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ABSTRACT. In this study, we consider a boundary value problem generated by
the Sturm-Liouville equation with a frozen argument and with non-separated
boundary conditions on a time scale. Firstly, we present some solutions and
the characteristic function of the problem on an arbitrary bounded time scale.
Secondly, we prove some properties of eigenvalues and obtain a formulation for
the eigenvalues-number on a finite time scale. Finally, we give an asymptotic
formula for eigenvalues of the problem on another special time scale: T =

[a, 51} @] [52,,8}.

1. INTRODUCTION

A Sturm-Liouville equation with a frozen argument has the form

" (t) + q(t)y(a) = Ay(t),

where ¢(t) is the potential function, a is the frozen argument and A is the complex
spectral parameter. The spectral analysis of boundary value problems generated
with this equation is studied in several publications [3], [15], [16], [26], [33] and
references therein. This kind problems are related strongly to non-local boundary
value problems and appear in various applications |4], [12], [31] and [38].

A Sturm-Liouville equation with a frozen argument on a time scale T can be
given as

— A2 (1) + q(t)y(a) = My (1), te T (1)
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EIGENVALUE PROBLEMS FOR A CLASS OF STURM-LIOUVILLE OPERATORS 721

where 422 and o denote the second order A-derivative of y and forward jump
operator on T, respectively, ¢(t) is a real-valued continuous function, a € T" :=
T\ (p (sup T) ,supT], ¥° (¢) = y(c(t)) and T = (T*)"~.

Spectral properties the classical Sturm-Liouville problem on time scales were
given in various publications (see e.g. [1], |2], [5]- [9], |11], [17]- [25], |27]- [30], [34]-
[37], |39] and references therein). However, there is no any publication about the
Sturm-Liouville equation with a frozen argument on an arbitrary time scale.

In the present paper, we consider a boundary value problem which is generated
by equation (1) and the following boundary conditions

Uly) : =any(e)+any® (@) + any (8) + any® (B) (2)
V(y) : =buy(a)+biay® (a) + bary (B) + by (8) (3)

where @ = inf T, § = p(supT), o # B and a;;, b; € R for ¢, = 1,2. We aim to
give some properties of some solutions and eigenvalues of (1)-(3) for two different
cases of T

For the basic notation and terminology of time scales theory, we recommend to
see [10], [13], [14] and [32].

2. PRELIMINARIES

Let S(t,\) and C(t, \) be the solutions of (1) under the initial conditions

S(a,\) = 0,58%a,\) =1, (4)
C(a,\) = 1,0%(a,\) =0, (5)
respectively. Clearly, S(¢, A) and C(¢, \) satisfy
SAR(EN) +AS(t,N) = 0
CA2(EN) +AC (8, A) = q(t),

respectively and so these functions and their A-derivatives are entire on A for each
fixed ¢ (see [34]).

Lemma 1. Let p(t, \) be the solution of (1) under the initial conditions p(a, \) =
51, ™ (a,\) = 6y for given numbers 61,0o. Then o(t,\) = §;C(t,\) + d25(t, \) is
valid on T.

Proof. Tt is clear that the function y(t, \) = §:C(t, A) + §2.5(¢, ) is the solution of
the initial value problem

v+ M) = q(t)a
yla,\) = &
yA(a, A) = 0o

We obtain by taking into account uniqueness of the solution of an initial value
problem that y(t, A\) = ¢(t, A). O
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Consider the function

~

INEE det( uc) v ) (6

It is obvious A()\) is also entire.

Theorem 1. The zeros of the function A(\) coincide with the eigenvalues of the
problem (1)-(3).

Proof. Let g be an eigenvalue and y(t, Ag) = §1C(¢, Ng) + 925 (¢, Ag) is the corre-
sponding eigenfunction, then y(¢, \g) satisfies (2) and (3 ) Therefore

51 U(C(t, No)) + 62U (S(t, Mo)) =
51V (C(t, Xo)) + 62V (S(t, X)) =0

It is obvious that y(t, Ag) # 0 iff the coefficients-determinant of the above system
vanishes, i.e., A(Ag) = 0. O

Since A(\) is an entire function, eigenvalues of the problem (1)-(3) are discrete.

3. EIGENVALUES OF (1)-(3) oN A FINITE TIME SCALE

Let T be a finite time scale such that there are m (or r) many elements which
are larger (or smaller) than a in T. Assume m > 1, 7 > 0 and r+m > 2. It is clear
that the number of elements of T is n = m + r + 1. We can write T as follows

T = {pr (a),p" (a),...,p* (a),p(a),a,o(a), 02(a)7 ...,Um_l(a),am(a)} ,
where 0/ =0/ Yoo, pf = pi~topfor j > 2 p"(a) = a and 0™ () = .

Lemma 2. i) If r > 3 and m > 2, the following equalities hold for all \

S ) = (~1)" 1 (a) [ (@) (a) o (@)] N4 O ()

$7(e,A) = (1) (@) [ (a) " (@) e <a>}2x—2+ow—3)

SN =5 (@X) = (1" [ p (@) (@] N2 (@) + 0 (A7)
§7(B.0) = 57 (@.0) = ()" [(a) (@) o™ ()] N (@) £ 0 (A7)
C (@) = (1) [ @ " (a) o’ (@)] X+ O (V)

€% (a,X) = (=1) 7" [ (a) p#” (@) o™ ()] N0 (v

CB.X) = €7 (@, X) = (1" (@) [ (@)1 (@)™ (@) 7 (@) N2 4 0 (A7)
Co(B,0) = €7 (a,0) = (=)™ (@) [0 (@) 7" (@) " (@)] T (@A O (A7)

2
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where O()\l) denotes a polynomial whose degree is [.

it) If r € {0,1,2} or m € {0,1}, degrees of all above functions are vanish.

Proof. Tt is clear from f7(t) = f(t)+u(t) f2(t) that S7(a,\) = p(a) and C7(a, \) =
1. On the other hand, since S(¢, \) and C(¢, \) satisfy (1) then the following equal-
ities hold for each ¢t € T and for all A.

02 _ M(t) _ o o
57 () = (1+Mt) A (t) (t))S (£, \) (7)
NGAQ)
() N
col(t, ) = (—u(t)u"(t)A+1+ 5{%)0%» 8)
ue (t) -
) C(t,\) + o (t) u” (t) q(t)
It can be calculated from (7) and (8) that
$7(@N) = ()™ (wa)p (@) @) u (@ (9)
+0 (N7?)
j j 2 3 j 2 i
57 (@) = (=1 w(a) (1 (@ (@) (@) N7 (10)
+0 (N7?)
0@ N = (0 e (07 @ (@) @) T @A ()
+0 (/\’“*2)
0 (@) = (D" (i (@) (@) o (@) XF (12)
+0 (A’H)

for j = 2,3,..m and k = 2,3,...,r. Using (9)-(12) and taking into account o =
p" (a) and B = 0™ () we have our desired relations. O

r+m—1, r>0andm>1

Corollary 1. degC(a, \)S? (5, A) = { 1 the other cases

Lemma 3. The following equlaties hold for all A € C.
S7(a, \)C (a, A) — S(a, \)C7 (a, ) = AN +0 ()\5_1)
S7(B,N)C(B,A) = S(B,\)C7 (B,\) = BA+0 (XN
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r—1

where 4 = (1) () 1 (a) [ (@) 0" (@)] 1 (@3 (@)

B

Il

I
=
3
|

=
=

=
=

=
Q
&

=
Q

5= r—2, r>3 and ~ — m—2, m2>3
1 0, r<3 7= .

Proof. Consider the function

1 o o
It is clear that
@ (t,A) == [S2(t,NC (1, A) = S(ENCH (K, N)] = W[C (£,A), S ()]

and it is the solution of initial value problem

2t = —q(t)S7 ()
pla) = 1
Therefore, we can obtain the following relations
7N = p (BN —p(t)g @) ST (A, (14)
(A = oA +u” () ap(t)S(EA). (15)
By using (9), (10), (14) and (15), the proof is completed. O

Corollary 2. i) deg (S7 (o, A) C(a, A) — S (a0, A) C7 (o, \)) < deg C'(ar, A)S7 (B, A,

ii) deg (57 (8,A) C'(8,A) = §(B,A) €7 (B,A)) < deg C(a, A)S7 (B8, A).

The next theorem gives the number of eigenvalues of the problem (1)-(3) on T.
Recall n = m + r + 1 denotes the number of elements of T and put

A— < aipip (OZ) — 12 buM (a) —bi2 >
a2 bao ’

Theorem 2. If det A # 0, the problem (1)-(3) has exactly n — 2 many eigenvalues
with multiplications, otherwise the eigenvalues-number of (1)-(3) is least than n—2.
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Proof. Since T is finite, A(A) is a polinomial and its degree gives the number
eigenvalues of the problem. It can be calculated from (6)-(14) that

_ 1 aip(a) — a1z bup (o) = bio o
AN = @) 1 (B det ( o - > C(a,\)S7 (B,\)
1 aip  ai2 o o
—|—m det ( b by ) (S (a, A) C(a, A) = S (a, A) C7 (a, M)
1 a1 a2 o _ -
e (42 ) (57 (5.0 C(8.0) — 5 () C (3.0)
+O(\"F™2),
According to Corollary 1 and Corollary 2, if det A # 0,
deg A(A) =degC(a, \)S? (B,AN) =m+r—1=n—2. O

Corollary 3. i) The eigenvalues-number of (1)-(3) depends only on the elements-
number of T and the coefficients of the boundary conditions (2) and (3). On the
other hand, it does not depend on q(t) and a (neither value nor location of a on T).
it) If det A # 0, the eigenvalues-number of (1)-(3) and the elements-number of T
determine uniquely each other.

Remark 1. As is known, all eigenvalues of the classical Sturm-Liouville problem
with separated boundary conditions on time scales are real and algebraicly simple [2)].
Howewver, the Sturm-Liouville problem with the frozen argument may have non-real
or non-simple eigenvalues even if it is equipped with separated boundary conditions.

We end this section with two example problems that have non-real or non-simple
eigenvalues.

Example 1. Consider the following problem on T = {0,1,2,3,4,5}.
—y22 () + ar(t)y(3) = Ay (1), t €{0,1,2,3}
Ly: y2(0) =0

0 0
where q1(t) = (1) ; i ; . Figenvalues of Ly are \y =2 +1, Ay =2 — 1,
2 =3

da= 3+ $VE = 3 - 3B
Example 2. Consider the following problem on T = {0,1,2,3,4,5}.
—y2 () + a2(t)y(3) = My (1), t €{0,1,2,3}
Ly : y2(0) +2y(0) =0
y*(4) +y(4) =0,
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-1 t=0
where qa(t) = (2) i i 9 - FEigenvalues of Ly are A\ = Ao = A3 =2, Ay = 3.
1 t=3

4. EIGENVALUES OF (1)-(3) ON THE TIME SCALE T = [«, d1] U [02, 5]

In this section, we investigate eigenvalues of the problem (1)-(3) on another
special time scale: T = [, §1] U [d2, 8], where o < a < §; < d2 < . We assume
that a € (o, d1). The similar results can be obtained in the case when a € (d2, 5).

The following relations are valid on [a, §1] (see [15]).

sin vV (t — a)

S(t,\) = >

t

ct, ) = COS\F)\(tfa)+/

a

sin vV (t — €)
VA

The following asymptotic relations for the solutions S(¢,A) and C(¢,\) can be
proved by using a method similar to that in [35].

sin vV (t — a)
S(t,\) = va oo

52V Xcos VA (81 — a)sinVA(S2 —t) + O (exp || (t —a — 8)), t € [0a, 5],
(16)

q(§)d§

te [01,61],

cosVA(t—a), t€la,dy),

SA(t, ) =
{ —5%Xcos VA (01 — a) cos VA(6y —t) + O <ﬁexp 7| (t —a — 6)) , t€dq,p],

(17)
1
cos VA(t—a)+ 0 —=expl|r||t—al), t€]a,di],
C(t,\) = (ﬁ ) '
—8%Asin VA (01 — a)sin VA(dy — t) + O (\f)\exp 7| (t —a— 5)) , t € [d2,0],
(18)
—VsinVA(t—a)+ O (exp|r|[t —al), t€a,dy),
CA(t,\) =
52X 2sin VX (81 — a) cos VA(8y — t) + O (Nexp 7| (t —a —8)), t € [02, ],
(19)

where § = 65 — 61, 7 =Imv/X and O denotes Landau’s symbol.

Lemma 4. The following equlaties hold for all A € C and t € T.
CA(ENS (1A) = Ot NS (£,0) = 0 (Vaexp || (8- a - 9))
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Proof. 1t is clear the function
@ (t,\) := C2(t, \)S (t, ) — C(t, \)S2 (t,\)

satisfies initial value problem

2t = a()S7(t,N), tE[ad]
pa) = 1
and
2 (1) = q(t)S7(tN), t € [0, 0]
@(d2) = ¢(61)+6q(61)S (02,2).
Hence, we get proof by using (16). (I

Theorem 3. i) The problem (1)-(3) on T = [a,d1] U [d2, 0] has countable many
eigenvalues such as {\n},~¢-

ii) The numbers {\,}, > are real for sufficiently large n.

i11) If agabia — a12bao ;Z 0 and B — 93 = 61 — «, the following asymptotic formula

holds for n — oo.
_(n—1)m 1
V”“‘ﬂﬁ—®>+0(n> 20)

Proof. The proof of (i) is obvious, since A()) is entire on A.
By calculating directly, we get

_ uc) v(o)
AN = det< Us) V(S)>

= (azebia — ar2bas) [C2(B, M) S (a, \) — C2(a, \)S® (B, N)] +
+(agabar — asibaz) [C(B, NS (B, A) — C(B,\)S (B,\)] +
+(a12b11 — a11b12) [C'A(a7 NS (a,\) — Cla, \)S? (a, )\)]
+O (MNexp|T| (B —a—1)).
It follows from (16)-(19) and Lemma 4 that
A(N) = (azbia — a12b22)62)\3/2 sin \&((51 — ) cos \F/\(ﬁ —d2)
+0 (Aexp|7| (B — a —9))

is valid for |A| = oo. Thus, we obtain the proof of (ii).
Since azzbiz — ai2baz # 0 and 8 — 2 = 61 — «, the numbers {\, }, - are roots of

32 sin 2\”\(6 —d9)
VA

Now, we consider the region

Gn={NeC:A=p%]p <

+OOexp2|7] (B —8)) = 0. (21)

n

2B =0 )
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where ¢ is sufficiently small number. There exist some positive constants C; such
that, [\2522Y30=02) | > ¢ X%/ exp2 7] (8 — 6) for sufficiently large A € 9G,.

Therefore, by applying Rouche’s theorem to (21) on G,,, we can show that (20)
holds for sufficiently large n. O

Remark 2. Since p(a) = 0 in the considered time scale, the term assbia — a12bos
is not another than detA in section 3.

5. CONCLUSION

In this paper, we give some spectral properties of a boundary value problem
generated by the Sturm-Liouville equation with a frozen argument and with non-
separated boundary conditions on time scales. We focus on two different time
scales: a finite set and a union of two discrete closed intervals. On the finite set, we
obtain a formulation for some solutions, characteristic function and the eigenvalues-
number of the problem. On the other time scale, we give some properties and an
asymptotic formula for eigenvalues.
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