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Abstract  

Monitoring of forests is important for the diagnosis of insect damage to vegetation. Detection and monitoring of 

damaged areas facilitates the control of pests for practitioners. For this purpose, Unmanned Aerial Vehicles (UAVs) 

have been recently used to detect damaged areas. In order to distinguish damage areas from healthy areas on UAV 

images, it is necessary to extract the feature parameters of the images. Therefore, feature extraction is an important 

step in Computer Aided Diagnosis of insect damage monitored with UAV images. By reducing the size of the UAV 

image data, it is possible to distinguish between damaged and healthy areas from the extracted features. The 

accuracy of the classification algorithm depends on the segmentation method and the extracted features. The Grey-

Level Co-occurrence Matrix (GLCM) characterizes areas texture based on the number of pixel pairs with specific 

intensity values arranged in specific spatial relationships.  In this paper, texture characteristics of insect damage 

areas were extracted from UAV images using with GLCM. The 3000*4000 resolution UAV images containing 

damaged and healthy larch trees were analyzed using Definiens Developer (e-Cognition software) for 

multiresolution segmentation to detect the damaged areas. In this analysis, scale parameters were applied as 500, 

shape 0.1, color 0.9 and compactness 0.5. As a result of segmentation, GLCM homogeneity, GLCM contrast and 

GLCM entropy texture parameters were calculated for each segment. When calculating the texturing parameters, 

neighborhoods in different angular directions (0,45,90,135) are taken into account. As a result of the calculations 

made by considering all directions, it was found that GLCM homogeneity values ranged between 0.08 - 0.2, GLCM 

contrast values ranged between 82.86 - 303.58 and GLCM entropy values ranged between 7.81 - 8.51. On the 

other hand, GLCM homogeneity for healthy areas varies between 0.05 - 0.08, GLCM contrast between 441.70 - 

888.80 and GLCM entropy between 8.93 - 9.40. The study demonstrated that GLCM technique can be a reliable 

method to detection of insect damage areas from UAV imagery.  
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1. Introduction 

Unmanned Aerial Vehicles (UAVs) have been 

frequently used in forestry applications such as 

measuring structural characteristics of individual trees 

(Bayat et al., 2019; Finn et al., 2019), calculating and 

mapping forest parameters (Williams et al., 2022; Lin et 

al., 2023), estimating biodiversity (Milz et al., 2023), as 

well as detecting insect damage on individual trees (Jung 

et al., 2019; Lin et al., 2019; Junttila et al., 2022). If there 

are stressed trees in forests due to insect damage, healthy 

and decayed trees can be distinguished from UAV 

images using the spectral reflectance characteristics of 

tree canopies. For example, Thaumetopoea pityocampa 

(pine beetle) causes mass reproduction on coniferous 

trees, destroying all the needles and leaving the tree bare. 

In these damages, accurate and timely forest health 

monitoring is required to support sustainable forest 

management (Lausch et al., 2018). UAVs provide     

timely forest health monitoring and spatially precise data 

against such damages (Torresan et al., 2018; Manfreda et 

al., 2018). Image Segmentation techniques are used to 

find infected areas in high- resolution UAV images. 

However, even in the same image for geo-classification, 

the same object has different reflectance value, which 

can cause texture complexity (Lan and Liu, 2018). To 

resolve this pixel complexity and capture morphological 

variations in high-resolution images, researchers have 

developed color and texture descriptors, the two main 

features of image segmentation that can be associated 

with geographic information (Haralick et al., 1973; Qin, 

2000; Liu., 2008). One of the descriptors used to classify 

complex and variable scenes is Gray Level Co-

Occurrence Matrix (GLCM) based texture and color 

descriptors. In the literature, many studies have been 

conducted using remote sensing images, showing that 

GLCM texture parameters including Energy, Contrast, 

Homogeneity, Entropy statistics are sensitive to scale 

parameters in land cover and can improve classification 

accuracy (Franklin et al., 1996; Stasolla and Gamba, 

2008; Kuffer et al., 2017; Lan and Liu, 2018; Kupidura 

et al, 2019; Mugiraneza et al., 2019, Fallatah et al., 2020; 

Lai and Yang, 2020). In addition, in recent years, GLCM 
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texture parameters have started to be used in the 

calculation of structural parameters of forests (Ozdemir 

et al., 2012; Ozdemir et al., 2018). 

The aim of this study was to calculate texture 

parameters for the detection of pine beetle damage 

without going to the field. In the application, pine beetle 

damage parameters were calculated on a larch stand 

using unmanned aerial vehicle images. Gray Level Co-

occurrence Matrices (GLCM) method was used to 

extract the feature vectors of the images. The images 

were classified into two groups; 1) healthy and 2) 

diseased. 

 

2. Material and Methods 

2. 1. Study Area and Data Capture 

The study area covers an area of approximately five 

hectares located in Kaynaslı district of Düzce province. 

The study area is a pure larch plantation and the 

approximate coordinates are 40°47'39.44"N, 

31°16'38.26"E, 40°47'29.59"N, 31°16'45.14"E (Figure 

1). As a result of the field study in April 2018, intense 

pine beetle damage was observed on the larch stand and 

serious discoloration of the trees was observed. 

Therefore, this area was selected as the study area where 

pine beetle damage can be detected using UAV data. 

DJI Phantom 4 RTK UAV was used to collect aerial 

photos of the study. The DJI Phantom 4 RTK platform 

has a 12-megapixel resolution camera that can take 

photos in the visible range (RGB) provided by the 

manufacturer (DJI, 2023). A total of 10 photographs 

covering the damage areas on the larch stand were taken. 

Among these photographs, three photographs of the most 

intensive damage area were selected as sample areas. 

The photographs obtained were 4000x3000 pixels in 

size, 72 dpi resolution and 24-bit capacity. Definiens 

Developer (e-Cognition software) was used for data 

analysis. 

 

2.3. Method 

For the classification of very high-resolution images, 

a multiresolution segmentation process was utilized. 

This process enables the calculation of GLCM matrices. 

In this study, UAV images in JPEG format were analyzed 

in two stages: the pine beetle damage area and the 

undamaged area. The e-Cognition software was 

employed to perform multiresolution segmentation, 

followed by the calculation of GLCM matrices. 

Specifically, the minimum and maximum values of the 

feature vectors for three parameters, namely contrast, 

homogeneity, and entropy, were computed.

 
Figure 1. Study area and location of AREA 1, 2 and 3 

 

GLCM (Gray Level Co-occurrence Matrix) is a 

feature extraction method introduced by M. Haralick in 

1973. It is utilized to extract features such as GLCM 

Homogeneity, GLCM Contrast, and GLCM Entropy 

from grayscale images. GLCM establishes the 

relationship between two adjacent pixels in an image. 

The first pixel is referred to as the reference pixel, while 

the second is called the neighbor pixel (Horng et al., 

2003). GLCM generates a frequency matrix that 

represents the occurrences of pixel value pairs at a 

specified distance and angle within the image. This 

matrix is a square matrix of size Ng, where each element 

indicates the frequency of pairs of pixel values i and j at 

a distance d (Roumi, 2009). From these matrices, three 

texture features, namely contrast, homogeneity, and 

entropy, can be computed to describe the texture 

characteristics of the image. These textural features are 

derived from GLCM. 
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Contrast: Contrast is a measure of heterogeneity and 

represents the amount of local variation within an image. 

It is determined by evaluating the differences between 

neighboring pixels. An increase in contrast leads to an 

increase in the number of distinct pixel value pairs (i, j) 

in the GLCM matrix (Haralick et al., 1973). The 

parameters required for calculating contrast are as 

follows: 

∑ 𝑛2
𝑁𝑔−1

𝑁=0 (∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

𝐼𝐼𝑖 − 𝑗𝐼 = 𝑛)        (1) 

 

Homogeneity: Homogeneity refers to the uniformity 

or similarity of pixel values within a given region. In 

regions with high homogeneity, the GLCM values tend 

to be concentrated in the corners of the matrix. This 

concentration indicates a higher degree of similarity 

between neighboring pixels. Conversely, in 

heterogeneous regions, the GLCM values are distributed 

more evenly across the matrix. This difference in GLCM 

distribution between homogeneous and heterogeneous 

areas results in contrasting color values. The color values 

decrease as we transition from heterogeneous to 

homogeneous areas (Haralick et al., 1973). The 

parameters required for calculating homogeneity are as 

follows: 

∑
𝑝(𝑖,𝑗)

1+(𝑖−𝑗)2𝑖,𝑗             (2) 

 

Entropy: Entropy in GLCM calculations quantifies 

the degree of uncertainty or randomness in the 

distribution of GLCM values. An even distribution of 

GLCM values across the matrix leads to a higher entropy 

value, indicating greater complexity or variability in the 

texture of the image (Haralick et al., 1973). The 

parameter used for entropy calculation is as follows: 

∑
𝑝(𝑖,𝑗)

1+(𝑖−𝑗)2𝑖,𝑗             (3) 

In the segmentation process, the aim is to group pixels 

with similar characteristics together and utilize texture 

features to differentiate damage areas. The image is 

segmented into image objects using the segmentation 

algorithm integrated into the Definiens software. The 

bottom-up field merging method was employed for the 

segmentation of UAV data. Segmentation scale, color, 

shape, integrity and transitivity parameters were used as 

inputs for multiresolution segmentation. In this method, 

color and shape parameters, integrity and transitivity 

parameters take complementary values of 1 (Tian and 

Chen, 2007). Three features including contrast, 

homogeneity and entropy were calculated to characterize 

the texture of the image. To find the appropriate 

parameter values, many combinations of values were 

assigned to the segmentation parameters and decided 

through visual analysis. The visual analysis evaluates the 

spatial and morphological suitability of the image objects 

obtained for the region and prefers segmentations that 

effectively separate different damaged and undamaged 

regions. 

 

3. Results and Discussion 

The "spectral variation hypothesis" proposed by 

Palmer et al. (2000) and Palmer et al. (2002) suggests 

that higher spectral heterogeneity in an image 

corresponds to higher diversity. In the case of GLCM-

based pine beetle damage detection, the texture 

parameters we calculated supported this hypothesis. The 

three texture parameters, GLCM homogeneity, GLCM 

contrast, and GLCM entropy, were computed for each 

segment. The analysis applied scale parameters of 500, 

shape 0.1, color 0.9, and density 0.5. As a result of the 

multiresolution segmentation, AREA 1 was divided into 

two categories: damage areas and non-damaged areas, as 

shown in Figure 2. 

 

 
Figure 2. AREA 1 

 

In study AREA 1, the calculations for all directions 

(GLCM homogeneity, GLCM contrast, and GLCM 

entropy) revealed the following ranges of values for the 

damaged segments: GLCM homogeneity ranged from 

0.064 to 0.129, GLCM contrast ranged from 95.11 to 

376.58, and GLCM entropy ranged from 8.12 to 8.59. On 

the other hand, for the healthy areas, the ranges were as 

follows: GLCM homogeneity ranged between 0.050 and 

0.064, GLCM contrast ranged between 414.73 and 

476.15, and GLCM entropy ranged between 8.65 and 

8.94. Similarly, for study AREA 2, the result of 

multiresolution segmentation separated the area into 

damage areas and non-damaged areas, as indicated in 

Figure 3.
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Figure 3. AREA 2 

 

In study AREA 2, the calculations for all directions 

(GLCM homogeneity, GLCM contrast, and GLCM 

entropy) indicated the following ranges of values for the 

damaged segments: GLCM homogeneity ranged from 

0.08 to 0.2, GLCM contrast ranged from 82.86 to 303.58, 

and GLCM entropy ranged from 7.81 to 8.51. On the 

other hand, for the healthy areas, the ranges were as 

follows: GLCM homogeneity ranged between 0.05 and 

0.08, GLCM contrast ranged between 441.70 and 

888.80, and GLCM entropy ranged between 8.93 and 

9.40. Furthermore, the result of multiresolution 

segmentation for AREA 2 separated the area into 

damage areas and non-damaged areas, as illustrated in 

Figure 4. 

 

 
Figure 4: AREA 3 

 

In study AREA 3, the calculations for all directions 

(GLCM homogeneity, GLCM contrast, and GLCM 

entropy) revealed the following ranges of values for the 

damaged segments: GLCM homogeneity ranged from 

0.101 to 0.32, GLCM contrast ranged from 229.85 to 

351.25, and GLCM entropy ranged from 6.67 to 7.69. On 

the other hand, for the healthy areas, the ranges were as 

follows: GLCM homogeneity ranged between 0.07 and 

0.09, GLCM contrast ranged between 352.58 and 682.8, 

and GLCM entropy ranged between 8.80 and 9.08. 

The GLCM-based classification parameters for pine 

beetle damage and non-damage areas were observed for 

all three study areas, as presented in Table 1. It was 

observed that the more structurally homogeneous 

regions in the images corresponded to the pine beetle 

damage areas. In the study areas, where the objective was 

to differentiate between damaged and undamaged areas, 

the contrast values of the image pixels were lower in the 

damaged areas (Table 1).

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Tabular view of Texture Parameters 

 AREA 1 AREA 2 AREA 3 

GRUPS 
Entropy Homogeneity Contrast 

min max min max min max 

Damaged 

Non-damaged 
8.12 

8.65 

8.59 

8.94 

0.064 

0.050 

0.129 

0.064 

95.11 

414.73 

376.51 

476.15 

Damaged 

Non-damaged 
7.81 

8.93 

8.51 

9.40 

0.08 

0.050 

0.20 

0.08 

82.86 

441.70 

303.58 

888.80 

Damaged 

Non-damaged 
6.67 

8.80 

7.69 

9.08 

0.101 

0.070 

0.32 

0.09 

229.85 

352.58 

351.25 

682.8 
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Based on the GLCM homogeneity values used for 

pine beetle damage detection, a range of 0.064 to 0.32 

was calculated, while the GLCM contrast ranged from 

82.86 to 376.51, and GLCM entropy ranged from 6.67 to 

8.59. This indicates that the homogeneity of the damaged 

areas on the larch stand allows them to be easily 

differentiated from the non-damaged areas in the image, 

as the pixel values are close to each other. Therefore, it 

can be concluded that spectral variance in UAV images 

is an effective method for distinguishing insect damage. 

Although this study used different remote sensing data 

and species diversity compared to previous studies, the 

results are consistent with findings from previous studies 

on structural diversity in forests using GLCM. These 

studies include Seto et al. (2004), St. Louis et al. (2006, 

2009), Culbert et al. (2012), Wood et al. (2012), and De 

Ocampo and Dadios (2021). According to extent of our 

literature review, this study is the first comprehensive 

assessment of the usefulness of pine beetle damage tissue 

measurements, calculated from UAV data, for 

distinguishing pine beetle damage. Therefore, it was not 

possible to directly compare the texture parameters with 

those of other published studies. In conclusion, by using 

image texture metrics for pine beetle damage, it is 

possible to predict and map the damage areas from UAV 

imagery. 

 

6. Conclusion 

In this study, the performance of each texture 

criterion was evaluated by examining their relationship 

with different damage regions. It was observed that the 

reflection values of the damaged areas were close to each 

other, resulting in lower entropy and contrast values, and 

higher homogeneity values due to the similarity of 

neighboring pixels. These findings indicate that damage 

areas were more homogeneous compared to non-

damaged areas. While none of the three images 

represented a unique texture feature for the region based 

on different criteria, the GLCM parameters allowed for 

distinguishing pine beetle damage in larch species as 

auxiliary data. Clear results were obtained for the pure 

stand region. As a next step, future studies should be 

planned to use the average texture criterion values 

obtained for mixed stands to establish correlations and 

derive damage texture criterion values in mixed stands. 

Although the use of high-resolution UAV data provides 

an advantage in differentiating damage zones, it is 

recommended for future studies to incorporate multi-

temporal data as a separate texture layer for larch species. 

This can be achieved by utilizing differences in 

phenological periods, which may further enhance the 

accuracy of distinguishing pine beetle damage. 
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