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ABSTRACT  
 
The release of greenhouse gas emissions into the atmosphere as 
a result of anthropogenic sources and industrial applications has 
triggered the increase in global temperatures called global 
warming and related climate change. Phosphogypsum (PG) is a 
by-product of the wet process phosphoric acid (H3PO4) 
production process, which chemically consists of calcium 
sulfate dihydrate (CaSO4·2H2O) with some impurities. Annual 
PG accumulation has reached 300 Mtons and a strategy is 
needed to ensure efficient, continuous and bulk consumption. 
Due to the high amount of calcium it contains, PG is a material 
suitable for use in CO2 capture and storage processes to form 
stable solid carbonate compounds. This process, called mineral 
carbonisation of PG, contributes to sustainable development 
goals by providing the multiple benefits of both the utilisation 
of an industrial by-product and the realisation of CO2 capture 
and storage technology. 
 
 
 
Keywords: Phosphogypsum, carbon capture, accumulation, 
waste management. 
 
 
 

Mineral karbonizasyon yöntemiyle atık geri 
dönüşümü olarak fosfojips kullanımının sera 

salımları üzerindeki etkisi 
 
ÖZ 
 
Antropojenik kaynaklar ve endüstriyel uygulamalar sonucu 
atmosfere sera gazı emisyonlarının salınması, küresel ısınma 
olarak adlandırılan küresel sıcaklıklardaki artışı ve buna bağlı 
olarak iklim değişikliğini tetiklemiştir. Fosfojips (PG), 
kimyasal olarak bazı safsızlıklar içeren kalsiyum sülfat 
dihidrattan (CaSO4.2H2O) oluşan, ıslak proses fosforik asit 
(H3PO4) üretim prosesinin bir yan ürünüdür. Yıllık PG birikimi 
300 Mton'a ulaşmış olup verimli, sürekli ve toplu tüketimi 
sağlamak amacıyla bir stratejiye ihtiyaç vardır. PG, içerdiği 
yüksek kalsiyum miktarı nedeniyle kararlı katı karbonat 
bileşikleri oluşturmak için CO2 tutma ve depolama işlemlerinde 
kullanıma uygun bir malzemedir. PG'nin mineral 
karbonizasyonu olarak adlandırılan bu süreç, hem endüstriyel 
bir yan ürünün kullanımının hem de CO2 yakalama ve 
depolama teknolojisinin gerçekleştirilmesinin birçok faydasını 
sağlayarak sürdürülebilir kalkınma hedeflerine katkıda bulunur. 
 
 
Anahtar Kelimeler: Fosfojips, karbon yakalama, biriktirme, 
atık yönetimi. 
 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
1. INTRODUCTION 
  
1.1. Greenhouse gas emissions and their effects on 
climate change 

 
Global warming is caused by carbon dioxide emissions 
released as a result of industrial processes. Along with 
the carbon dioxide emission resulting from industrial 
processes, the increase in temperatures in sea water and 
other living spaces with the effect of sunlight draws 

attention. This temperature increase has negative 
consequences such as inefficiency for agricultural work, 
especially in agricultural areas.1,2 

 
Carbon dioxide emissions generally occur from thermal 
power plants, industrial plants that apply the heating 
process, and processes that produce petrochemicals. 
Compared to other greenhouse gases, it is accepted that 
the main component of increasing greenhouse gas 
emissions is carbon dioxide (CO2), which has a share of 
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approximately 64%.3 If current activities that cause CO2 
emissions continue, stabilisation of greenhouse gas 
concentrations will not be possible. Fossil fuels are the 
dominant form in meeting the energy needs on a global 
scale, and fossil fuel consumption accounts for 
approximately 75% of anthropogenic CO2 emissions. It 
was stated that the annual average increase in CO2 
emissions between 1970 and 2000 had a share of 1.72%, 
and this rate increased to 2.75% between 2010 and 2014. 
CO2 emissions from the energy sector are around 30 
billion tons per year and are expected to nearly double by 
2050.4,5 For this reason, stabilizing the CO2 concentration 
in the atmosphere is important and it is estimated that 
CO2 levels can be reduced by about 85% in the next 
century, with a decrease of approximately 20 billion tons 
of CO2 formation per year.6,7 This approach requires the 
adoption of a common goal of controlling global 
warming by reducing global CO2 emissions.8,9 In this 
context, research on greenhouse gas and carbon 
neutrality has become widespread and important at the 
global level. There have been several initiatives in recent 
history to reduce carbon dioxide emissions. With these 
initiatives, efforts are made to prevent the worldwide 
temperature increase caused by carbon dioxide gas.10,11 
 
Reducing industrial carbon dioxide emissions, which 
cause worldwide temperature rise, has been the main 
goal. Therefore, various processes such as carbon capture 
and capture come to the fore as an industrial carbon 
removal method. However, the use of raw materials with 
low carbon content is also considered as another method 
to reduce carbon gas emissions. 12,13 The carbon capture 
and storage method is a critical method accepted by the 
authorities within the scope of global greenhouse gas 
emission reduction studies and included in the 
scenarios.14 The basic steps of carbon capture and storage 
methods consist of post-combustion and pre-combustion 
CO2 capture, separation from other gases, transport and 
isolating CO2 from the atmosphere by storage.15-17 
 
1.2. Mineral carbonisation method 
 
Mineral carbonisation is expressed as a decarbonisation 
process for industrial plants that emit carbon dioxide, 
using the carbon gas release to create raw materials using 
the mineralisation method.18,19 However, there are also 
challenges such as slowing the kinetics of mineral-fluid 
reactions and accelerating the carbonation process 
throughout the process.20,21 
 
Alkaline earth metals such as Ca and Mg are the most 
suitable metals for the mineral carbonisation method. 
However, due to their highly reactive nature, these metals 
are rare and generally found in silicate forms.22 The most 
common natural silicate minerals are olivine (Mg2SiO4), 
wollastonite (CaSiO3) and serpentine (Mg3Si2O5(OH)4). 
In addition to natural minerals, industrial solid wastes 
such as waste ash, waste cement, steel production slag 

and mine waste are also potential materials that can be 
used as raw materials in the carbonisation process.23-25 

 
1.3. Phosphogypsum as an industrial waste and its 
recycling mechanism 
 
Phosphogypsum (PG) is a by-product of the "wet 
process" based on the production of phosphoric acid 
(H3PO4) by the decomposition of natural phosphate rock 
in sulfuric acid (H2SO4) at 70-80 °C. Phosphogypsum is 
formulated as calcium sulfate containing two moles of 
water and must be cleaned of toxic elements before it can 
be used as raw material.26-30 The PG formed as a result of 
the process is in the form of sludge in the first stage and 
is sent to the storage area after the filtering stage. During 
the long storage period, the sludge loses its water content 
and sediment formation is observed over time. 
 
Various research studies have been reported in the 
literature regarding the use of phosphogypsum in 
agricultural areas.31-34 PG is used as a setting retarding 
additive or mineralizing agent in the clinker production 
process in the cement industry.35-37 Although there are 
applications in the building material sector for its use as 
a filler in gypsum boards, brick manufacturing or road 
construction, these studies are still under development 
and cannot yet provide regular and bulk consumption of 
PG.38 
 
Phosphogypsum is formed during the production of 
phosphoric acid and its amount may increase depending 
on the production capacity of phosphoric acid.39,40 Due 
to the internal contamination of phosphogypsum, its use 
as a raw material is not common and requires 
pretreatment for cleaning before use.41-45 
 
Since the use of phosphogypsum, which is produced as a 
waste in phosphoric acid processes, as a raw material is 
very limited, it is necessary to work on various methods 
to improve the raw material properties.46,47 In recent 
studies carried out within the scope of reuse studies of 
PG, it has been stated that natural ores or industrial 
wastes show good efficiency in the production of sulfate 
compounds, and there are various studies for the 
conversion of gypsum to alkaline sulfates such as 
(NH4)2SO4, K2SO4, Na2SO4. Studying the mineral 
carbonation process by reacting phosphogypsum with 
magnesium, calcium and silicon salts can be considered 
as important steps towards carbon dioxide removal. It has 
been stated that the use of PG or FGD is more 
advantageous than other industrial wastes. 
 
1.4. Mineral carbonisation of phosphogypsum 
 
Although the impurities it contains limit the usage area, 
there are also environmentally friendly applications for 
the recovery of PG. One of these approaches includes the 
use of PG as a calcium source in the CO2 capture capture 
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process to reduce greenhouse gas emissions.48-50 
Phosphogypsum contains a significant amount of 
calcium and does not require a different granulation 
process due to its low particle size, therefore, it does not 
cause any energy cost in terms of pre-treatment of 
phosphogypsum.51-54 
 
The carbonisation process of PG can be done with 
various alkaline sources. In the mineral carbonisation of 
PG, PG acts as a carbon scavenger in the form of 
Ca(OH)2 in the first stage. Sulphate is obtained by alkali 
dissolution using soda, and then mineral carbonate is 
formed by the instantaneous reaction with CO2.55 In 
another mineral carbonisation approach, ammonium 
hydroxide (NH4OH) is used as an alkali source. In this 
case, in the first stage, ammonium carbonate 
((NH4)2CO3) is formed by the reaction of (NH4)OH with 
CO2, in the next stage ammonium sulfate ((NH4)2SO4) 
and limestone (CaCO3) are formed by the reaction of 
(NH4)2CO3 and PG.56-58 
 
Carbonate and sulfate salts formed as a result of mineral 
carbonisation of PG are used as filling materials for 
various applications in the fertilizer and building 
materials industry. As a result of the mineral 
carbonisation process, both economically valuable 
products are obtained and large amounts of CO2 are 
converted into stable solids in the form of carbonate in 
accordance with carbon emission control strategies. 
Mineral carbonisation can be carried out by processes 
such as membrane electrolysis or thermal degradation.59 
 
2. RESULTS AND DISCUSSION 
 
2.1. Environmental evaluation of mineral 
carbonisation of phosphogypsum 
 
Phosphogypsum may contain various elemental 
contamination such as Fe and Al during storage due to 
process conditions and raw material properties. 
Environmental problems may occur in the long term due 
to the disposal and regular storage of PG, its limited 
recycling due to its chemical structure, and the limitation 
of its use in different industrial areas, especially its 
radionuclide content. While there are various studies on 
the use of phosphogypsum as a raw material, the use of 
phosphogypsum as a raw material in these processes is 
well below the production amount of phosphogypsum, 
and its use in the decarbonsation process by using it 
together with carbon dioxide will provide significant 
benefits to the greenhouse gas emission process.60,61 
 
The high amounts of calcium and sulfur in 
phosphogypsum make it a valuable by-product. In this 
context, the methods to be developed for the evaluation 
of PG can be evaluated as a positive solution both in 
terms of using the stored material as raw material in the 
production of products with added value, and as an 
environmentally positive solution within the framework 

of waste minimisation.62 Previous studies on 
environmental applications of PG indicate that PG is a 
suitable raw material as a mineral carbonisation process 
to reduce CO2 emissions, especially within the 
framework of the CO2 capture capture method.63-65 
Again, according to literature studies, 100-280 Mtons of 
PG can bind 26-72 Mtons of CO2. In this context, 
approximately 1:5 mass (PG:CO2) consumption can be 
achieved as a result of mineral carbonisation of PG. 
 
3. CONCLUSIONS 
 
The amount of CO2 released into the atmosphere as a 
result of industrial applications has reached 30 Gtons per 
year. Such a large and continuous release of CO2 causes 
some climatic consequences, especially global warming 
and climate change problems. Within the scope of 
combating global warming, which aims to reduce CO2 
emissions, carbon capture and storage technologies are at 
the forefront. Mineral carbonisation processes ensure that 
CO2 is stored as stable solid carbonates, preventing 
further CO2 release. 
 
Phosphogypsum, which is released as a reaction product 
in the production of phosphoric acid, can be used as an 
industrial raw material in processes such as the ceramic 
industry. However, the amount of use in these processes 
is far below the production rate. Storage due to the toxic 
contamination it contains brings environmental risks. 
Therefore, the use of phosphogypsum as a raw material 
in larger scale industries is becoming important. 
 
The increase in carbon dioxide emissions as a result of 
industrial processes causes an increase in temperature in 
the atmosphere and climate irregularities. Various 
decarbonsation methods are being studied to reduce 
carbon dioxide emissions. Mineral carbonsation is one of 
the important processes that stand out among these 
processes. Increasing the raw material properties with the 
phosphogypsum mineral carbonsation process will be a 
very important step in reducing industrial carbon 
emissions. 
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