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Abstract 

Cardiovascular diseases are some of the most common diseases today. Congenital abnormalities, diseases caused by impaired heart 

rhythm, vascular occlusion, post-operation arrhythmias, heart attacks and irregularities in heart valves are some of the various 

cardiovascular diseases. Early recognition of them is very important for obtaining positive results in treatment. For this purpose, it is 

tried to diagnose and detect cardiovascular diseases by listening to the sounds coming from the heart. During the rhythmic work of the 

heart, the contraction and relaxation of the heart chambers and the filling and discharge of blood from the heart into the veins create the 

sounds that are identified with the heart. Among the characteristic sounds of the heart, there can be some sounds similar to rustling 

which are indicators of pathological conditions. These unexpected sounds, similar to rustling, are called heart murmurs. 

Phonocardiograph device is used to record these mechanical sounds via microphone. Heart sounds recordings captured by a 

phonocardiograph device are called phonocardiograms (PCGs). Expert physicians try to detect the heart murmurs by listening to the 

heart sounds and examining PCGs. Ambient noise, the squeak of the microphone, and the patient's breathing sounds are the factors that 

make this task more difficult and challenging. Computer-aided systems supported with machine learning, signal processing and artificial 

intelligence algorithms offer solutions to help physicians in this regard. In this study, detection of heart murmur from PCG frames was 

examined. PCG frames of equal length, obtained by fragmenting the PCG recordings into 1-second-long frames, were classified by 

widely used machine learning methods namely C4.5 decision tree, Naive Bayes, Support Vector Machines and k-nearest neighbor. To 

train those classifiers we used spectral features of PCG signals, averages of MFCC values and some refined features obtained from a 

deep learning model which was inputted MFCC values. At the end of this manuscript the accuracies of those machine learning methods 

were compared. 

 

Keywords: Biomedical signal processing, machine learning, deep learning, heart murmur, PCG, classification. 

Spektral Özellikler ve MFCC Tabanlı Özellikleri Kullanan Klasik Makine 

Öğrenmesi Metotlarıyla PCG Parça Sınıflandırması 

Öz 

Günümüzde en sık rastlanan hastalıklardan birisi kalp damar rahatsızlıklarıdır. Doğuştan gelen anormallikler, kalp ritminin 

bozulmasıyla çıkan hastalıklar, damar tıkanıklığı, ameliyat sonrası ortaya çıkan aritmiler, kalp krizleri ve kalp kapacıklarındaki 

düzensizlikler çeşitli kardiyovasküler hastalıklardan bazılarıdır. Bunların erken fark edilmesi tedavide olumlu sonuçlar almak için 

oldukça önemlidir. Bu amaçla kalpten gelen sesler dinlenerek kardiyovasküler rahatsızlıkların teşhis ve tanısı yapılmaya çalışılmaktadır. 

Kalbin ritmik çalışması esnasında kalp odacıklarının kasılıp gevşemesi, kanının kalpten damarlara dolup boşalması kalple özdeşleşen 
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sesleri meydana çıkarır. Kalbin karakteristik seslerinin içinde ise patolojik durumların bir göstergesi olarak hışırtıya benzer sesler 

duyulur. Hışırtıya benzeyen beklenmedik bu sesler kalp üfürümü olarak adlandırılır. Bu mekanik sesleri mikrofon vasıtasıyla kaydetmek 

için Fonokardiyograf cihazı kullanılır. Kalpten gelen seslerin alındığı kayıtlarda da fonokardiyogram denilmektedir. Değişken uzunlukta 

olabilen bu kayıtlardan üfürümü uzman hekimler dinleyerek tespit etmektedir. Ortam gürültüsü, mikrofonun cızırtısı, hastanın nefes 

alış/veriş sesleri ise bu görevi zorlaştıran etmenlerdir. Makine öğrenmesi, sinyal işleme ve yapay zeka algoritmalarıyla elde edilen 

bilgisayar destekli sistemler bu konuda uzman hekimlere yardımcı olacak çözümler sunmaktadır. Bu çalışmada PCG kayıtlarının 1 

saniye uzunluğunda kesitlere parçalanmasıyla elde edilen eşit uzunluktaki segmentlerinin makine öğrenmesi yöntemleriyle normal veya 

üfürüm içeren şeklinde sınıflandırılması amaçlandı. Bu amaçla yaygın olarak kullanılan ve meşhur olan C4.5 karar ağacı, Naive Bayes, 

Destek Vektör Makinaları ve k-en yakın komşu sınıflayıcıları kullanıldı. Özellik olarak da PCG sinyallerinin spektral değerleri, MFCC 

değerlerinin ortalamaları ve MFCC değerlerinden derin öğrenme ile elde edilen özellikler kullanıldı. Farklı makine öğrenmesi 

yöntemlerinin performansları doğruluk değerlerine göre karşılaştırıldı. 

 

Anahtar Kelimeler: Biyomedikal sinyal işleme, makine öğrenmesi, derin öğrenme, kalp üfürümü, PCG, sınıflandırma. 

 

1. Introduction 

The heart is the core organ of human body which is responsible 

of transporting blood to every part of the body through the veins. 

It acts like a pump that works continuously and regularly. Located 

above the diaphragm and between the two lungs, the heart is about 

the size of a fist. Human heart beats around 100,000 times a day, 

which corresponds to between 60 and 100 beats per minute [1], 

[2]. The process from one beat of the heart to the following beat 

is called as cardiac cycle. The cardiac cycle can take varying times 

depending on the heart rhythm. For example, in someone with a 

heart rate of 60, the cardiac cycle will take 1 second. With the 

stimulation of the heart primarily by the SA node, blood flows 

from the atriums to the ventricles and the heart relaxes. Then, with 

the contraction of the ventricles, the blood passes into the 

pulmonary and aortic vessels. During all this blood flow, the 

valves in the heart (tricuspid, pulmonary, mitral and aortic valves) 

open and close, and blood is transferred from one chamber to 

another by producing mechanical sounds. 

The sounds expected to be heard in healthy people are first (S1) 

and second (S2) heart sounds. In addition to these, third (S3) and 

fourth (S4) sounds may be present in special cases (pregnant 

women, athletes, children). Apart from these, incomplete closure 

of the heart valves, backflow of blood, narrow valves, and 

deformations in the veins can make the blood utter a rustling 

sound. These abnormal sounds are called heart murmurs. 

Detecting and grading murmurs by listening and distinguishing 

them from ambient sounds and noises is a challenging job that 

requires expertise. 

There are many tools used to examine the functioning of the 

cardiovascular system. Phonocardiography is one of them. It is a 

non-invasive, practical, inexpensive and common approach. The 

sounds heard during the beating of the heart are recorded 

electronically with a microphone held on the skin near the heart 

with a phonocardiograph device. These recordings are called 

phonocardiograms (PCGs). PCG recordings can be listened to 

over and over again, examined in detail, and opinions from 

different experts can be obtained. Although PCG examination has 

been the studied for a long time, it is still an important problem 

and attracts researchers [3], [4]. 

The period from one beat of the heart to the next beat is called 

the cardiac cycle. First (S1) and second (S2) heart sounds 

regularly follow each other. The consecutive S1 and S2 sounds in 

each cardiac cycle are heard as a loop-dup. In healthy people, 

there is a short silent period between these two sounds. The silent 

interval between S1-S2 is called systole and the silent interval 

between S2-S1 is called diastole. One of the most frequently used 

processes in PCG analysis is to segment these four phases of the 

heart sound signal according to the temporal start and end points. 

Heart murmur sounds can be heard during all four phases of the 

cardiac cycle. Sounds coming from the heart are rhythmic and 

consist of certain frequency components. First heart sound 

consists of components in the frequency ranges 40-200 Hz and 

second heart sound consists of components in the 50-250 Hz 

frequency range [1]. On the other hand, the frequency range of the 

heart murmurs is around 200-600 Hz [5]. 

Researchers have studied murmurs and other abnormalities in 

PCG recordings for decades. For this purpose, competitions were 

organized and data sets with various difficulties were shared. 

Examples of these are the PhysioNet [6] datasets (CinC2016 and 

CirCor2022) and the PASCAL [7] dataset. Other than these 

publicly shared data sets, studies have also been carried out with 

private data sets that are owned by institutes and hospitals. 

Potes et al. [8] won the first place in the PhysioNet 2016 

competition with their ensemble classifier of AdaBoost and 

Convolutional Neural Network (CNN) classifiers. After 

resampling the CinC2016 data set into 1000 Hz, they filtered out 

the components outside the 25-400Hz range with a band-pass 

filter. During the training phase of their model, they applied cross-

validation by randomly dividing data set into 80%-20% train/test 

sets. They achieved 86% accuracy in the competition with their 

model. 

In another study using CinC2016 dataset [9], 88.7% accuracy 

was obtained by using Random Forest (RF), Extreme Gradient 

Boosting (XGB), k nearest neighbor (kNN) and their ensemble 

form. In addition, Rath et al. [9] investigated the optimal k value 

of the kNN method for PCG classification and determined it as 

50. 

Noman et al. [10] used the Cinc2016 dataset as well, and they 

obtained 89.2% accuracy by combining two deep learning 

models, one of them is 1D CNN and the other one is 2D CNN. 

MFCC features were used in the training of the 2D CNN model. 

CinC2016 data set was also used by Das et al. [11]. They first 

performed segmentation and then murmur detection on the 

cochleagram images. Those images were extracted from the PCG 

recordings and then classified by deep neural network (DNN). 

They achieved 98.3% accuracy by their model. 

Arslan [12] applied 5 level Empirical Mode Decomposition 

(EMD), Discrete Wavelet Transform (DWT) and Wavelet Packet 

Transform (WPT) and then extracted the mean, standard 

deviation, energy and entropy properties from the signals. Those 

features were used to train kNN, Support Vector Machine (SVM), 

RF and Extreme Learning Machine (ELM). Chowdhury et al. [13] 

classified the CinC2016 dataset with 97.1% accuracy using a 

DNN, which was trained with MFCC features extracted from 

PCG signals. 

Using PASCAL dataset, Ismail et al. [2] produced spectrograms 

from PCG signals and then used them at the training of AlexNet 

deep learning model. Additionally, they trained SVM classifier 

with features obtained from those spectrograms by using a deep 

learning method. Finally, classifications of AlexNet and SVM 
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were combined to make overall classification by applying 

majority voting. 

A necessary process in the analysis of audio signals is to divide 

the signal into equal-length parts. Having frames which are equal 

with respect to length is generally necessary for feature extraction 

and neural network training. Variable lengths can be 

experimentally chosen. For example, Langley and Murray [14] 

extracted features from the 5-second-long frames of PCG signals 

without any segmentation and classified them with a decision tree. 

In traditional machine learning approaches, it is desirable to 

have good feature sets that represent the data as well as possible. 

For this purpose, many features are extracted and used. However, 

not all of these features are equally important in representing the 

data. In addition, having a large number of features can sometimes 

have a negative effect such as increasing the duration of 

classification and consuming larger resources. To avoid this, the 

feature space is sometimes narrowed by methods such as Principal 

Component Analyses (PCA). In contrast to classical machine 

learning models, deep learning models automatically extracts 

features and put away manual feature engineering. We can say 

that today, researchers are more interested in deep learning 

methods due to good performance and automatic feature 

extraction attribute. 

In this study, we aimed to classify 1-second-long frames of 

PCG recordings by using traditional machine learning methods. 

We compared the performances of C4.5 decision tree, SVM, 

Naive Bayes and kNN machine learning methods at classification 

of abnormal (containing murmur) and normal (murmur-free) PCG 

recordings. As features, we used MFCC based features and 

spectral properties of PCG signals. Those classifiers were trained 

and tested by 10-fold cross validation and their accuracies were 

compared. 

2. Material and Method 

2.1. Database 

We conducted our study using two datasets shared online by 

PhysioNet [6] in 2016 and 2022. These are respectively 

PhysioNet Computing in Cardiology Challenge 2016 (CinC2016) 

[15] and CirCor Digiscope Phonocardiogram Data Set 

(CirCor2022) [16]. Both datasets have PCG recordings with 

murmur (abnormal) and without murmur (normal). In addition to 

these two classes, the CirCor2022 dataset also contains a small 

number of samples labelled as unknown. The details of the data 

sets are given in the Table 1. By eliminating samples which are 

labelled as unknown from the CirCor2022 dataset, we obtained a 

database with two classes. We conducted our study using only 

abnormal and normal samples. 

As it can be seen in Table 1, the data sets consist of records 

captured at different sampling frequencies. Therefore, all samples 

were resampled to 1000Hz to eliminate this problem in the 

preprocessing stage. In addition, PCG signals were normalized to 

the [-1, 1] range. 

 

 

 

 

 

 

 

 

Table 1. Properties of the data sets used in this study. FS: 

Sampling frequency in Hz. 

Data set FS 
Total 

Samples 

Distribution 

CinC2016 2000 3240 

665 

abnormal, 

2575 normal 

CirCor2022 4000 3118 

604 

abnormal, 

2358 normal, 

156 unknown 

 

2.2. Method 

The PCG records in our datasets are of variable size. During 

preprocessing, the PCG signals were resampled to 1 kHz, 

normalized and then split into 1-second-long frames. At the end 

of splitting process, the CinC2016 data set was divided into 71344 

frames, of which 16687 are abnormal and 54657 are normal. On 

the other hand, the CirCor2022 data set was divided into 66300 

parts, having 13070 abnormal and 53230 normal ones. The 

abnormal/normal ratios of the datasets are approximately 31% 

and 25%, respectively. 

Unbalanced data affect negatively the training performance. 

Therefore, we applied sliding window with 1-second-long 

windows length and 50% overlap rate to augment the fewer class 

frames. Equal numbers of normal and abnormal PCG signal 

frames were obtained and used for training. The proposed method 

in our study is shown in Figure 1. 

In the feature extraction phase, we first obtained the Mel-

Frequency Cepstrum Coefficients (MFCC) which are frequently 

used features in speech recognition. Like human ear, MFCC tends 

to show more sensitivity below a certain frequency band during 

distinguishing sounds and in this sense, it mimics human auditory 

system [13], [17]. 

To obtain MFCC features, pre-emphasizing is the first step in 

which high frequencies are amplified. Then the quasi-stationary 

signal is divided into short frames across which the signal is 

assumed to be stationary. Generally consecutive frames overlap a 

pre-defined amount of time. Then a window (such as Hamming, 

Hanning or etc.) is applied on the frames to reduce edge effects 

and smooth the edges. Then Discrete Fourier Transform is applied 

on the windowed frames to compute the periodogram. Then the 

Fourier transformed signal is passed through Mel-filter bank (a 

set of bandpass filters). This phase results in non-linear frequency 

resolution. It is given in the Equations 1 and 2 where f is physical 

frequency and fMEL is its Mel-frequency representation. 

𝑋(𝑘) =  ∑ 𝑥(𝑛)

𝑁−1

𝑛=0

𝑒
−𝑗2𝜋𝑛𝑘

𝑁 ;  0 ≤ 𝑘 ≤ 𝑁 − 1 
(1) 

𝑓𝑀𝐸𝐿  =  2595 log10 (1 +  
𝑓

700
) 

(2) 

Now Mel spectrum is fit into log format in which most of the 

signal information is represented by the first few coefficients. M 

is total number of Mel weighting filters and Hm(k) is the weight 

given to kth energy spectrum bin according to Equation 3. 
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𝑃𝑓𝑖𝑙𝑡 = ∑[|𝑋(𝑘)|2𝐻𝑚(𝑘)]; 0 ≤ 𝑚 ≤ 𝑀 − 1

𝑁−1

𝑘=0

 
(3) 

 

Finally, MFCCs are obtained by taking a discrete cosine 

transform. This process converts the Mel spectrum to finite 

sequence of cosine functions oscillating at different frequencies. 

In Equation 4, MFCC(t,k) is kth cepstral feature of tth time frame 

and Pfilt(t,n) is filtered power at time frame t for nth filter bank. 

The number of MFCCs for each frame is C and zeroth coefficient 

can be excluded since it represents the average log energy of the 

input signal. 

𝑀𝐹𝐶𝐶(𝑡, 𝑘) = 

 ∑ log (𝑃𝑓𝑖𝑙𝑡(𝑡, 𝑛)) cos (
𝑘𝜋

𝑁
(𝑛 − 0.5))

𝑁−1

𝑛=0

; 

𝑘 = 0,1,2 … , 𝐶 − 1 

(4) 

 

We obtained 5x99 MFCC features by choosing the window 

size as 20 ms, the overlap rate as 10 ms and the number of 

coefficients as 5 from the PCG frames with a sampling frequency 

of 1000 Hz and a length of 1 second. During feature engineering 

we firstly calculated the average of 5 coefficients of each 99 parts. 

Then, we processed the MFCC features of 5x99 size with our 

DNN model shown in Figure 2, and took the activation values of 

the last fully-connected layer and converted them into 2 features. 

Finally, we extracted 8 spectral features (spectral centroid, 

spectral crest, spectral entropy, spectral flux, spectral kurtosis, 

spectral roll off point, spectral skewness and spectral slope) from 

1-second-long PCG frames. Those three feature sets were used to 

train classifiers.  

In our study, we used the classifiers implemented in the 

Waikato Environment for Knowledge Analysis (WEKA) [18] 

workbench. WEKA includes many classification methods, 

clustering algorithms and data processing tools. It is free under 

the GNU General Public License and it is widely used for data 
mining. We aimed to obtain and present more general results by 

using the methods found in WEKA instead of our own 

implementation. 

We used C4.5 decision tree (J48), SVM, Naïve Bayes (NB) 

and kNN (IBk) classifiers. For SVM, John Platt's sequential 

minimal optimization algorithm implementation namely 

weka.classifiers.functions.SMO classifier is used. Additionally, 

51 is used as the k value in the kNN classifier. We applied 10-fold 

cross validation. 

 

Fig.2. Layers of DNN model which is used to extract features 

 

Fig. 1. Proposed method 
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3. Experiment Results 

Four classifiers’ performances were compared according to the 

accuracy measure obtained at the end of 10-fold cross validation. 

Experimental results are given in Figures 3 and 4 for CinC2016 

and CirCor2022, respectively.  

In the CinC2016 dataset, the highest accuracy was obtained as 

86.4% using the average MFCC features with the C4.5 decision 

tree classifier. In the CirCor2022 dataset, the highest accuracy 

was observed as 74.6% with the SVM classifier, which uses the 

features obtained by DNN model. Confusion matrices for the best 

results are given in Tables 2 and 3. According to the confusion 

matrix in Table 2, the weighted average of recall and precision 

values are 0.864 and 0.866, respectively. According to the 

confusion matrix in Table 3, the weighted average of recall and 

precision values are 0.746 and 0.752, respectively. 

 

Accuracy = (TP + TN) / ALL (5) 

Recall = TP/ (TP + FN) (6) 

Precision = TP / (TP + FP) (7) 

 
Table 2. Confusion matrix obtained as a result of training C4.5 

decision tree classifier with MFCC averages using CinC2016 

dataset. R. Abnormal: Real Abnormal, P. Abnormal: Predicted 

Abnormal, R. Normal: Real Normal and P. Normal: Predicted 

Normal 

 
P. 

Abnormal 

P. Normal 

R. 

Abnormal 

49339 5318 

R. 

Normal 

9559 45098 

 
Table 3. Confusion matrix obtained as a result of training SVM 

classifier with DeepNet Features using CirCor2022 dataset. R. 

Abnormal: Real Abnormal, P. Abnormal: Predicted Abnormal, 

R. Normal: Real Normal and P. Normal: Predicted Normal 

 
P. 

Abnormal 

P. Normal 

R. 

Abnormal 

35631 17599 

R. 

Normal 

9478 43752 

 
As seen in Figure 3 in the experiments where we used the 

CinC2016 data set, the classifier with the highest overall success 

is the C4.5 decision tree. It is followed by kNN, SVM and NB, 

respectively. Looking at the feature sets, the most successful 

classifications were obtained with C4.5 and kNN when the 

average MFCC was used as training set. However, this feature set 

gave low accuracy results when used with SVM and NB 

classifiers. The features produced using the deep learning model 

gave an accuracy of approximately 80% in all classifiers. On the 

contrary, other feature sets yielded variable performance results 

in different classifiers. 

In the experiments where we used the CirCor2022 data set, as 

seen in Figure 4, all classifiers achieved an accuracy of 

approximately 74.5% with the features we produced using our 

deep learning model. The mean MFCC features were successful 

in representing the data in second place. The lowest performance 

was measured in experiments where SVM and NB classifiers 

were trained with spectral features. 

When we compare the experiments using the CinC2016 and 

CirCor2022 datasets in general, it is seen that the CinC2016 

dataset can be classified more successfully with the approaches 

used in our study. There is a 12% difference between the best 

results obtained in the experiments performed in the two different 

sets. It is common in the both classification experiments made by 

using deep learning features that all classifiers gave close results. 

 

Fig. 3. CinC2016 experiment results 

 

Fig. 4. CirCor2022 experiment results 

 

4. Conclusions 

In this study, we examined the classification performances of 

traditional machine learning methods C4.5 decision tree, SVM, 

NB and kNN. We used two datasets (CinC2016 and CirCor2022) 

shared online publicly by PhysioNet. We extracted two MFCC-

based feature sets from these datasets. Firstly, we averaged the 

MFCC coefficients. Secondly, we produced a new feature set with 

our deep learning model, to which we provided the MFCC 

features as input. In addition to these, we extracted features based 

on spectral properties of the PCG signals and used them in the 

classification. 

The worst and best results in the CinC2016 dataset are 50.6% 

and 86.4% respectively. The worst and best results we got in the 
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CirCor2022 dataset are 54.4% and 74.6% respectively. C4.5 

decision tree is appeared as the best classifier when we look at the 

overall performance among the classifiers for solving defined 

problem in this study. 

Sound signals derived from the heartbeat and the mechanical 

events of cardiovascular system triggered by the heart are 

recorded in PCGs. PCG carries important clues for the detection 

and diagnosis of various diseases. However, PCG has a non-

stationary characteristic because it is a biological signal. Due to 

this fact, it is difficult to classify it with very high accuracy by 

using classical machine learning methods. As a result, deep 

learning-based models are needed in this area. 

It is also important to note that the frame size of PCG segments 

affects the results. Experiments with different frame lengths can 

be done in the future. In addition, classifiers can be trained with 

all of the features which are used independently in this study. 

Moreover, ensembles of the classifiers can used. 
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