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Herein, the hybrid nanozyme MnOx NPs/Co3O4 NPs on indium tin oxide coated glass 

substrate (ITO) was manufactured by imparting the porous morphology with its 

distinct merits: its surface valence states, oxygen vacancies, large surface area, and 

abundant active sites. The oxidase-like activity was investigated via the catalytic 

oxidation of chromogenic substrate in the presence of glucose visualized by the eyes. 

MnOx NPs containing Mn2+ and Mn3+ have a superior ability to oxidize glucose by 

reducing dissolved oxygen and producing H2O2. Co3O4 NPs, in turn, reduce H2O2 

with concomitant 3,3′,5,5′-tetramethylbenzidine (TMB) oxidization. Thus, the 

nanozyme mimics the dual roles of glucose oxidase and peroxidase. The oxidase-

like activity of hybrid nanozyme for glucose was found to be higher than those of 

single components. The nanozyme responded to glucose with a linear range from 60 

µM to 1200 μM. The acceptable performance is probably due to the facilitated access 

of glucose to the proximity of the sensor surface. Good reproducibility was 

accomplished by virtue of the meticulous construction of NPs. Without 

functionalization and enzyme utilization, the fabricated nanozyme holds promise as 

a substitute for peroxidase and oxidase for detecting glucose. 

 
1. Introduction 

 

Natural enzymes have been widely used due to 

their effective and specific catalytic activity on 

substrates under mild conditions [1–4]. However, 

enzymes face inherent drawbacks, such as high-

cost purification and low storage and operational 

stability [5–6]. Additionally, they are susceptible 

to pH, temperature, ionic strength, surfactants, 

and organic solvents, and digestion by proteases 

hampers their widespread use [7]. Since the 

exciting breakthrough of Fe3O4 MNPs exhibiting 

peroxidase-like activity in 2007 [8], considerable 

efforts have been devoted to exploring efficient 

artificial enzymes with intrinsic enzyme-like 

activities, aka "nanozymes", to address these 

difficulties [9].  

Nanozymes have been at the forefront as a viable 

alternative to facilitate analyte sensing owing to 

their striking merits [10]. These include 

adjustable catalytic activity, high stability against 

harsh environments, facile surface modification, 

and low-cost and straightforward production 

[11–12]. However, nanozymes could not 

selectively catalyze one specific substrate like 

enzymes [13]. Improving the asymmetric 

selectivity of nanozymes is one of the potential 

challenges [14].  

 

Hitherto, the enzymatic activity and selectivity of 

nanozymes have been tailored by surface 

modification [15], particle size adjustment [16], 

heterogeneous atomic doping [17], and 

morphology [18]. The large surface area exposes 

more active sites, and preferential exposure of  

catalytically active atoms increases the activity 

[19]. Surface defects such as ledges, adatoms, 

vacancies and kinks are coordinatively 
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unsaturated reactive sites and strongly adsorb 

substrates [20]. 

 

 Encouragingly, the catalytic performance of 

nanozymes has been synergically improved by 

functionally assembling several nanozymes 

showing the same enzyme-mimicking activity 

[21]. 

 

Up to now, most of the reported nanozymes have 

mirrored peroxidase-like activity; thus, the 

oxidase-like nanozymes are becoming more 

attractive [12, 22–23]. Noble metal nanoparticles 

such as Au NPs and their alloys have exhibited 

GOx-like activity owing to their remarkable 

oxygen reduction catalytic activities [12]. 

However, high-cost production hinders 

widespread applications. Multivalent 

manganese(II,III) oxide (MnOx) was reported to 

possess intrinsic oxidase-like activity due to its 

multiple oxidation states, along with satisfying 

features such as low-cost production, remarkable 

catalytic activity, non-toxicity, and 

environmental friendliness [24–26]. Likewise, 

cobalt(II, III) oxide (Co3O4) nanomaterials have 

rich redox properties depending on their 

morphology and multiple catalytic activities, 

closely correlated to medium pH. Also, Co3O4 

nanozymes catalyze H2O2 by showing 

peroxidase-like activity [17–18]. 

 

Conventional glucose detection has been 

performed by combining the corresponding 

oxidase enzyme and peroxidase nanozyme [27]. 

However, the different reaction conditions render 

the operation intricate. Thus, one-step 

colorimetric glucose-sensing will impel the 

development of nanozyme-based sensors [28–

30]. 

 

In this article, a nano-structured hybrid 

nanozyme was reported for glucose oxidation. Its 

oxidase mimics activity was investigated in the 

presence of a chromogenic substrate. 

 

2. Materials and Methods 

 

2.1. Reagents and chemicals 

 

ITO glass slides, ethanol (anhydrous, ≥99.8%), 

manganese(II) chloride tetrahydrate (MnCl2. 

4H2O), Cobalt(II) chloride hexahydrate and D-

(+)-glucose monohydrate were obtained from 

Merck. TMB, sodium hydroxide (NaOH), 

isopropyl alcohol, potassium iodide (KI), 

ethylenediaminetetraacetic acid (EDTA), iron(II) 

sulfate heptahydrate, sucrose, lactose, and 

maltose were purchased from Sigma-Aldrich. 

Acetate buffer solution (ABS) was prepared 

using glacial acetic acid (Merck) and sodium 

acetate (Sigma-Aldrich). Hydrochloric acid-

potassium chloride buffer (0.1 M, pH 2.0) was 

prepared using potassium chloride (Sigma-

Aldrich) and hydrochloric acid (Merck). All 

chemicals were used as received, and deionized 

water (DW) was obtained from a Labconco 

Water Pro BT purification system.  

 

2.2. Preparation of Co3O4 NPs 

 

The ITO electrodes (50 mm length × 10 mm 

width × 1.1 mm thickness; surface resistivity 8-

12 Ω/sq) were consecutively pre-cleaned by 

sonication in acetone, 1 M NaOH, ethanol/DW 

mixture (1:1, v/v), and DW for 15 min, before 

being dried in a vacuum oven.  

Co3O4 NPs were manufactured as follows. 0.1 M 

CoCl2 in isopropanol was applied on the glass 

surfaces, and the substrates were kept in the oven 

at 75 °C for 24 h and calcined at 450 °C for 12 h 

in a muffle furnace to crystallize the samples. 

The resulting product is designated as Co3O4 

NPs/ITO.  

 

2.3. Preparation of MnOx NPs on Co3O4 NPs 

 

The successful ionic layer adsorption and 

reaction (SILAR) was used to attain MnOx 

deposition. The free-standing substrates were 

dipped into the cationic precursor of 0.3 M 

MnCl2 (pH: 1) for 20 s to deposit Mn2+ on the 

substrate. The substrate was then rinsed with DW 

and then soaked in an anionic precursor of 0.01 

M NaOH (pH: 13) for 20 s, where OH− ions react 

with Mn2+ to obtain a manganese oxide layer 

followed by rinsing with DW to eliminate loosely 

bound species. This cycle was repeated 5, 10, and 

15 times for structural optimization, and the 

product (MnOx NPs/Co3O4 NPs/ITO) was dried 

at 60 oC in an oven.  
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2.4. Oxidase-like activity measurements 

 

For the detection of glucose, 2.5 mL of 0.4 mM 

TMB aliquots was prepared in 200 mM ABS pH 

3.8 with free-standing nanozyme substrate, and 

50 µL of varying glucose concentrations (0-1600 

µM) were added into the above mixture and 

incubated for 8 min at 35 ºC in cuvettes. Then, 

the free-standing substrate (MnOx NPs/Co3O4 

NPs/ITO) was removed from the reaction 

medium, and the absorbance measurements were 

carried out at 652 nm. Each experiment was 

repeated at least four times.  

 

2.5. Characterization  

 

The morphological features of nanozyme 

components were characterized by field emission 

scanning electron microscopy (FESEM) 

recorded on a FEI Quanta FEG 450. The 

crystalline planes were elucidated by X-ray 

diffraction (XRD, RIGAKU D/Max 2200), using 

monochromatized Cu radiation resource 

(λ= 1.5045 Å). UV visible (UV-Vis) absorbance 

and diffuse reflectance spectroscopy (DRS, 

BaSO4 as reference) spectra were recorded using 

a Shimadzu UV-2600 spectrophotometer at 200-

800 nm. 

 

3. Results and Discussions 

 

3.1. Characterization of free-standing 

nanozyme substrate 

 

An outstanding nanozyme for glucose detection 

was fabricated, as illustrated in Figure 1. The 

solution-based nanozymes have an unwanted 

effect on the absorption spectrum, whereas the 

free-standing nanozymes can negate this 

interference by removing it from the post-

reaction medium. The nanozyme preserved the 

multi-enzyme-mimicking activity in months of 

usage without additional storage conditions. The 

top-view TEM image of Co3O4 NPs displayed 

flakes of nanoparticle aggregates. The size of the 

Co3O4 NPs estimated from the image is 23 nm 

(Figure 2A). After MnOx NPs’ deposition, the 

morphological alteration is evident that MnOx 

NPs are deposited on Co3O4 NPs (Figure 2B). 

The size of the deposited MnOx NPs was 

calculated to be around 25 nm nearly the same 

size as Co3O4 NPs. The NP-coated substrates 

exhibited opalescence under the light (Figure 2B 

inset).  

 

 
Figure 1. The one-pot nonenzymatic colorimetric 

glucose detection using the free-standing nanozyme 

hybrid 

 

Figure 2C shows the XRD pattern of the hybrid 

nanozyme. The peaks located at 2θ = 19.0°, 

31.3°, 36.8°, 38.5°, 44.8°, 55.6°, 59.3°, and 

65.2°, respectively, correspond to the (111), 

(220), (311), (222), (400), (422), (511), and (440) 

planes of face-centered cubic (fcc) spinel 

Co3O4 (JCPDS No. 74-2120) [31]. The 

prominent diffraction peaks of MnO NPs 

appearing at 35.12°, 41.26°, 59.16°, and 71.42° 

indexed to (111), (200), (220), and (311) 

crystalline planes of MnO spheres (JCPDS no. 

07‐0230) implying that MnO was formed on 

Co3O4 NPs. The peak at 32.75° corresponds to 

the main peak of Mn2O3 NPs (222) (JCPDS no. 

71-0636), which can efficiently oxidase TMB 

[32]. Additional diffraction peaks could be 

associated with the indium tin oxide layer on the 

glass. 
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Figure 2 A. The top-view SEM images of Co3O4 

NPs/ITO and B. MnOx NPs/Co3O4 NPs/ITO (inset: 

the photograph of MnOx NPs/Co3O4 NPs/ITO); C. 

XRD pattern of MnOx NPs/Co3O4 NPs/ITO 

 

Figure 3A exhibits the reflection spectra of NP-

coated substrates. NPs display intense and typical 

reflection bands due to their photonic properties. 

After the MnOx deposition, the reflection band 

was blue-shifted owing to the narrowing pore 

size of NPs. UV-Vis spectrum revealed the 

absorbance band of the nanozyme in the visible 

region (Figure 3B).  

 

3.2. Mechanism of peroxidase- and oxidase-

like activities of the hybrid nanozyme  

  

The time-dependent absorbance intensity of 

TMB reaches the maximum after 8 min of 

incubation, suggesting that the redox process 

between TMB and nanozyme is a surface-

mediated reaction. The medium pH effect was 

screened in 200 mM ABS at various pH values 

ranging from 2 to 5.8. Owing to the similar 

structure of TMB with a diamine, basic pH brings 

about poor solubility of TMB. The hybrid 

nanozyme activity demonstrated a volcano-

shaped dependence on pH with the optimal point 

of pH 3.8 and is stable over a broad temperature 

range from 15 °C to 40 °C with an optimal value 

of 35 °C. 

 

A significant absorbance was observed at the 

maximum wavelength (652 nm) for Co3O4 

NPs/ITO in the presence of 5 mM glucose in 200 

mM in ABS pH 3.8 at optimal temperature, 

confirming the oxidase and peroxidase-like 

activity of NPs (Figure 3C). Also, the hybrid 

nanozyme exhibited boosted absorbance at 652 

nm relative to Co3O4 NPs/ITO, implying that 

both Co3O4 NPs and MnOx NPs were inevitable 

to enhance the intrinsic oxidase-like activity. 

According to the absorbance spectra, the optimal 

SILAR cycle for MnOx NP deposition was ten 

cycles (Figure 3C). 

 

The absorbance spectra were measured in the 

presence of various scavengers and activators to 

understand the mechanism of hybrid nanozyme 

(Figure 3D). The glucose oxidase-like activity 

was enormously inhibited upon adding catalase 

and Fe(II) EDTA, ascertaining the generation of 

H2O2 [33].  
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Figure 3 A. Reflectance spectra of materials; B. 

UV–visible absorbance spectra of nanozyme; C. 

UV–visible absorbance spectra of ox-TMB 

generated by the different nanozymes: (a) Co3O4 

NPs/ITO, (b,c,d) 5, 10, 15 cycles MnOx NPs/Co3O4 

NPs/ITO, respectively, D. Scavengers and activator 

effect on multiple enzyme-like activities 

 

To determine whether H2O2 is reduced to 

hydroxyl radicals, IPA, a hydroxyl radical 

scavenger, was added, and no absorbance 

diminishing was observed. Ergo, H2O2 is 

probably reduced to water[34]. The mechanism 

was further validated using KI and EDTA, the 

most used hole scavengers, and the oxidation of 

TMB was fully inhibited [35]. Therefore, the 

electron vacancies play a pivotal role, and in the 

oxidase-mimicking activity, the hybrid 

nanozyme will accept electrons by oxidizing the 

chromogenic substrate [36].  

 

The effect of oxygen on oxidation was surveyed 

to reveal the oxidase-mimicking activity. The ox-

TMB absorption intensity was reduced to almost 

zero in the argon-saturated solution, confirming 

that oxygen takes part in the reaction. In the 

presence of O2, a substantial increase in 

absorbance was observed, implying oxygen 

consumption during catalysis. In line with these 

findings, the multi-enzyme mimic activities of 

the hybrid nanozyme were elucidated tentatively, 

as illustrated in Figure 1. The initial adsorptions 

of oxygen and TMB are the principal 

contributing factors to the dual enzyme activity.  

 

The oxygen vacancies of MnOx NPs were 

beneficial for oxygen adsorption to generate 

active electrophilic oxygen species [37]. Thus, 

MnOx NPs serve as a GOx-like nanozyme that 

oxidizes glucose with the concomitant reduction 

of O2 to H2O2 (eq. 1). Also, (111) plane of spinel 

Co3O4 is the most active facet for the oxygen 

reduction activities owing to the density of highly 

exposed Co2+ active sites in the plane [38]. 

Therefore, Co3O4 NPs can reduce oxygen along 

with MnOx. Simultaneously, Co (III) in Co3O4 

NPs obtains electrons from TMB and then 

converts to Co (II), thus oxidizing TMB. The 

catalysts with lower redox potential, such as 

Co3O4, are thermodynamically favorable to 

transfer electrons to H2O2 [34]. Therefore, Co (II) 

can transfer electrons to in situ generated H2O2 

and then convert back to Co (III) (eq. 2), 

mimicking HRP. 

 

O2+2H++2e−→H2O2                                         (1) 

 

H2O2+2H++2e−(Co (II))→2H2O(Co (III))        (2) 

 

The oxidase-mimicking activity could be 

attributed to several factors. The NPs with 

internal voids provide large surface areas and 

copious catalytically active sites [39]. The 

accessible surface for the substrate could 

facilitate concurrent tandem catalysis in NPs 

[40]. Furthermore, the adsorbent behavior of 
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nanozyme brings the target molecule of interest 

close to the nanozyme, which makes the cascade 

reactions infinitely near each other by preventing 

the mass transfer process of reactants and 

intermediates [41]. The remarkable electron 

transfer occurring on the specific facet is 

conducive to the escalated nanozyme activity 

[19]. 

 

3.3. Colorimetric glucose detection with free-

standing nanozyme and steady-state kinetic 

assay 

 

The nanozyme exhibited a linear dependence for 

glucose concentrations ranging from 60 µM to 

1200 µM (y=0.000127x + 0.00342, R2 = 0.9969), 

implying that detection is likely viable (Figure 

4A, B, C). The color of oxidized TMB was 

visible to the naked eye at glucose concentrations 

lower than 0.2 mM (Fig. 4A inset). The 

comparison of the prepared nanozyme with the 

ones reported in the literature is listed in Table 1.  

 

According to Table 1, a wider measurement 

range with a lesser operation time was 

concluded. The large surface area of nanozyme 

was thought to push the dynamic range to the 

mM levels. According to the literature, 

nanozymes with glucose oxidase-like activity are 

mostly gold-based expensive materials. Herein, a 

cost-effective nanozyme material containing two 

metal oxides was proposed. The limit of 

detection (LOD) was estimated based on 

3(standard deviation of 20 blank measurements/ 

slope of the linear fit) and was determined as 

18 μM. The limit of quantification was estimated 

based on 10(standard deviation of 20 blank 

measurements/ slope of the linear fit) and was 

calculated as 60 μM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 A. The absorbance spectra vs. glucose 

concentration (inset shows the corresponding post-

reaction colorizations in various glucose 

concentrations); B. The absorbance vs. glucose 

concentration plot and C. the calibration curve for 

glucose detection 

 

Typical Michaelis-Menten curves were obtained 

for glucose oxidation, and kinetic parameters 

such as the Michaelis-Menten constant (Km) 

were obtained using the following equation [42]: 

 

1/Vo = Km/Vmax + (1/[S])(1/Km)                    (3) 

 

A lower Km value is desirable because Km 

represents the substrate's affinity. Km values 

were found to be 0.6 mM, lower than native GOx 
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(4.1 mM) [42], indicating a high affinity for 

glucose.  

 

3.4. The nanozyme sensor performance  

 

Also, the fabrication process was found to be 

effective for reproducible sensor production, and 

the satisfying feasibility was confirmed, 

outlining the robustness of the nanozyme (Figure 

5). The sensor stability was studied for four 

weeks, and negligible loss in the catalytic activity 

of less than 3% was found (Figure 6).  

The selectivity was assessed by exposing the 

sensor to 1.2 mM glucose and 1.2 mM glucose 

analogs, viz. lactose, sucrose, and maltose. The 

response was not remarkably influenced in the 

presence of maltose. The absorbance increased to 

some extent in the presence of lactose and 

sucrose due to the oxidation of analogs (Figure 

7). The plausible reason for this finding is that the 

nanozyme can lead to the hydrolysis of 

disaccharides. Some disaccharides may undergo 

efficient hydrolysis, thus releasing more glucose. 

 
Table 1. The performance comparison of the reported nanozyme-based glucose sensors 

 

Material 

 

Method/ temperature 

 

LOD 

(μM) 

 

Linear 

range 

(mM) 

 

Duration 

(min) 

 

Ref. 

MnOx NPs/Co3O4 

NPs/ITO 

ITO/PbS/SiO2/AuNPs 

 

CS-GO1 

 

m-GCN2 

 

m-GCN-chitin-acetic 

acid  

MnO2 nanoflakes 

 

Au@BSA NPs-GO 

 

Au NP@Au NCs 

spectrophotometric  

detection/ 35 ºC 

photoelectrochemical 

detection/ room temp. 

spectrophotometric  

detection/ room temp. 

spectrophotometric  

detection/ 25 °C 

spectrophotometric  

detection/ 30 ºC 

spectrophotometric  

detection/ 37 °C 

spectrophotometric  

detection/ n.a.3 

spectrophotometric  

detection/ room temp. 

18 

 

0.46 

 

0.5 
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1 
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Figure 5. The reproducibility of the sensor 

 

 
Figure 6. The stability study of the sensor 
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Figure 7. The selectivity of the free-standing 

nanozyme for glucose detection when exposed to 

glucose and glucose analogs 

 

4. Conclusion 

 

In summary, MnOx NPs/Co3O4 NPs/ITO was 

synthesized with favorable morphology for 

reactants and products, which could catalyze 

glucose oxidation by molecular oxygen to 

produce H2O2. The coupled oxidase and 

peroxidase-mimicking activity of MnOx 

NPs/Co3O4 NPs/ITO was utilized for 

colorimetric glucose sensing. Since Co3O4 NPs 

and MnOx NPs are mainly peroxidase-like and 

oxidase-like mimics, respectively, the assembly 

of these nanozymes exhibited specific and 

remarkable glucose sensing performance. The 

rational design of NPs grants access to abundant 

catalytically active sites and enhances the 

catalytic activity. This work may find its unique 

niche as an efficient biomimetic oxidase for 

glucose monitoring in the sensor area. 
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