic side effects when used in the right patient subgroups. However, attention should be paid in its use in children due to the risk of Reye's syndrome and bleeding (49). It was determined in our study that acetylsalicylic acid use was high.

Inhaling thyme oil, lemon balm and peppermint oil and drinking black cumin were the most preferred herbal products in the treatment of Covid-19 among the participants. Essential oils are known to penetrate the viral membrane, causing disruption in the membrane structure and inactivating its entry into the host cell. Based on the results of their study examining the effectiveness of 221 phytochemicals and volatile components on SARS-CoV-2, Wen et al. demonstrated that volatile oils had a remarkable potential in inhibiting virus binding (via the inhibition of ACE-2) and virus replication (50,51).

In a study investigating the utility of herbal products as adjuvant therapy in symptomatic treatment, it was stated that they might be safe alternatives improving patients' well-being irrespective of their potential contribution in treatment. However, it is recommended not to be used as a treatment supplement without the advice of a physician. (52, 53) There are also positive publications in the literature regarding the use of ozone therapy in combination with other treatments in SARS-CoV-2, by inactivating the virus directly and reducing viral replication. More comprehensive studies are needed to determine the effective dose and duration. It should be considered that it is contraindicated in pregnant patients as well as the patients with uncontrolled hypothyroidism. (54,55) In our study, it was determined that ozone therapy was used to provide treatment support, even in a small number of people.

According to the results of the "Economic Burden of Covid-19 Treatment" study conducted by using the real data of 1056 Covid-19 patients in Turkey, the pandemic brought an incremental cost of 3.7 billion Turkish Lira to Turkey's health bill last year between March 16 and July 31 of 2020. In the study based on the diagnosis, testing, medication, and treatment expenses, the cost per person was determined as 405 TL for an outpatient and 10.004 TL for an inpatient (56). It seems to be an obvious fact that keeping drug prescriptions at a rational level will be beneficial in terms of cost. One out of every two people participating in the study declared that they did not benefit from the supplementary products taken without a prescription during their treatment. This study data should be supported by pharmacoeconomic studies.

The mean age of the health staff in our study was 39.2 years, and one out of every 4 participants declared that they had a chronic disease requiring regular medication. Although there were people who failed to take their medications or discontinued using them when they felt better in a serious disease such as Covid-19, as examples of potentially fatal mistakes, the rates in terms of treatment compliance were found to be rather high. Approximately 11.4% of the participants stated that they stopped their medications due to drug-related reasons. During the treatment process, drug-drug interactions and drugherbal product interactions should be revealed by pharmacovigilance studies.

In the initial times when the pandemic first appeared, WHO pointed out infodemic as another equally dangerous issue. Misinformation, likewise fear, has the potential to spread rapidly through social platforms (57). As a matter of fact, a study conducted in Turkey determined that almost all of the news circulating on the internet on 11-18 March 2020 were false (58). Healthcare workers constitute a group having the responsibility to reach the right information resources, in spite of being under the information bombardment and in a position to sort out the infollution. In this respect, the search of health workers for the right information sources throughout the Covid-19 pandemic can be evaluated in another study.

CONCLUSION

The world went through an important test in the first year of the Covid-19 pandemic, the disease was spreading worldwide causing panic, while its pathophysiology was still unknown and no specific treatment or vaccine was not found yet. Healthcare professionals played a leading role in the war against pandemic, while this process offered the opportunity to be isolated for many segments of the society in the context of mask, distance, and hygiene. In this respect, what they have used for their own treatment in terms of prophylaxis and treatment as well as their treatment compliance attitudes in terms of their responsibility of rational drug use became the subject of this study. As a result, healthcare professionals showed high compliance with the treatments given, almost all of the participants acted to support the prescribed treatment even though they did not know whether the supplements they used were effective or not, and many of them additionally used vitamins, minerals and herbal products. The fact that almost half of the users of supplemental products declared that they did not get an effective result, indicating that the economic outputs of the process are worth investigating. The limitation of this study was that it was organized as an online survey due to pandemic conditions.

Acknowledgments: None.

Author contribution: One author.

Conflict of interests: No conflict of interest was declared by the authors.

Ethical approval: Afyonkarahisar Health Sciences University Non-Interventional Clinical Research Ethics Committee (2021/11 - 08.01.2021).

Funding: The author declared that this study has received no financial support

Peer-review: Externally peer-reviewed.

REFERENCES

1. World Health Organization. https://www.who.int/emergencies/diseases/novel -coronavirus-2019/situation-reports. Retrived from: 04.04.2021

- Webpage.https://www.worldometers.info/corona virus/?utm_campaign=homeAdUOA?
 Si. Retrived from: 31.03.2021
- Aşkın R, Bozkurt Y, Zeybek Z. Covid-19 Pandemisi: Psikolojik Etkileri ve Terapötik Müdahaleler. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi 2020; 19(37): 304-318.
- Reperant L.A, and Osterhaus A. AIDS, Avian flu, SARS, MERS, Ebola, Zika... what next?. Vaccine 2017; 35(35 Pt A): 4470-4474. doi: 10.1016/j.vaccine.2017.04.082
- 5. Günay E. Klinisyen Gözüyle COVİD-19 Tedavisi. YIU Saglik Bil Derg 2020;1:18-23.
- Webpage.https://tr.euronews.com/2021/06/03/h angi-ulkede-kac-kisiye-covid-19-as-s-yap-ld. Retrived from: 04.04.2021
- Xu X, Ong YK, and Wang Y. Role of adjunctive treatment strategies in COVID-19 and a review of international and national clinical guidelines. Mil Med Res 2020; 7(1): 22
- 8. Şeker M, Özer A, Tosun Z et al., Covid-19 Pandemi Değerlendirme Raporu. Türkiye Bilimler Akademisi, 2020
- Bohlken J, Schömig F, Lemke MR, Pumberger M, Riedel-Heller SG. COVID-19 Pandemic: Stress Experience of Healthcare Workers - A Short Current Review. Psychiatr Prax, 2020; 47(4): 190-197
- Pappa S, Ntella V, Giannakas T, Giannakoulis VG, Papoutsi E, Katsaounou P. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and metaanalysis. Brain Behav Immun 2020; 88: 901-907
- 11. World Health Organization, https://www.who.int/docs/defaultsource/coronaviruse/situationreports/20210202_weekly_epi_update_25.pdf. Retrived from 15.04.2021
- Lahner E, Dilaghi E, Prestigiacomo C et al. Prevalence of Sars-Cov-2 Infection in Health Workers (HWs) and Diagnostic Test Performance: The Experience of a Teaching Hospital in Central Italy. International Journal of Environmental Research and Public Health 2020; 17(12): p. 4417
- Terzioğlu Bebitoğlu B., Oğuz E., Hodzic A., Hatiboğlu N., Kam Ö. Klorokin/Hidroksiklorokin: COVID-19 tedavisi ile gündeme gelen eski bir ilaca farmakolojik bakış. Anadolu Kliniği Tıp

Bilimleri Dergisi 2020; 25(Special Issue on COVID 19): 204-215

- 14. Gautret P, Lagier JC, Parola P et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949
- 15. Ramireddy A, Chugh H, Reinier K et al. Experience With Hydroxychloroquine and Azithromycin in the Coronavirus Disease 2019 Pandemic: Implications QT for Interval Heart J Am Assoc 2020; Monitoring. 9(12):e017144
- WHO Solidarity Trial Consortium, Pan H, Peto R et al. Repurposed Antiviral Drugs for Covid-19 -Interim WHO Solidarity Trial Results. N Engl J Med 2021; 384(6): 497-511
- 17. Webpage. T.C.Sağlık Bakanlığı.https://covid19.saglik.gov.tr/TR-66301/covid-19-rehberi.html. Retrived from 01.06.2021
- Shannon A, Selisko B, Le NT et al. Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nature communications 2020; 11(1): 1-9
- Doi Y, Hibino M, Hase R et al. A Prospective, Randomized, Open-Label Trial of Early versus Late Favipiravir Therapy in Hospitalized Patients with COVID-19. Antimicrob Agents Chemother 2020; 64(12)
- Shiraki K, Daikoku T. Favipiravir, an antiinfluenza drug against life-threatening RNA virus infections. Pharmacology & therapeutics 2020; 209: 107512
- Doi K, Ikeda M, Hayase N, Moriya K, Morimura N, COVID-UTH Study Group. Nafamostat mesylate treatment in combination with favipiravir for patients critically ill with Covid-19: a case series. Crit Care 2020; Jul 3;24(1):392.
- 22. Udwadia ZF, Singh P, Barkate H et al.Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, openlabel, multicenter, phase 3 clinical trial. Int J Infect Dis 2021;103: 62-71
- Shrestha DB, Budhathoki P, Khadka S, Shah PB, Pokharel N, Rashmi P. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and metaanalysis. Virology Journal 2020; 17(1):141

- 24. Khamis F, Al Naabi H, Al Lawati A et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int J Infect Dis 2021; 102: 538-543
- Ye Z, Rochwerg B, Wang Y et al. Treatment of patients with nonsevere and severe coronavirus disease 2019: an evidence-based guideline. Canadian Medical Association Journal, 2020; 192(20):E536-E545
- 26. Indari O, Jakhmola S, Manivannan E, Jha HC. An Update on Antiviral Therapy Against SARS-CoV-2: How Far Have We Come? Front Pharmacol 2021; 12: 632677
- Humeniuk R, Mathias A, Cao H et al. Safety, Tolerability, and Pharmacokinetics of Remdesivir, An Antiviral for Treatment of COVID-19, in Healthy Subjects. Clin Transl Sci 2020; 13(5): 896-906
- Langford BJ, So M, Raybardhan S et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and metaanalysis. Clinical Microbiology and Infection 2020; 26(12): 1622-1629
- 29. Amundstuen Reppe L, Spigset O, Schjøtt J. Drug Information Services Today: Current Role and Future Perspectives in Rational Drug Therapy. Clin Ther 2016; 38(2): 414-21.
- Çakır M, Çakır M. Covid-19 Hastalarinda Kortikosteroid Tedavisi: Ne Zaman Ve Nasıl? Sdü Tıp Fakültesi Dergisi,2021; 28(Özel Sayı 1 (COVID-19 Özel Sayısı)): 197-208.
- Freedberg DE, Conigliaro J, Wang TC et al. Famotidine Use Is Associated With Improved Clinical Outcomes in Hospitalized COVID-19 Patients: A Propensity Score Matched Retrospective Cohort Study. Gastroenterology 2020; 159(3): 1129-1131.e3.
- 32. Samimagham HR, Hassani Azad M, Haddad M, Arabi M, Hooshyar D, KazemiJahromi M. The Efficacy of Famotidine in improvement of outcomes in Hospitalized COVID-19 Patients: A structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21(1): p. 848.
- Xu Z, Shi L, Wang Y et al.,Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine 2020; 8(4): 420-422. 10.1016/S2213-2600(20)30076-X

- 34. Härtel C, Strunk T, Bucsky P, Schultz C. Effects of vitamin C on intracytoplasmic cytokine production in human whole blood monocytes and lymphocytes. Cytokine 2004; 27(4-5):101-106
- Liu F, Zhu Y, Zhang J, Li Y, Peng Z. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial. BMJ Open 2020; 10(7): e039519
- 36. Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Critical Care 2017; 21(1):1-10
- Waqas Khan HM, Parikh N, Megala SM, Predeteanu GS. Unusual early recovery of a critical COVID-19 patient after administration of intravenous vitamin C. The American journal of case reports 2020; 21: e925521-1
- Cerullo G, Negro M, Parimbelli M. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19. Front Immunol 2020; 11: p. 574029
- Milani GP, Macchi M, Guz-Mark A. Vitamin C in the Treatment of COVID-19. Nutrients 2021; 13(4):1172
- 40. Richardson DP, Lovegrove JA. Nutritional status of micronutrients as a possible and modifiable risk factor for COVID-19: a UK perspective. Br J Nutr 2021; 125(6):678-684
- 41. Gröber U, Holick MF. The coronavirus disease (COVID-19) - A supportive approach with selected micronutrients. Int J Vitam Nutr Res 2021;92(1):13-34
- 42. Marazuela M, Giustina A, Puig-Domingo M. Endocrine and metabolic aspects of the COVID-19 pandemic. Reviews in Endocrine and Metabolic Disorders 2020; 21(4):495-507
- 43. Guan WJ, Ni ZY, Hu Y et al. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine 2020;30;382(18):1708-1720
- 44. Lanham-New SA, Webb AR, Cashman KD et al.Vitamin D and SARS-CoV-2 vurus/COVID-019 disease. BMJ Nutrition, Prevention and Health 2020; 13;3(1):106-110
- 45. Teymoori-Rad M, Marashi SM. Vitamin D and Covid-19: From potential therapeutic effects to unanswered questions. Reviews in medical virology 2021; 31(2):e2159

- 46. Cámara M, Sánchez-Mata MC, Fernández-Ruiz V, Cámara RM, Cebadera E, Domínguez L. A Review of the Role of Micronutrients and Bioactive Compounds on Immune System Supporting to Fight against the COVID-19 Disease. Foods 2021; 14;10(5):1088
- Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362
- 48. Day M. Covid-19: ibuprofen should not be used for managing symptoms, say doctors and scientists. BMJ 2020;17;368:m1086
- Bianconi V, Violi F, Fallarino F, Pignatelli P, Sahebkar A, Pirro M. Is Acetylsalicylic Acid a Safe and Potentially Useful Choice for Adult Patients with COVID-19 ?. Drugs 2020;80(14):1383-1396
- 50. Wani AR, Yadav K, Khursheed A, Rather MA. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb Pathog 2021;152:104620
- 51. Wen CC, Kuo YH, Jan JT et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of medicinal chemistry 2007; 50(17):4087-4095
- 52. Silveira D, Prieto-Garcia JM, Boylan F et al. COVID-19: Is There Evidence for the Use of Herbal Medicines as Adjuvant Symptomatic Therapy? Front Pharmacol 2020; 23;11:581840
- 53. Nugraha RV, Ridwansyah H, Ghozali M, Khairani AF, Atik N. Traditional Herbal Medicine Candidates as Complementary Treatments for COVID-19: A Review of Their Mechanisms, Pros and Cons. Evid Based Complement Alternat Med 2020; 10;2020:2560645
- Zheng Z, Dong M, Hu K. A preliminary evaluation on the efficacy of ozone therapy in the treatment of COVID-19. J Med Virol 2020; 92(11):2348-2350
- 55. Cattel F, Giordano S, Bertiond C, et al. Ozone therapy in COVID-19: A narrative review. Virus Res 2021;291:198207
- 56. Oksuz E, Malhan S, Gonen MS, Kutlubay Z, Keskindemirci Y, Tabak F. COVID-19 healthcare cost and length of hospital stay in Turkey:

retrospective analysis from the first peak of the pandemic. Health Econ Rev 2021; 8;11(1):39

- 57. The Lancet Infectious Diseases. The COVID-19 infodemic. Lancet Infect Dis. 2020 Aug;20(8):875
- Aydın A.F. Post-Truth Dönemde Sosyal Medyada Dezenformasyon: Covid-19 (Yeni Koronavirüs) Pandemi Süreci. Asya Studies 2020; 4(12):76-90