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Abstract Öz 
Purpose: This paper aimed to determine the 
morphometry of the frontal lobe and central brain region 
using magnetic resonance imaging in patients having 
dementia and healthy subjects.  
Materials and Methods: 243 subjects (121 subjects 
having dementia; 122 subjects healthy group) aged 60-90 
years over for 2 years between January 2018 and 2020 were 
included in this study. Also, the supervised Machine 
learning based (ML based) detection of dementia has been 
studied on this obtained real world data. 
Results: The gender-related changes of frontal region 
measurements in dementia and healthy subjects were 
analyzed and, there were differences of measurements’ 
mean values in gender. In healthy subjects, significance 
differences were found in all measurements (except the 
distance from anterior commissure to posterior 
commissure and outermost of corpus callosum genu to 
innermost of corpus callosum genu). The means of the 
measurements were found higher in males than in females. 
Conclusions: We believe that the knowledge of our study 
will provide valuable reference data for our population and 
will help for a surgeon in planning an operation by 
considering measurements related to the frontal lobe. In 
addition, ML based supervised methods that were trained 
on the collected data for detection of dementia showed 
that it is required to provide as many attributes and 
instances as possible to train an accurate estimator. 
However, if this is not possible, by creating new features 

Amaç: Bu çalışma, demanslı hastalarda ve sağlıklı 
bireylerde manyetik rezonans görüntüleme kullanılarak 
frontal lob ve merkezi beyin bölgesinin morfometrisinin 
belirlenmesini amaçladı. 
Gereç ve Yöntem: Bu çalışmaya Ocak 2018-2020 tarihleri 
arasında 60-90 yaş arası 243 kişi (121 demanslı; 122 sağlıklı 
grup) dahil edildi. Ayrıca ortaya çıkan gerçek veriler ile 
denetimli Makine Öğrenmesine dayalı demans tahmini 
üzerinde çalışıldı.  
Bulgular: Frontal bölgeyi içeren ölçümlerin cinsiyete bağlı 
değişimleri demans ve sağlıklı bireylerde incelendi ve 
ölçümlerin ortalama değerlerinde cinsiyete göre farklılıklar 
bulundu. Sağlıklı bireylerde bütün ölçümlerde 
(commissura anterior’dan comissura posterior’a olan 
uzaklık ölçümü ve corpus callosum genu'nun en dış 
kısmından corpus callosum genu'nun en iç noktasına olan 
mesafe ölçümleri hariç) anlamlı farklılıklar bulundu. 
Morfometrik ölçümlerin ortalamaları erkeklerde kadınlara 
göre daha yüksek bulundu. 
Sonuç: Çalışmamızın, popülasyonumuz için değerli 
referans veriler sağlayacağına ve bir cerraha, ameliyatı 
planlamasında frontal lob ile ilgili ölçümlerin dikkate 
alınarak yardımcı olacağına inanıyoruz. Bunun yanısıra, 
makine öğrenmesine dayalı denetimli öğrenme yöntemleri, 
demansın tespiti için toplanan veriler üzerinde doğru bir 
sınıflayıcı ile mümkün olduğunca fazla sayıda nitelik ve 
örnekleme ihtiyaç duyar. Ancak, bu mümkün değilse, 
nitelikler ve örneklem arasındaki gizli örüntülere dayalı yeni 
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based on the hidden patterns between attributes and 
instances we could increase the success of the estimators 
up to 96.3% f-score value. 

niteliklerin oluşturulması ile sınıflayıcıların başarısı %96,3 
f-skoru değerine kadar artırılabilir. 
 

Keywords:. Frontal lobe morphometry, anterior 
commissure, corpus callosum, dementia, machine learning. 
 

Anahtar kelimeler: Frontal lob morfometrisi, 
Commissura anterior, corpus callosum, demans, makine 
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INTRODUCTION 

Dementia is a clinical syndrome characterized by 
neurodegeneration and cognitive decline with a 
progressive deterioration of dependence. Visual 
ratings, volumetric and voxel-based measures of 
brain atrophy have demonstrated close correlations 
with actual atrophy, neuropathological changes, and 
cognitive impairment1,2. And the majority of patients 
have an onset of dementia after age 653,4. Moreover, 
the incidence, and prevalence of dementia increase 
exponentially with age. The prevalence of dementia 
in those under 65 years of age is less than 5%, while 
in those over 85 years of age, it reaches 30-60%. 
Taking into account the progressive aging of the 
population and the expense associated with these 
pathologies, dementia is one of the main public 
health challenges in Western countries5. 
Furthermore, the prevalence of dementia is rapidly 
increasing in developed countries because of a 
significant increase in the aging population. There are 
several neurodegenerative diseases that cause 
dementia including Alzheimer’s disease, and 
dementia with Lewy bodies. According to the 2014 
World Alzheimer’s Report, dementia affects 
approximately 44 million people worldwide, and the 
incidence of Alzheimer’s disease (AD) is expected to 
triple by the year 20504,6. Specifically, AD patients 
show widespread atrophy, including in the medial 
temporal lobe (hippocampus, entorhinal cortex) and 
lateral temporal lobe, medial and lateral parietal lobe, 
and the frontal lobes, with relative sparing of the 
occipital lobes and sensory-motor cortex until later in 
the disease course7. The frontal lobe represents more 
than a third of the entire human hemisphere and the 
frontal lobe has a central role in cognitive functions 
and behaviors characteristic of adult life 8-11. For the 
evaluation of dementia, brain imaging is routinely 
performed and computed tomography or magnetic 
resonance imaging (MRI) is recommended for the 
diagnosis of dementia4. MRI could be useful to 
characterize a diagnosed dementia and to assess 
global and local atrophy. Moreover, MRI scans can 
also be used as outcome measures for treatments that 
are targeted to slow down the progression of 

neurodegeneration12,13. In this study, it is also studied 
to perform automatic detection of dementia cases by 
using ML techniques. 

The aim of this study is to demonstrate the frontal 
lobe morphometry, in subjects with dementia and 
healthy with linear measurements using MRI, which 
are taken into account for the surgical anatomy for 
planning the procedures and preventing damage of 
the structures in this area. To our knowledge, there 
are no any studies considering frontal lobe 
morphometry on dementia via machine learning 
based prediction of dementia in the literature. Also, 
for this purpose, a real-world but rather small dataset 
of 243 instances in which each instance vector 
includes 11 attributes, is formed and used for training 
a supervised machine learning estimator to help 
detection of dementia.  

The hypothesis of this study is that are there any 
relation between frontal lobe morphometric 
dimensions and age/gender. Also, can automatic 
detection of dementia cases by using ML techniques 
be performed.  

MATERIALS AND METHODS 

This study was a retrospective observational study 
performed in Medline Hospital Department of 
Radiology in Turkey. Magnetic resonance imaging 
was performed using a 1.5 T MRI system (Siemens; 
Essenza, Erlangen, Germany). The brain MRI 
protocol including sagittal T2-weighted spin echo 
(TR: 3600, TE: 87 ms; slice thickness: 5 mm; gap: 1.5 
mm) was used. The measurements were performed 
from digital MRI images using caliper function with 
×2 magnification. This study was carried out on 243 
subjects (121 subjects having dementia; 122 subjects 
healthy group) who are appropriate for inclusion 
criteria, and aged 60-90 years over for 2 years between 
January 2018 and 2020. Moreover, unclear images 
having no accurate and plain reference landmarks 
were excluded from the study.  

Some inclusion and exclusion criterias for both 
subjects having Dementia and healthy were stated 
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below. 

Healthy subjects who the following criteria included 
in the study;  

1) No signal abnormality and cerebral tumors, 
infarction, or hemorrhage on MRI.  

2) No history of trauma on the brain  

3) Having no surgical operation related to the brain.  

Dementia subjects who the following criteria 
included in the study;  

1) Patients admitted to the hospital for various 
reasons and diagnosed with dementia 

All images were evaluated by an experienced 
radiologist. This study was approved by the 
Institutional Review Ethics Committee at Çukurova 
University (2021/114-62).  

The measurements were made on the computer 
screen with an electronic caliper and estimations were 
expressed as millimeters. Over midsagittal view 
images the following measurements were performed 
as: 

• The distance from frontal pole to anterior 
commissure (A) 

• The distance from frontal pole to posterior 
commissure (B) 

• The distance from frontal pole to outermost of 
corpus callosum genu (C) 

• The distance from the frontal pole to the 
innermost of the corpus callosum genu (D) 

• The distance from the frontal pole to the 
tuberculum sella (E) 

• The distance from the anterior commissure to 
posterior commissure (F) 

• The distance from frontal lobe surface to 
outermost of the corpus callosum genu (G) 

• The distance from the frontal lobe surface to the 
anterior commissure (H) 

• The distance from the outermost of the corpus 
callosum genu to the innermost of the corpus 
callosum genu (I) (Figure 1) 

Furthermore, the data were divided also into six 
groups according to age: group 1; 60 – 64, group 2; 
65 – 69, group 3; 70 - 74, group 4; 75 - 79, group 5; 
80 - 84, group 6; 85 - 89 and the data were also 
analyzed according to gender. 

 

 
Figure 1. The midsagittal section of the brain MRI with landmarks and reference lines 
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Machine learning application 
As a second new analysis, supervised Machine 
Learning techniques were applied to find the answers 
to research questions “Can a patient be diagnosed 
with dementia with frontal lobe morphometric 
measurements?” or “How effective are the frontal 
lobe morphometric measurements in diagnosing 
dementia?”. 

Data 
In this study, MRI images of 243 people were used to 
perform a statistical analysis of dementia cases. The 
analysis was performed on 9 different measurements 
obtained on MRI images as well as considering both 
gender and age information of patients. 

From the machine learning (ML) perspective, this 
data needs to be transformed into an intermediate 
form to enable classifiers to run over it. Hence, first 
of all, we transformed the collected data of 243 
patients into a 243 x 11 matrix whose rows represent 
patients and columns represent attributes, 
respectively. In the rest of the study, we refer to 
records of each person (i.e., each row in the data 
matrix) as an instance, while we refer to each of the 
11 columns as an attribute (i.e., feature). Please note 
that one additional column representing class 
attribute (i.e., having dementia or nor) is also included 
at the rightmost side of the matrix to show the disease 
state of each patient. The value of 1 in this column 
means that the corresponding person has dementia, 
while the value of 2 means that the person is healthy. 
As our data almost includes an equal number of 
records (i.e., 121 dementias, 122 healthy), the data is 
fairly balanced across two classes. Additionally, as we 
have two classes (i.e., categories), our task in this 
study turns into a supervised binary ML task. 

Machine learning methods 
In this study, we used supervised ML in which 
training data needs to be labeled by external 
assistance. Supervised ML takes given data in a form 
of a collection of (𝑥𝑥,𝑦𝑦) pairs and tries to produce a 
prediction 𝑦𝑦∗ for a test instance 𝑥𝑥∗. In this process, 
predictions are made via a learned mapping function 
𝑓𝑓(𝑥𝑥) which produces an output 𝑦𝑦 for each input 𝑥𝑥 14. 
The following sub-headings give a brief description 
of our methods used in the basic steps of supervised 
ML preprocessing, classification, and performance 
measurement and evaluation. 

Preprocessing 
In this step, we employed two different feature 
transformation (aka feature engineering) steps 
separately on the data to observe the effects of 
preprocessing on the performance of classifiers 15. 
These two steps are briefly described in the following 
sub-sections. 

Encoding 
The encoding task employed in this study involves 
basic nominal to binary conversion (both for gender 
and age attributes), and discretization (for age attribute 
numeric continuous value is discretized into six range 
groups) steps (see Table 4) on attributes to create 
different variants of data. This task is applied to 
observe the effects of feature encoding on 
classification performance. Also, it allows us to apply 
a feature selection manually. The main reason behind 
applying this step is that the number of features in 
our data is very low (i.e., only 11, see the details of 
our data introduced in Section 1) and feature 
selection algorithms often fail to select the best 
discriminative ones. 

Partition Membership Filtering 
This is another step of our preprocessing which 
transforms the pure data into a new form by creating 
new features based on existing ones 15. In this step, 
we used Weka’s partition membership filter16,17. 
which transforms data into a new form by generating 
partition membership values. It filters instances in a 
way that the instances are composed of these values 
plus the class attribute and rendered as sparse 
instances 17. 

This filter uses multi-instance learning (MIL), also 
known as multiple instance learning which is a 
variation of the standard supervised ML scenario18. 
The first study on MIL was performed to predict the 
drug molecule activity level 19. After that many 
numbers of MIL methods (e.g., diverse density, 
citation kNN, etc.) have been proposed and MIL has 
been applied to a wide spectrum of applications 
including image concept learning, text categorization, 
stock market prediction, and so on18-21 (Figure 2). 

The majority of the work in MIL is concerned with 
binary classification problems to learn a model based 
on the training examples that are effective in 
predicting the labels of future examples as depicted 
in Figure 2, in traditional supervised learning, each 
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example is represented by a fixed-length vector of 
features 19, 22, 23. On the other hand, in the MIL 
scenario, each example is represented by a multi-set 
(or bag) of feature vectors referred to as instances. 

Classification labels are only provided for entire bags, 
and the task is to learn a model that is able to predict 
the labels for unseen bags 20-23. 

 

 
(a) 

 
(b) 

Figure 2. Traditional supervised learning scenario (a), MIL scenario (b) 

 

In MIL problems, the instances are organized as bags 
of multiple instances. Let 𝐗𝐗 be a training set that 
consists of instances {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} and their class 
labels {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}, where 𝑥𝑥𝑖𝑖 ∈ 𝐗𝐗 and 𝑦𝑦𝑖𝑖 ∈ 𝐘𝐘. 
Formally, MIL tries to learn a model on a set of 
instance-bags 𝑏𝑏 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛} and their labels 
𝑦𝑦 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}, where 𝑋𝑋𝑖𝑖 =
{𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑖𝑖},∀𝑥𝑥𝑖𝑖𝑖𝑖 ∈ 𝐗𝐗 and 𝑦𝑦𝑖𝑖 ∈ 𝐘𝐘 [20,23,24]. In 
most MIL tasks, we have 𝐘𝐘 = {−1, +1}, where 𝑦𝑦𝑖𝑖 =
−1 or 𝑦𝑦𝑖𝑖 = +1 represents a positive or negative bag 
𝑏𝑏𝑖𝑖 respectively. Two-level-classification (TLC) 
method is introduced in to tackle generalized MIL 
problems 26. In the first step, each bag is converted 
into a single meta-instance representing the 
corresponding region in the instance space and has a 
feature/attribute for each of the discovered regions. 
Each attribute indicates the number of instances in 
the bag that can be found in the corresponding 
region. Together with the bag’s class label, the meta-

instance can be passed to a standard propositional 
learner in order to learn the influence of the regions 
on a bag’s classification (Figure 3). 

This process is exemplified in Figure 3, which depicts 
constructing a count-based single instance from a bag 
with three instances and three attributes a1, a2, and 
a3 26. A decision tree with five nodes is used to 
discover regions in the instance space and the meta-
instance has an attribute for each node that stands for 
the number of instances in the bag for that node. In 
this study, transforming pure data into a new form is 
performed by generating new features based on 
existing ones. For this purpose, we use Weka’s 
Partition Membership filter which is the 
implementation of the TLC approach and also 
involves several other generators like random 
forest16. The reader is advised to see more details 
about MIL and TLC approaches16, 26. 
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Figure 3. An example of creating a single meta-instance from a bag 

 

Classification 
In the classification stage, we used seven well-known 
classifiers implemented in Weka (with a version 3.8.6) 
ML toolkit 17. The brief descriptions of the used 
classifiers are as follows: 

NB: This is a simple probabilistic estimator, called 
Naïve Bayes (NB) classifier, that depends on Bayes’ 
theory with strong independence assumptions27, 28. It 
is easy in terms of both implementation and 
computation and works well on numeric and textual 
data when compared to other classifiers27-29. 

NBM: Naïve Bayes Multinomial (NBM) classifier 
uses the Bayesian learning perspective and assumes 
that feature distributions in samples are generated by 
a specific parametric model30, 31. In other words, 
NBM is a specific instance of an NB which uses a 
multinomial distribution for each of the features28, 31. 

SMO: This is the implementation of sequential 
minimal optimization (SMO) for training the Support 
Vector Machine learner in Weka28, 32. SMO uses a 
linear kernel by default. 

IBk: It is the implementation of the k-nearest 
neighbor classifier in Weka. It assigns each test 
instance to one of the predefined set of classes 
according to the majority class labels of the k 
neighbors from the training set28, 33.  

RF: Random Forest (RF) is an ensemble classifier of 
decision trees where each tree is generated by using a 
random vector that is sampled independently from 
the given input data28, 34. 

J48: It is an implementation of C4.5 decision tree 
induction algorithm. A decision tree is composed of 

nodes and branches such that each node and branch 
represent an attribute and a value that a node can take 
respectively28, 35, 36. Classification of a new instance is 
done by starting the root node, and following the 
matching branches until a leaf node, which represents 
a class label, is reached. 

RT: Random Tree (RT) classifier constructs a 
decision tree that considers K randomly chosen 
attributes at each node. It does not perform pruning 
and also has an option to allow the estimation of class 
probabilities based on a hold-out set17, 34. 

The mathematical definitions of these methods are 
not given in this paper to save space and reduce the 
complexity of the study. Nevertheless, the reader is 
advised to see more details on these classifiers 17, 28. 

Performance Measurement and Evaluation 
Since we have two target class labels in our data, we 
performed supervised binary ML tasks using 
classifiers.  To measure the performance of a 
classifier in a binary classification task, actual and 
predicted labels of test instances are grouped into 
four main categories that are TP (True Positives), TN 
(True Negatives), FP (False Positives), and FN (False 
Negatives) to derive a confusion matrix 28, 37. Using 
the number of instances in these four categories, 
several well-known evaluation metrics can be 
computed. In this study, the performance measure of 
estimators is performed by using the f1-score (or f-
measure) which is formulated as follows 37:  

𝑓𝑓1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅
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where 𝑃𝑃 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) and 𝑅𝑅 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +
𝐹𝐹𝐹𝐹). Model evaluation is on the other hand often 
performed by dividing the dataset into two disjoint 
subsets namely, training and test sets. In this study, 
we use k-fold cross-validation to evaluate our 
learning models (or estimators) 38. In this way of 
evaluation, the data at hand is divided into k equal-
sized subsets each of which is picked as a test set and 
the remaining k – 1 subsets taken as a training set28, 

37. Then, the average of the f1-scores is computed. 
Note that we configured our models to run with 10-
fold cross-validation in this study. 

Statistical analysis 
Statistical analysis of the study data was performed 
using Statistical Package for the Social Sciences 
(SPSS) version 21.0 software for Windows. 
Normality assumption was decided to Shapiro Wilk 
test. From these measurements, means, standard 
deviations (SD), minimum (min.) and maximum 
(max.) values were calculated. In all statistical 
analyses; p value under 0.05 was considered to be 
statistically significant. According to Shapiro Wilk 
test result, ANOVA was used to the comparison of 
groups according to gender and ages. 

RESULTS 

The values of minimum, maximum, mean, and 
standard deviations of the measurements in 243 
subjects (121 dementia and 122 healthy groups) were 
shown in Table 1. Distance from the frontal pole to 
the anterior commissure is 54.38±3.07 mm; from the 
frontal pole to posterior commissure 80.29±4.09 
mm; from frontal pole to outermost of corpus 
callosum genu 34.73±2.83 mm; from frontal pole to 
innermost of corpus callosum genu 41.95±3.25 mm; 
from frontal pole to tuberculum sella 49.95±3.84 
mm; from anterior commissure to posterior 
commissure 25.72±1.82 mm; from frontal lobe 
surface to outermost of corpus callosum genu 
32.36±2.71 mm; from frontal lobe surface to anterior 
commissure 58.93±3.33 mm; from outermost of 
corpus callosum genu to innermost corpus callosum 
genu 7.87±1.74 mm in healthy subjects and the same 
values were as 53.95±3.60 mm, 81.01±3.98 mm, 
34.76±2.81 mm, 42.12±3.31 mm, 49.99±3.35 mm, 
25.38±3.66 mm, 32.90±2.89 mm, 58.43±3.51 mm, 
7.70±1.81 mm respectively in people with dementia. 
According to these results, the difference was found 
in the distance from anterior commissure to posterior 
commissure (F) between two groups (p<0.05). Some 

measurement results were higher in healthy group 
than in dementia subjects (A, H, and I), whereas B, 
C, D, F, and G parameters were lower in healthy 
groups than dementia subjects. Also, only one 
parameter (E) of dementia subjects were similar to 
healthy subjects (Table 1). Also, age-related changes 
of frontal lobe and central region of brain 
measurements (mm) in dementia subjects and healthy 
group subjects were shown in Table 2. According to 
these results, there were significant differences in all 
measurements in dementia subjects, whereas 
significant differences were found in C, D, G, H and 
I parameters in healthy subjects. D, E, F, and I 
parameters were highest in the first decade and lowest 
in six decades. C, G, and H values were highest in the 
second decade and C, G were lowest in six decades, 
H value was lowest in the fifth decade. Also, a 
parameter took the highest value in third decade and 
lowest value in the fifth decade in dementia subjects. 
Additionally, in healthy subjects, A, B, G, and I 
parameters’ the highest and the lowest values were in 
decades 1, and 6, respectively. Also, D, and E 
parameters were lowest in six decades, C, and H were 
lowest in the fifth decade. Moreover, D, and E 
measurements took the highest value in the second 
and the third decades, respectively. C and H values 
were highest in fouth and first decades, respectively. 
F measurement was highest in second decade lowest 
in fourth decade (Table 2). Additionally, when we 
analyzed the gender-related changes of these 
measurements (mm) in dementia and healthy 
subjects, there were differences in measurements 
mean values among gender. In healthy subjects, a 
significant difference was found in all measurements 
(except F and I parameters). Moreover, there were 
significant differences in C, D, G, and H parameters 
in dementia subjects (p<0.05). The means of the 
measurements were found higher in males than in 
females (Table 3). 

In this section, we present the results of our extensive 
experiments on our data using different ML methods 
briefly introduced in Section 2.2. Please note that we 
employed the methods with the help of the Weka 
software (with version 3.8.6) which is an ML toolkit 
written in Java programming language. Hence, we 
first structured our data matrix to be in ARFF 
(Attribute Relation File Format) in 12 different ways 
(DS01 through DS12) which are summarized in 
Table 4. As seen in Table 4, the first six datasets 
(DS01 up to DS06) include gender and age attributes 
in nominal or binary types, while the other datasets 
exclude either gender or age or both (i.e., DS12) 
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attributes. The reason behind creating these different 
datasets is to explore the effects of different attribute 
types on the performance of classifiers. In the 
experimental phase, we used all classifiers and filters 
with default parameter settings and configured 
classifiers to run with 10-fold cross-validation. In the 
first step, we performed classification experiments to 
automatically predict whether a person is healthy or 
not. Using the twelve variants of the data (see Table 
4) and well-known classifiers, we obtained f1-scores 
as given in Table 5. In Table 5, the best f1 score value 
for each dataset is written in bold, and the best 
classification f1 score for the table is written in red. 
As seen in Table 5, classifiers produce slightly 

different results, and the accuracy of automatically 
predicting the health status of a person ranges from 
0.504 to 0.625. These results show that using the 
originally obtained 11 features, it is not possible to 
achieve satisfying results for this task. In detail, the 
worst results are produced by the NB classifier, while 
the best ones are often obtained by the RF classifier. 
Creating different variants of the data has also an 
effect on the results and the highest result (i.e., 0.625) 
is obtained by the NBM classifier on the DS09 variant 
that does not include the gender information but 
includes age-group information in binary format (i.e., 
one-hot-encoding). 

Table 1. The means, standard deviations, and ranges of the measurements (mm) in dementia subjects and 
healthy group subjects with magnetic resonance imaging 

 
Groups 

 
Measurements 

 
Number 

 
Mean 

SD  
Min. 

 
Max. 

P value 
for 

groups 

Dementia 
Healthy group 

A 
A 

121 
122 

53.95 
54.38 

3.60 
3.07 

43.00 
46.00 

62.00 
61.00 

0.313 

Dementia 
Healthy group 

B 
B 

121 
122 

81.01 
80.29 

3.98 
4.09 

71.00 
70.00 

93.00 
91.00 

0.185 

Dementia 
Healthy group 

C 
C 

121 
122 

34.76 
34.73 

2.81 
2.83 

27.00 
29.00 

42.00 
43.00 

0.932 

Dementia 
Healthy group 

D 
D 

121 
122 

42.12 
41.95 

3.31 
3.25 

33.00 
35.00 

52.00 
51.00 

0.696 

Dementia 
Healthy group 

E 
E 

121 
122 

49.99 
49.95 

3.35 
3.84 

41.00 
39.00 

61.00 
60.00 

0.944 

Dementia 
Healthy group 

F 
F 

121 
122 

27.38 
25.72 

3.66 
1.82 

21.00 
21.00 

42.00 
30.00 

<0.001 

Dementia 
Healthy group 

G 
G 

121 
122 

32.90 
32.36 

2.89 
2.71 

23.00 
27.00 

42.00 
40.00 

0.135 

Dementia 
Healthy group 

H 
H 

121 
122 

58.43 
58.93 

3.51 
3.33 

51.00 
48.00 

66.00 
68.00 

0.260 

Dementia 
Healthy group 

I 
I 

121 
122 

7.70 
7.87 

1.81 
1.74 

4.00 
4.00 

14.00 
12.00 

0.446 

A: The distance from frontal pole to anterior commissure; B: The distance from the frontal pole to the posterior commissure; C: The 
distance from the frontal pole to the outermost of the corpus callosum genu; D: The distance from the frontal pole to the innermost of 
the corpus callosum genu; E: The distance from frontal pole to tuberculum sella; F: The distance from the anterior commissure to the 
posterior commissure; G: The distance from the frontal lobe surface to the outermost of the corpus callosum genu; H: The distance from 
the frontal lobe surface to anterior commissure; I: The distance from outermost of corpus callosum genu to the innermost of the corpus 
callosum genu; SD: Standard deviation; Min.: Minimum; Max.: Maximum 

Table 2. Age related changes of frontal lobe and central region of brain measurements (mm) in dementia 
subjects and healthy group subjects with magnetic resonance imaging  

Measurements Decades 
 

Dementia 
group 
n=121 

Mean SD P Healthy 
group 
n=122 

Mean SD P 

A 1 (60-64 
years) 

15 51.93 4.83 <0.001 20 55.30 2.74 0.530 

2 (65-69 
years) 

25 55.40 2.40 22 55.05 2.73 
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3 (70-74 
years) 

18 56.00 2.97 28 54.89 3.01 

4 (75-79 
years) 

23 54.70 2.69 13 54.62 2.47 

5 (80-84 
years) 

26 52.42 3.16 29 53.28 3.12 

6 (85-89 
years) 

14 52.50 4.35 10 52.60 4.17 

B 1 (60-64 
years) 

15 83.00 4.34 <0.001 20 55.30 4.05 0.480 

2 (65-69 
years) 

25 82.32 3.21 22 55.05 3.83 

3 (70-74 
years) 

18 82.05 3.44 28 54.89 4.05 

4 (75-79 
years) 

23 81.56 3.15 13 54.62 3.49 

5 (80-84 
years) 

26 78.96 3.78 29 53.28 4.04 

6 (85-89 
years) 

14 78.14 4.49 10 52.60 4.52 

C 1 (60-64 
years) 

15 35.47 2.50 0.041 20 35.10 2.45 0.029 

2 (65-69 
years) 

25 35.52 2.68 22 35.00 2.85 

3 (70-74 
years) 

18 35.00 3.48 28 35.50 2.70 

4 (75-79 
years) 

23 35.39 2.46 13 35.85 3.18 

5 (80-84 
years) 

26 33.73 2.38 29 33.45 2.49 

6 (85-89 
years) 

14 33.29 3.07 10 33.60 3.27 

D 1 (60-64 
years) 

15 44.13 2.77 <0.001 20 43.45 2.95 <0.001 

2 (65-69 
years) 

25 43.84 2.79 22 43.46 2.91 

3 (70-74 
years) 

18 43.00 3.20 28 42.79 2.83 

4 (75-79 
years) 

23 42.09 2.47 13 42.31 2.78 

5 (80-84 
years) 

26 40.12 2.93 29 39.83 2.84 

6 (85-89 
years) 

14 39.57 3.46 10 39.10 2.92 

E 1 (60-64 
years) 

15 51.07 2.87 0.044 20 50.50 3.72 0.248 

2 (65-69 
years) 

25 50.92 3.42 22 50.00 4.12 

3 (70-74 
years) 

18 49.83 3.40 28 50.96 2.85 

4 (75-79 
years) 

23 50.74 3.66 13 49.92 3.50 

5 (80-84 
years) 

26 48.81 3.21 29 49.41 4.48 

6 (85-89 
years) 

14 48.36 2.47 10 47.60 4.01 

 549 



Polat et al. Cukurova Medical Journal 
 

F 1 (60-64 
years) 

15 30.20 5.35 0.008 20 25.70 2.18 0.540 

2 (65-69 
years) 

25 27.88 2.98 22 25.77 1.88 

3 (70-74 
years) 

18 26.72 2.52 28 26.29 1.76 

4 (75-79 
years) 

23 27.74 4.01 13 25.39 1.76 

5 (80-84 
years) 

26 26.08 3.14 29 25.41 1.66 

6 (85-89 
years) 

14 26.14 2.63 10 25.50 1.72 

G 1 (60-64 
years) 

15 33.73 3.15 0.016 20 33.85 3.05 <0.001 

2 (65-69 
years) 

25 33.80 2.24 22 33.50 2.43 

3 (70-74 
years) 

18 33.72 3.25 28 32.64 2.63 

4 (75-79 
years) 

23 33.04 2.71 13 32.08 2.40 

5 (80-84 
years) 

26 31.65 2.08 29 30.86 2.05 

6 (85-89 
years) 

14 31.43 3.78 10 30.80 2.44 

H 1 (60-64 
years) 

15 58.20 3.88 0.006 20 60.90 3.14 0.006 

2 (65-69 
years) 

25 59.80 3.10 22 59.96 2.34 

3 (70-74 
years) 

18 59.33 3.11 28 58.57 3.62 

4 (75-79 
years) 

23 59.30 3.50 13 56.92 3.15 

5 (80-84 
years) 

26 56.50 3.39 29 58.17 3.31 

6 (85-89 
years) 

14 57.29 3.12 10 58.60 3.20 

I 1 (60-64 
years) 

15 8.73 2.12 <0.001 20 9.50 1.36 <0.001 

2 (65-69 
years) 

25 8.64 1.47 22 9.14 1.21 

3 (70-74 
years) 

18 8.28 1.78 28 8.07 1.46 

4 (75-79 
years) 

23 7.44 1.75 13 7.00 1.47 

5 (80-84 
years) 

26 6.58 1.50 29 6.59 0.95 

6 (85-89 
years) 

14 6.71 0.99 10 6.20 1.40 

A: The distance from frontal pole to anterior commissure; B: The distance from frontal pole to posterior commissure; C: The distance 
from frontal pole to outermost of corpus callosum genu; D: The distance from frontal pole to innermost of corpus callosum genu; E: The 
distance from frontal pole to tuberculum sella; F: The distance from anterior commissure to posterior commissure; G: The distance from 
frontal lobe surface to outermost of corpus callosum genu; H: The distance from frontal lobe surface to anterior commissure; I: The 
distance from outermost of corpus callosum genu to innermost of corpus callosum genu; SD: Standard deviation; Min.: Minimum; Max.: 
Maximum 
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Table 3. Gender related changes of frontal lobe and central region of brain measurements (mm) in dementia 
subjects and healthy group subjects with magnetic resonance imaging 
Measurement/Gender Healthy group n=122 Mean SD Dementia Group n=121 Mean SD 

 
A 

Male 55 55.40 2.97 Male 60 54.50 3.27 

Female 67 53.55 2.93 Female 61 53.41 3.87 

Total 122 54.39 3.08 Total 121 53.95 3.61 

p value  0.001 - 0.097 

 
B 

Male 55 81.33 4.16 Male 60 81.55 3.44 

Female 67 79.45 3.88 Female 61 80.49 4.42 

Total 122 80.30 4.10 Total 121 81.02 3.98 

p value 0.011 - 0.145 
 
C 

Male 55 35.58 2.85 Male 60 35.38 2.85 

Female 67 34.04 2.64 Female 61 34.16 2.67 

Total 122 34.74 2.83 Total 121 34.77 2.82 

p value 0.03 - 0.017 
 
D 

Male 55 43.16 3.15 Male 60 42.87 3.06 

Female 67 40.97 3.02 Female 61 41.39 3.41 

Total 122 41.96 3.26 Total 121 42.12 3.31 

p value <0.001 - 0.014 
 
E 

Male 55 50.85 3.67 Male 60 50.50 3.63 

Female 67 49.22 3.85 Female 61 49.49 3.00 

Total 122 49.96 3.84 Total 121 49.99 3.35 

p value 0.019 - 0.098 

 
F 

Male 55 25.91 1.64 Male 60 27.63 3.43 

Female 67 25.58 1.96 Female 61 27.13 3.90 

Total 122 25.73 1.82 Total 121 27.38 3.67 

p value 0.326 - 0.453 
 
G 

Male 55 33.20 2.95 Male 60 33.68 2.80 

Female 67 31.67 2.31 Female 61 32.13 2.80 

Total 122 32.36 2.72 Total 121 32.90 2.90 

p value 0.002 - 0.003 
 
H 

Male 55 59.71 3.22 Male 60 59.27 3.41 

Female 67 58.30 3.32 Female 61 57.62 3.45 

Total 122 58.93 3.34 Total 121 58.44 3.51 
p value 0.020 - 0.010 
 
I 

Male 55 8.09 1.59 Male 60 7.80 1.73 
Female 67 7.70 1.85 Female 61 7.61 1.91 

Total 122 7.88 1.74 Total 121 7.70 1.82 
p value 0.221 - 0.561 

A: The distance from the frontal pole to the anterior commissure; B: The distance from the frontal pole to the posterior commissure; C: 
The distance from the frontal pole to the outermost of the corpus callosum genu; D: The distance from the frontal pole to the innermost 
of corpus callosum genu; E: The distance from the frontal pole to the tuberculum sella; F: The distance from the anterior commissure to 
the posterior commissure; G: The distance from frontal lobe surface to outermost of corpus callosum genu; H: The distance from the 
frontal lobe surface to the anterior commissure; I: The distance from the outermost of the corpus callosum genu to the innermost of 
corpus callosum genu; SD: Standard deviation; Min.: Minimum; Max.: Maximum 
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Table 4. Different types of datasets created from the data matrix considering the inclusion, exclusion, and 
nominal-binary conversion statuses of gender and age attributes 

Dataset # of … Nominal/Binary Attributes 
instances attributes classes Gender Age 

DS01 243 11 2 Nominal {M, 
F} 

Numeric {60-89} 

DS02 243 11 2 Binary {0, 1} Numeric {60-89} 
DS03 243 11 2 Nominal {M, 

F} 
Nominal {G1, G2, G3, G4, G5, G6} 

DS04 243 16 2 Nominal {M, 
F} 

Binary {G1: {0, 1}, G2: {0, 1}, G3: {0, 
1}, G4: {0, 1}, G5: {0, 1}, G6: {0, 

1}} 
DS05 243 11 2 Binary {0, 1} Nominal {G1, G2, G3, G4, G5, G6} 
DS06 243 16 2 Binary {0, 1} Binary (the same as DS4) 
DS07 243 10 2 Nominal {M, 

F} 
Excluded 

DS08 243 10 2 Binary {0, 1} Excluded 
DS09 243 15 2 Excluded Binary (the same as DS4) 
DS10 243 10 2 Excluded Nominal {G1, G2, G3, G4, G5, G6} 
DS11 243 10 2 Excluded Numeric {60-89} 
DS12 243 9 2 Excluded Excluded 

Table 5. Obtained f1 scores of well-known classifiers considering different variants of the data 
Dataset Classifier 

NB NBM SMO IBk J48 RF RT 
DS01 0.523 NA 0.553 0.551 0.555 0.605 0.600 
DS02 0.514 0.561 0.553 0.551 0.555 0.584 0.539 
DS03 0.511 NA 0.588 0.550 0.613 0.580 0.523 
DS04 0.525 NA 0.588 0.550 0.593 0.580 0.531 
DS05 0.510 NA 0.588 0.550 0.613 0.576 0.556 
DS06 0.525 0.613 0.588 0.550 0.593 0.572 0.580 
DS07 0.511 NA 0.557 0.556 0.560 0.617 0.588 
DS08 0.519 0.568 0.557 0.556 0.560 0.593 0.527 
DS09 0.515 0.625 0.588 0.513 0.572 0.593 0.547 
DS10 0.504 NA 0.588 0.513 0.572 0.580 0.560 
DS11 0.523 0.568 0.535 0.559 0.530 0.609 0.555 
DS12 0.519 0.579 0.551 0.584 0.542 0.601 0.593 

 

Please notice that the NA value under the column 
NBM means that the classifier was not run since the 
NBM estimator cannot handle datasets including 
categorical or nominal attribute values. These results 
show that the NBM classifier is more suitable for 
datasets if they do not include nominal attributes. On 
the data variants including nominal attributes, RF 
often seems to be a better option but J48 is also 
another alternative classifier that is superior to other 
ones. Excluding both gender and age information 
causes to decrease in classification accuracy, but 
considering the highest result (i.e., 0.625) on the 
DS09 shows that gender information does not help 
to discriminate instances when age information is 
included as a binary encoding of group information. 

As our results are not satisfying, we tried to improve 
the performance of the estimators to enable a 
scenario such that an ML model assists medical 
personnel while they reach a decision about a 
dementia case. In this case, one of the possible 
solutions is to use feature selection that selects the 
best discriminative features. However, this option did 
not improve our results, since the number of features 
in our data is already very low. Hence, we have 
focused on creating new features based on the 
membership information of existing ones in a 
supervised manner. Based on our experimental 
evaluations (not reported here to save space), we 
decided to use the partition membership filter 
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introduced in Section 2.1 with the help of Weka’s 
“Partition Membership” filter. 

In the second phase of our experiments, therefore, 
we first passed the data through the partition 
membership filter and then performed classification 
experiments on the transformed data that is 
composed of newly generated attribute values based 
on their membership to the detected partitions or 

regions. In this second step, we have employed the 
filter by using three different partition generators (i.e., 
J48, RF, and RT) that are also employed as an 
estimator in the classification step. Table 6 presents 
the results of this second step considering different 
estimators and variants of the data in a way such that 
the columns P and F represent the partition generator 
and the number of newly generated features 
respectively.  

Table 6. Obtained f1 scores under different circumstances where estimator, partition generator, and data variant 
are different 

Dataset P F Classifier 
NB NBM SMO IBk J48 RF RT 

DS01 J48 29 0.622 0.608 0.719 0.719 0.707 0.719 0.719 
RF 10254 0.807 0.827 0.897 0.716 0.712 0.782 0.654 
RT 145 0.736 0.774 0.889 0.893 0.877 0.889 0.926 

DS02 J48 29 0.622 0.608 0.719 0.719 0.707 0.719 0.719 
RF 10142 0.770 0.807 0.926 0.708 0.720 0.774 0.671 
RT 153 0.761 0.827 0.901 0.889 0.844 0.901 0.914 

DS03 J48 75 0.675 0.712 0.864 0.872 0.827 0.868 0.881 
RF 11170 0.720 0.724 0.881 0.724 0.683 0.745 0.641 
RT 175 0.699 0.765 0.835 0.840 0.778 0.848 0.852 

DS04 J48 77 0.749 0.765 0.893 0.905 0.844 0.897 0.905 
RF 10846 0.802 0.823 0.901 0.716 0.670 0.774 0.679 
RT 169 0.683 0.753 0.856 0.864 0.782 0.864 0.889 

DS05 J48 75 0.675 0.712 0.864 0.872 0.827 0.868 0.881 
RF 11396 0.720 0.732 0.860 0.712 0.654 0.757 0.700 
RT 165 0.728 0.773 0.881 0.872 0.831 0.868 0.897 

DS06 J48 77 0.749 0.765 0.893 0.905 0.844 0.897 0.905 
RF 10894 0.790 0.794 0.848 0.736 0.733 0.778 0.621 
RT 173 0.677 0.778 0.885 0.877 0.818 0.889 0.885 

DS07 J48 29 0.622 0.608 0.719 0.719 0.707 0.719 0.719 
RF 10594 0.786 0.819 0.885 0.728 0.658 0.807 0.654 
RT 145 0.710 0.790 0.930 0.926 0.823 0.934 0.934 

DS08 J48 29 0.622 0.608 0.719 0.719 0.707 0.719 0.719 
RF 10502 0.782 0.811 0.877 0.724 0.674 0.802 0.671 
RT 141 0.732 0.823 0.914 0.914 0.848 0.914 0.938 

DS09 J48 63 0.757 0.774 0.851 0.863 0.801 0.851 0.863 
RF 11624 0.786 0.807 0.872 0.708 0.642 0.765 0.675 
RT 175 0.741 0.770 0.839 0.843 0.794 0.843 0.868 

DS10 J48 45 0.691 0.715 0.785 0.794 0.776 0.785 0.802 
RF 10884 0.708 0.720 0.876 0.741 0.683 0.757 0.712 
RT 157 0.716 0.774 0.885 0.877 0.811 0.881 0.922 

DS11 J48 51 0.682 0.731 0.783 0.792 0.757 0.788 0.792 
RF 10036 0.802 0.802 0.930 0.708 0.629 0.807 0.700 
RT 143 0.706 0.794 0.922 0.905 0.881 0.922 0.934 

DS12 J48 15 0.617 0.617 0.624 0.624 0.575 0.624 0.624 
RF 10482 0.753 0.782 0.881 0.683 0.675 0.765 0.641 
RT 163 0.741 0.807 0.881 0.881 0.839 0.881 0.905 
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Table 7. Obtained f1-scores by IBk classifier considering the different number of nearest neighbors (k), data 
variant, partition generator, and distance functions (DF) 

Dataset P F DF # of nearest neighbors (k) 

1 3 5 7 9 11 13 15 

DS04 J48 77 CH 0.905 0.818 0.741 0.657 0.608 0.589 0.563 0.531 
EU 0.905 0.773 0716 0.641 0.654 0.633 0.624 0.593 

DS06 J48 77 CH 0.905 0.818 0.741 0.657 0.608 0.589 0.563 0.531 

EU 0.905 0.773 0.716 0.641 0.654 0.633 0.624 0.593 
DS07 RT 145 CH 0.946 0.753 0.622 0.542 0.542 0.542 0.542 0.510 

EU 0.926 0.770 0.712 0.734 0.669 0.672 0.627 0.607 
DS08 RT 141 CH 0.963 0.841 0.616 0.561 0.542 0.542 0.542 0.510 

EU 0.914 0.790 0.716 0.673 0.678 0.694 0.695 0.699 
DS11 RT 143 CH 0.955 0.855 0.681 0.659 0.629 0.560 0.525 0.503 

EU 0.905 0.819 0.737 0.700 0.691 0.678 0.666 0.669 

DS12 RT 163 CH 0.926 0.753 0.672 0.582 0.542 0.532 0.525 0.503 
EU 0.881 0.770 0.704 0.654 0.650 0.675 0.650 0.587 

 
In Table 6, the best f1 score value for each dataset is 
written in bold, and the best classification f1 score for 
the table is written in red. As seen in Table 6, creating 
data variants affects both partition generators and 
estimators. The number of generated features 
changes depending on the data variant and the way 
the estimator trained on transformed variants 
produce different results. Using RF as a partition 
generator paves the way to have a high number of 
new features in all cases compared to the other two 
methods (i.e., J48 and RT). Contrarily, J48 produces 
fewer features in all cases compared to the RF and 
RT. Classifiers are akin to producing slightly different 
results considering data variants. However, it seems 
that the RT estimator is often superior to other 
estimators in terms of f1-score. 

In detail, it seems that using RF as a partition 
generator is not a good idea since it produces a high 
number of features which is problematic in terms of 
run time (i.e., the training time of estimators) 
compared to its peers (i.e., J48 and RT). The highest 
f1 scores are often obtained when both the partition 
generator and estimator are chosen to be RT 
algorithms, respectively. The highest results are 
obtained on the data variants DS07, DS08, and DS11 
whose common property is that they do not include 
both gender and age information at the same time. In 
this step, the best f1-score among all cases is obtained 
as 0.938 when the data variant is DS08, the partition 
generator and estimator are RT, respectively. 

Upon completion of the second step, we performed 
an additional experimental analysis on the cases 
where the IBk classifier produced the best or second-
best f1 scores for the respective data variant in Table 
5. In this third step, we selected the data variants 
DS04, DS06, DS07, DS08, DS11, and DS12 and 
selected the partition generator as the same as in the 
previous step such that better results are obtained 
with the respective partition generator. Then, we 
performed classification experiments by using two 
different distance functions namely Euclidean (EU) 
and Chebyshev (CH) for different values of k which 
stands for the number of nearest neighbors. The 
results of this step are given in Table 7, which makes 
it clear that apart from the DS04 and DS06 changing 
the distance function improves the performance by 
using the CH method. The highest results in all cases 
are obtained when the parameter k takes a value of 1.  
On the other hand, the best results are obtained as an 
f1-score of 0.963 by the IBk classifier employed with 
the CH distance function and this is the best of our 
all results obtained so far. 

DISCUSSION 

Dementia is one of the neurodegenerative diseases 
that cause the brain atrophy in elderly people. There 
are several brain regions held in dementia and one of 
that the frontal lobe39. The frontal lobe represents 
more than a third of the entire human hemisphere 
and it is associated with the complex cognitive 
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functions and behaviors of life. Besides its 
conspicuous relative size, the frontal lobe is a unique 
pattern of connections, the frontal areas establish to 
communicate among themselves and with other 
regions of the brain8. Moreover, the corpus callosum 
is a topographically organized neural structure that is 
composed of the majority of the commissural fibers 
connecting the two cerebral hemispheres 40, 41. 
Morphological variability in the corpus callosum is 
often found in diseases such as Alzheimer’s disease, 
depression, autism, and schizophrenia41, 42.  

For evaluating the changes in the brain, MRI is one 
of the most choice brain imaging techniques that 
have cognitive impairments patients43. There are 
many approaches for evaluating brain atrophy in 
dementia and the researchers prefer to measure brain 
volume for atrophy however, measuring some 
distances is not usually done3. Therefore, we studied 
the frontal lobe morphometry with linear 
measurements using MRI in healthy people and 
subjects with dementia in our population and we also 
evaluated the effects of age and gender in this paper. 
We expect that these findings will be useful for 
clinicians in determining the morphology of brain 
atrophy. Moreover, these data could provide a guide 
for planning surgery and to avoid damage to brain 
structures in the frontal lobe. 

In the present study it was demonstrated that the 
brain atrophy was related with age and some changes 
in all measurements were found according to 
decades, whereas the means of A, B, E, and F had no 
significant differences with age in healthy group. 
Additionally, some measurements were shown 
differences due to gender in both healthy and 
dementia group (except F, I in healthy and in 
dementia A, B, E, F and I) that males’ mean values 
higher than females’. Several approaches have been 
planned for the lesions of the frontal lobe. 
Furthermore, in the anterior part of the frontal lobe, 
two main approaches could be made: subfrontal and 
anterior interhemispheric routes. The subfrontal rout 
could be important for surgeons for the lesions in the 
anterior cranial fossa which are located above the 
diaphragma sella such as pituitary adenoma, 
craniopharnyngioma, tumors of optic nerve and 
hypothalamus44, 45. This way has some advantages like 
showing the tumor better and protecting the great 
vessels. However, there are also some disadvantages 
that epileptic seizures, anosmia, and venous 
infarction44. During this approach, some structures 
including the corpus callosum or the anterior 

commissure should be preserved. Our measurements 
of the distances A (54.38mm), C (34.73mm) and D 
(41.95mm) can be useful for subfrontal approaches 
for the surgeon for avoiding damage to these 
structures. Ardeshiri et al. (2006) examined frontal 
lobe and central region of brain in 53 German 
subjects (mean age of 38.5 years) and the mean values 
were reported as A 60.3±6.3 mm, C 37.1±5.4 mm, D 
47.2±5.6 mm 44. Additionally, in a study including 
elderly Greek people, the mean value of C was 
reported as 32.5 ±3.6 mm 46. When we analyzed the 
literature findings, our values are found: lower than 
Germans in all values, higher than Greeks’ as seen in 
the C value.  These diversities may be explained by 
the fact that different ages, populations, number of 
subjects and individual differences. 

Moreover, the anterior interhemispheric approach is 
preferred for some pathologies like aneurysms of the 
distal anterior cerebral artery, midline lesions, and 
tumors of the third ventricle44. Distal anterior 
cerebral artery aneurysms confront the surgeon with 
some problems including the limited surgical corridor 
between the skull and the corpus callosum. 
Kawashima et al (2003) reported a surgical 
anatomical study and determined a surgical landmark 
named PC (pericallosal) point, the point at which a 
parallel line along the long axis of infracallosal part of 
the pericallosal artery to the callosomarginal artery 
crosses the forehead47. This parallel line takes its way 
nearly parallel to the distance between anterior and 
posterior commissure line (F) and lies between it and 
parallel to the F through the anterior-most point of 
the genu of the corpus callosum (G). The AC-PC line 
(F) is most commonly used in brain axial imaging. 
There are several kinds of AC-PC line in the literature 
and the most common two line used is the Talairach 
AC-PC line and the Schaltenbrand AC-PC line. 
Schaltenbrand (2005) AC-PC line passes through the 
center of the AC and the center of the PC and we 
used this line in the present study48-50. Kawashima et 
al. (2003) and colleaques established the thickness of 
the genu of the corpus callosum (I) as 11.2 ±2.0 mm 
in cadavers, we found lower value in MR scans47. Our 
further findings for the interhemispheric route are F 
(mean; 25.72mm), G (mean; 32.6mm), and H 
(mean;58.93±3.33mm). These data can be helpful for 
the anterior interhemispheric approaches. 
Additionally, the distance between the frontal pole 
and tuberculum sella (E) (mean: 49.95mm) is useful 
for basal procedures. 
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For analyzing the size of the brain atrophy in people 
who have dementia and healthy people, we used 
linear measurements concerning the frontal lobe 
morphometry and central region morphometry. 
Measurements enabled us to estimate atrophic 
changes of the brain tissue regarding the frontal lobe 
morphometry by aging. To our knowledge, there are 
not many studies considering frontal lobe 
morphometry on dementia in the literature. 
Therefore, these linear measurements in this paper 
could be helpful for predicting the surgical anatomy 
and approach in healthy and dementia groups in our 
elderly population.  

In this study, it is studied performing automatic 
detection of dementia cases by using ML techniques. 
For this purpose, a real-world but rather small dataset 
of 243 instances is used in which each instance vector 
is formed to include 11 attributes. Using these 11 
original features some of them obtained from MRI 
images the best f1 score is obtained as a value of 
0.625 since the number of features is low and their 
values could not help estimators to differentiate 
instances of two classes namely healthy and dementia. 

Hence, a supervised filter that creates new features 
based on the membership of attributes to 
automatically discovered regions applied to the 
original data and its variants. This enabled us to 
improve our results with a moderate increase in the 
number of features especially when the partition 
generator is selected to be RT. The main reason 
behind the success of this filter is the fact that it is a 
supervised method and uses class information of 
instances while discovering partitions/regions. Using 
the estimator, partition generator, and data variant in 
the best case, it is possible to build and deploy an ML 
model to assist medical personnel in the decision 
process of dementia cases. This could easily be 
accomplished by providing a graphical user interface 
to users in such a way that a user will be able to select 
or enter 11 parameters of a patient and then learn the 
prediction of the ML model by clicking a “make a 
prediction” button. In this deployment case, the ML 
model will first take the parameters of the patient and 
then create a test instance to pass through a 
previously trained partition generator. Then, the 
generator will transform the test instance and give a 
previously trained estimator. At the final stage, the 
estimator will make a prediction for the test instance 
by producing an output of 1 (dementia) or 2 (healthy). 

Limitations of the study was that there were several 
new methods which will give detailed information 

such as volumetric measurements or 3D imaging 
methods. Also, there is not enough study analyzed 
relation with ML-based prediction of Dementia for 
frontal lobe and central brain region. For this reason, 
the comparison of the other studies’results is limited. 
Further research is needed to prove this idea clearly 

In conclusion, the data obtained in this paper will give 
important detailed knowledge and normative data for 
frontal lobe morphometry according to age and 
gender in healthy and dementia people in our 
population. The anatomical landmarks of this study 
will be crucial for the brain region and thus, the data 
could be useful for surgeons for planning surgical 
procedures and avoiding to damage the structures in 
this area. Subjects having dementia are sensitive to 
age related changes than healthy subjects. Also, only 
one parameter called as the distance from frontal pole 
to tuberculum sella (E) of dementia subjects were 
similar to healthy subjects. According to age-related 
changes of frontal lobe and central region of brain 
measurements, there were significant differences in 
all measurements in dementia subjects. The means of 
the measurements were found higher in males than in 
females. Additionally, ML based supervised methods 
that were trained on the collected data for detection 
of dementia showed that it is required to provide as 
many attributes and instances as possible to train an 
accurate estimator. However, if this is not possible, 
by creating new features based on the hidden patterns 
between attributes and instances we could increase 
the success of the estimators up to 96.3% f-score 
value. 
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