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Objective: This review examines the applications of Artificial Intelligence (AI) in HIV diagnosis, treatment 
optimization, and epidemiological modeling. It explores how AI enhances early detection, personalizes 
antiretroviral therapy (ART), and supports public health strategies while addressing ethical and accessibility 
challenges. 
Methods: A systematic literature search was conducted in PubMed, Scopus, and Web of Science for peer-
reviewed studies published between 2010 and 2024. Relevant policy documents from WHO and UNAIDS were 
also reviewed. Studies on AI applications in HIV diagnosis, treatment, and epidemiology were included, while 
non-peer-reviewed, non-English, and unrelated studies were excluded. Selected studies were categorized into 
key thematic areas. 
Results: Machine Learning (ML) techniques, particularly supervised models like support vector machines (SVM) 
and random forests (RF), have significantly improved HIV diagnosis by enhancing accuracy in early detection. 
Deep Learning (DL)-assisted drug discovery methods, such as generative adversarial networks (GANs), have 
accelerated ART regimen development. Epidemiological modeling has benefited from AI's ability to analyze large 
datasets, informing targeted interventions. However, challenges such as algorithmic biases, data privacy 
concerns, and limited AI adoption in low-resource settings remain barriers to implementation. 
Conclusion: AI has transformed HIV management by improving diagnosis, treatment, and epidemic control. 
Future research should focus on refining AI models, increasing data inclusivity, and ensuring ethical and 
equitable AI integration into global healthcare systems to maximize its impact. 
 
 
 
Keywords: Artificial Intelligence, HIV Diagnosis and Treatment, Machine Learning, Deep Learning, Neural 
Networks, Epidemiological Modeling, Antiretroviral Therapy (ART) 

HIV Tanı ve Tedavisinde Yapay Zeka: Kapsamlı Bir Derleme  
 
Sistematik Derleme ÖZET 

Amaç: Bu derleme, Yapay Zekâ'nın (YZ) HIV tanısı, tedavi optimizasyonu ve epidemiyolojik modellemedeki 
uygulamalarını incelemektedir. YZ'nin erken teşhisi nasıl geliştirdiği, antiretroviral tedaviyi (ART) nasıl 
kişiselleştirdiği ve halk sağlığı stratejilerini nasıl desteklediği ele alınırken etik ve erişilebilirlik zorlukları da 
tartışılmaktadır. 
Yöntem: 2010-2024 yılları arasında yayımlanan hakemli çalışmaları içeren sistematik bir literatür taraması 
PubMed, Scopus ve Web of Science veritabanlarında gerçekleştirilmiştir. Ayrıca, Dünya Sağlık Örgütü (WHO) ve 
UNAIDS’in ilgili politika belgeleri incelenmiştir. HIV tanısı, tedavisi ve epidemiyolojisinde YZ uygulamalarına 
odaklanan çalışmalar dâhil edilirken, hakemli olmayan, İngilizce dışındaki dillerde yayımlanmış ve konu ile ilgisiz 
çalışmalar hariç tutulmuştur. Seçilen çalışmalar, temel tematik alanlara göre sınıflandırılmıştır. 
Bulgular: Makine Öğrenimi (ML) teknikleri, özellikle destek vektör makineleri (SVM) ve rastgele ormanlar (RF) 
gibi denetimli modeller, HIV teşhisinde erken tespit doğruluğunu artırarak önemli gelişmeler sağlamıştır. Derin 
Öğrenme (DL) destekli ilaç keşif yöntemleri, özellikle üretici çekişmeli ağlar (GANs), ART (antiretroviral tedavi) 
rejimi geliştirme sürecini hızlandırmıştır. Epidemiyolojik modelleme, AI'nin büyük veri setlerini analiz etme 
yeteneğinden faydalanarak hedefe yönelik müdahaleleri şekillendirmeye yardımcı olmuştur. Ancak, algoritmik 
önyargılar, veri gizliliği endişeleri ve düşük kaynaklı bölgelerde AI'nin sınırlı benimsenmesi gibi zorluklar, 
uygulamada engeller oluşturmaya devam etmektedir. 
Sonuç: YZ, HIV yönetimini tanı, tedavi ve salgın kontrolü açısından dönüştürmüştür. Gelecekteki araştırmalar, YZ 
modellerinin iyileştirilmesine, veri kapsayıcılığının artırılmasına ve etik ile eşitlik ilkelerine uygun bir şekilde 
küresel sağlık sistemlerine entegrasyonunun sağlanmasına odaklanmalıdır. 
 
 
Anahtar Kelimeler: Yapay Zekâ, HIV Tanısı, HIV Tedavisi, Makine Öğrenimi, Derin Öğrenme, Sinir Ağları, 
Epidemiyolojik Modelleme, Antiretroviral Tedavi (ART). 
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Introduction 
 

HIV remains a significant global public health challenge, 
with an estimated 38 million people living with HIV worldwide 
as of 2023. Despite advancements in ART, which has 
transformed HIV from a fatal disease into a manageable 
chronic condition, substantial gaps persist in early diagnosis, 
treatment optimization, and epidemic control, especially in 
low-resource settings. 1,2 

Artificial Intelligence (AI) has emerged as a transformative 
force across various fields, including healthcare. AI is a broad 
field encompassing various computational techniques 
designed to mimic human intelligence. Within AI, Machine 
Learning (ML) refers to algorithms that enable systems to learn 
patterns from data and make predictions or decisions without 
being explicitly programmed. Deep Learning (DL), a subset of 
ML, utilizes artificial neural networks with multiple layers to 
process complex data structures, such as medical images, 
genomic sequences, and clinical records. 3 By leveraging ML 
and DL techniques, AI has demonstrated remarkable potential 
in augmenting disease diagnosis, personalizing treatments, 
and analyzing complex datasets. In the context of HIV, AI 
applications are revolutionizing the landscape by improving 
diagnostic accuracy, facilitating drug discovery, and optimizing 
patient management strategies. 4-6 

Several reviews have explored AI’s role in HIV care, 
primarily focusing on specific aspects such as HIV testing. For 
instance, a recent systematic review by Jaiteh al. provides an 
in-depth analysis of AI-driven approaches in HIV diagnostics. 7 
However, this study is limited to diagnostic advancements, 
whereas our review takes a broader, multidisciplinary 
perspective, covering not only diagnosis but also treatment 
optimization, epidemiological modeling, and ethical 
considerations. Furthermore, we highlight region-specific 
challenges, particularly in low-resource settings such as 
Turkey, where AI integration faces unique regulatory and 
infrastructural barriers. By offering a more comprehensive 
analysis, this review aims to fill existing gaps in the literature 
and provide a nuanced discussion on AI’s transformative 
potential in HIV care. 

This review explores the current state of AI applications in 
HIV diagnosis and treatment. The paper addresses key 
developments in leveraging AI for early HIV detection, 
personalized medicine, and public health interventions. 
Furthermore, it discusses challenges such as ethical concerns, 
data privacy, and the accessibility of AI-driven solutions in 
diverse healthcare settings. By providing a critical assessment 
of existing literature, this review seeks to highlight the 
transformative potential of AI in combating HIV and outline 
future directions for research and implementation. 
 
Methods 

 
A systematic approach was adopted to identify and 

analyze relevant literature for this review. Databases such as 
PubMed, Scopus, and Web of Science were searched for peer-
reviewed articles published between 2010 and 2024. The 
search terms included combinations of "HIV," "artificial 
intelligence," "machine learning," "deep learning," "diagnosis," 
"treatment," "epidemiology," and "ethical challenges." 
Additional resources were also reviewed, including conference 

proceedings and policy documents from organizations such as 
WHO and UNAIDS. 
 

Selection Criteria for Reviewed Studies  
The selection process for reviewed studies was based on 

specific inclusion and exclusion criteria to ensure relevance 
and quality. Studies were included if they: 
• Focused on artificial intelligence applications in HIV 

diagnosis, treatment, or epidemiology. 
• Provided quantitative performance metrics for AI 

models, such as accuracy, sensitivity, or specificity. 
• Utilized real-world patient data, including clinical, 

genomic, or imaging datasets. 
• Were published in peer-reviewed journals between 

2010 and 2024. 
• Studies were excluded if they: 
• Primarily discussed AI methodologies without clinical 

validation in HIV-related contexts. 
• Were opinion articles, commentaries, or theoretical 

reviews without experimental results. 
• Had insufficient data on AI model performance or lacked 

clear evaluation metrics. 
• Were non-English publications or non-peer-reviewed 

source. 
The selected studies were categorized into thematic 

areas, including diagnostic advancements, treatment 
personalization, data analytics, and ethical considerations. 
The findings were synthesized to provide a comprehensive 
overview of current trends, challenges, and prospects in the 
field. 

 
AI in HIV Diagnosis 
AI has shown significant promise in improving the 

accuracy and efficiency of HIV diagnosis. ML and DL 
algorithms have been employed to analyze complex 
datasets, identify patterns, and predict outcomes with 
remarkable precision. 

ML algorithms, such as support vector machines (SVM), 
random forests, and k-nearest neighbors (k-NN), have been 
instrumental in classifying HIV statuses based on clinical and 
laboratory data. DL models, particularly CNNs and recurrent 
neural networks (RNNs) have further advanced diagnostic 
capabilities by analyzing imaging data, genomic sequences, 
and biomarker profiles. 3,8 

A notable example is the application of CNNs for 
analyzing chest X-rays to detect opportunistic infections in 
HIV-positive individuals, which aids in the comprehensive 
diagnosis and monitoring of the disease. 9 RNNs, on the other 
hand, have been utilized for sequence prediction tasks, such 
as identifying mutations in HIV-1 protease genes that confer 
drug resistance. 10 

Additionally, deep learning-based computer vision 
models have been integrated into lateral flow assays for 
rapid HIV testing. These AI-enhanced diagnostic tools 
leverage image recognition algorithms to interpret test 
results with higher accuracy than manual reading, improving 
sensitivity and specificity in point-of-care settings. 11 One 
notable example is AI-enhanced lateral flow assays, which 
employ deep learning-based image recognition to interpret 
test results with higher accuracy than manual reading 
methods 
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Table 1. Comparison of Conventional and AI-Based HIV Diagnostic Methods 
 

Method Sensitivity Specificity Processing Time Cost References 

PCR (Polymerase Chain 
Reaction) 

98-100% 98-100% 6-12 hours High Owens et al.16  

AI-Based SVM Model 82.4% 85.5% <1 hour Low Wu et al. 17 
 

AI-Based CNN Model 
(Imaging) 

95.9% 99.0% <30 minutes Low Turbé et al.18  

ML-Based Prediction 
Model  

86.0% 65.6% Not Specified Not 
Specified 

Latt et al.19 
 

ELISA (Enzyme-Linked 
Immunosorbent Assay) 

99-100% 99.7% 24-48 hours Moderate  Alexander 20 

 
Accuracy and Effectiveness of AI Models 
AI models in HIV diagnosis and treatment are primarily 

evaluated based on sensitivity, specificity, and accuracy. 12 
Sensitivity measures the ability to correctly identify HIV-
positive cases, while specificity ensures that false positives 
are minimized. 13 Accuracy provides an overall measure of 
the model’s correctness. These metrics help determine 
the reliability of AI applications in clinical practice and 
public health interventions. 14 

In some cases, additional metrics such as AUC-ROC 
(Area Under the Receiver Operating Characteristic Curve) 
and F1-score are used to further refine model evaluation. 
15 AUC-ROC measures the trade-off between sensitivity 
and specificity, making it useful in optimizing model 
decision thresholds. The F1-score, which balances 
precision and sensitivity, is particularly relevant in 
handling imbalanced datasets common in HIV research. 5 

AI -based models have demonstrated the potential to 
overcome some of these challenges by enhancing 
sensitivity, specificity, and speed. Compared to 
conventional diagnostic methods, AI-driven approaches 
can process large datasets, detect subtle biomarker 
patterns, and provide rapid results with high accuracy. 

Table 1 provides a comparative overview of 
conventional HIV diagnostic methods and AI-based 
approaches, highlighting their sensitivity, specificity, 
processing time, and cost-effectiveness. 

Moreover, AI models have proven effective in 
detecting HIV in early stages, even when viral loads are 
low. Such capabilities are particularly beneficial in 
preventing disease progression and reducing transmission 
risks. 21,22 The integration of AI with next-generation 
sequencing (NGS) has also enabled the identification of 
rare and novel HIV strains, improving diagnostic 
comprehensiveness. 23 

 
Data Sources and Sample Distribution in AI-based HIV 

Diagnosis 
The datasets used in AI-driven HIV diagnosis vary in 

size and structure, depending on the study design and the 
type of AI model applied. For instance, clinical biomarker 
datasets, such as CD4+ T-cell counts and viral load levels, 
have been utilized in supervised ML models, often sourced 
from large-scale studies like the Multicenter AIDS Cohort 
Study (MACS) dataset, which includes over 6,000 HIV-
positive individuals. 24 

In genomic-based HIV diagnosis, NGS data has been 
incorporated into AI models for mutation detection. 

Studies using the Stanford HIV Drug Resistance Database 
(HIVdb) have analyzed over 100,000 sequences to train 
deep learning models in predicting drug resistance 
patterns. 25 

Imaging-based AI approaches, such as those using 
CNNs for opportunistic infection detection, have 
employed publicly available chest X-ray datasets from 
hospitals in the US and Africa, containing more than 
50,000 labeled images. 26 

These datasets provide diverse training samples, 
although class imbalance remains a challenge, as the 
number of HIV-positive patients with detectable imaging 
markers is significantly lower than other conditions. 
Additionally, resources detailing HIV-related pulmonary 
opportunistic infections and their radiological findings are 
critical for AI-based diagnosis and have been outlined in 
studies on HIV and lung diseases. 27 

 
Early Detection and Biomarker Analysis 
Early diagnosis remains critical for effective HIV 

management, as it enables timely initiation of ART, 
reducing morbidity, mortality, and transmission risks. 
Recent advancements highlight the use of ML and DL in 
interpreting complex datasets to predict disease status. 
AI-driven tools have significantly improved biomarker 
analysis for early HIV detection. For instance, a study 
employing CNNs trained on viral load and CD4+ T-cell 
count datasets achieved an accuracy of 96%, a sensitivity 
of 94%, and a specificity of 92% in predicting HIV 
progression. 28 This performance surpasses traditional 
SVM-based models, which rely on structured clinical data 
and achieved an accuracy of 91% with a sensitivity of 89% 
in similar biomarker classification tasks. 29 

Additionally, Transformer-based architectures, such as 
Bidirectional Encoder Representations from Transformers 
(BERT) and its biomedical adaptation BioBERT, have 
demonstrated superior performance in analyzing large-
scale genomic datasets. BioBERT achieved an F1-score of 
95.2% in identifying HIV-related genetic markers and a 
classification accuracy of 97% in predicting host-pathogen 
interactions, outperforming CNN-based methods in 
sequence analysis tasks. 30 

Moreover, NGS platforms integrated with machine 
learning-driven mutation detection algorithms (e.g., 
VirVarSeq, MinVar, DeepChek-HIV) have been used to 
detect low-frequency HIV drug-resistant variants. These 
tools have improved detection sensitivity by 15-20% 
compared to conventional bioinformatics pipelines, 
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enabling the identification of cryptic viremia in patients 
with undetectable viral loads. 31 

Viral load measurement is another critical diagnostic 
aspect. AI models leveraging real-time PCR data and NGS 
outputs have been developed to identify even low levels 
of viral RNA, enabling earlier detection than standard 
clinical assays. This approach not only facilitates timely 
ART initiation but also contributes to identifying patients 
with cryptic viremia or those at risk of virological failure. 
32,33 

Furthermore, AI has been utilized to analyze host 
genetic factors, such as HLA alleles and polymorphisms in 
CCR5 genes, which influence susceptibility to HIV infection 
and disease progression. These insights pave the way for 
predictive diagnostics and tailored prevention strategies. 
34 

 
Integration of AI in Point-of-Care Diagnostics 
AI-powered innovations in point-of-care (POC) 

diagnostics are revolutionizing HIV testing by enhancing 
accessibility, accuracy, and efficiency. Portable AI-enabled 
devices, such as smartphone-based rapid diagnostic tests 
(RDTs), utilize deep learning models, particularly CNNs, for 
real-time image analysis of test strips. These systems have 
demonstrated an accuracy of 98.5%, a sensitivity of 
97.2%, and a specificity of 96.8% in detecting HIV 
antibodies, surpassing traditional rapid tests. 11 

One prominent example is the development of AI-
enhanced lateral flow assays that utilize computer vision 
algorithms to interpret test results with higher accuracy 
than manual reading. In a study conducted by researchers 
at University College London (UCL) and the Africa Health 
Research Institute (AHRI), a deep learning-based 
computer vision system achieved a classification accuracy 
of 98.9% in interpreting lateral flow assay results, 
compared to 92.1% accuracy in manual visual 
interpretation. 35 Given that this method represents a 
distinct AI approach in HIV diagnostics, it has also been 
incorporated into the AI in HIV Diagnosis section, ensuring 
alignment across different parts of the paper. 

 
AI in HIV Treatment 
The integration of AI into HIV treatment strategies has 

opened new avenues for personalized medicine and 
improved therapeutic outcomes. 

 
Personalized Medicine and Drug Discovery 
AI has revolutionized drug discovery by identifying 

novel compounds and optimizing existing treatment 
regimens. ML models have been employed to predict drug 
efficacy, side effects, and potential resistance patterns, 
thereby expediting the development of ART. 15,36,37 

 
AI-Assisted Virtual Screening and Drug Design 
AI-driven virtual screening has emerged as a pivotal 

methodology in accelerating HIV drug discovery, enabling 
the efficient identification of potential therapeutic 
compounds by leveraging advanced computational 
techniques and large-scale molecular data. AI-assisted 
drug discovery methods, particularly deep learning 
models such as generative adversarial networks (GANs), 
have played a crucial role in optimizing ART regimen 

development by predicting drug-target interactions and 
identifying novel inhibitors against HIV-specific proteins. 
38 Similarly, Wang et al. utilized PubChem datasets and ML 
techniques to screen large libraries of compounds for 
potential activity against reverse transcriptase, identifying 
candidates with improved binding affinity. 39 Gradient 
boosting models, enhanced with structural and potency 
data, have achieved high accuracy in predicting ligand 
binding affinity, with Shapley value analysis highlighting 
the importance of van der Waals interactions with key 
protein residues. 30 

 
GANs and Reinforcement Learning in Drug Discovery 
GANs and reinforcement learning algorithms have 

facilitated the design of novel compounds tailored to HIV-
specific targets. These AI-driven approaches have been 
successfully used to generate de novo molecular 
structures and optimize drug candidates based on 
predicted interactions with HIV proteins. 38 

Meanwhile, AlphaFold, developed by Jumper et al., 
provided highly accurate structural predictions for HIV 
proteins, enabling researchers to identify key binding sites 
for integrase and reverse transcriptase inhibitors. Jumper 
et al.'s AlphaFold, for example, provided accurate 
structural predictions for HIV proteins, enabling 
researchers to identify key binding sites for integrase and 
reverse transcriptase inhibitors. AlphaFold has 
demonstrated a root-mean-square deviation (RMSD) of 
<1.5 Å, indicating near-experimental accuracy in protein 
structure prediction. 40 However, despite these successes, 
AlphaFold still has limitations, particularly in predicting 
intrinsically disordered regions and loops, which are 
crucial for drug design. 41 

 
Time and Cost Reduction in AI-Based Drug Discovery 
AI has significantly accelerated drug discovery 

processes while reducing associated costs. The integration 
of AI and ML approaches has facilitated the processing of 
biological data, leading to reduced time and expenses in 
drug development. 42 

AI-driven drug discovery optimizes the identification of 
potential drug candidates, expediting development 
timelines and reducing the financial burden of bringing 
new treatments to market. 43 However, many AI 
applications in drug discovery remain in their early stages 
and still require human validation to ensure accuracy and 
reliability. 

Additionally, advanced AI and ML frameworks have 
improved the prediction of drug efficacy, and toxicity 
thereby lowering development costs and enhancing drug-
target interactions. 44 

These advancements highlight AI’s crucial role in 
modern drug discovery and development, offering more 
efficient and cost-effective therapeutic innovations. 

AI-Enhanced High-Throughput Screening (HTS) in HIV 
Drug Discovery 

AI has also revolutionized high-throughput screening 
(HTS) methodologies, particularly in the context of HIV 
drug discovery. By integrating AI with HTS, researchers 
can efficiently analyze vast datasets to identify potential 
inhibitors targeting HIV proteins, thereby expanding the 

12, 

Tur
kiye 
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arsenal of therapeutic options available for HIV 
management. 45 

Gawehn et al. highlighted the use of deep learning (DL) 
models to analyze molecular descriptors and prioritize 
compounds with activity against the RNase H domain of 
reverse transcriptase, an area of unmet therapeutic need. 
46 This approach has the potential to further increase the 
diversity of available therapeutic compounds and 
accelerate the drug discovery pipeline. 

These advancements underscore AI's pivotal role in 
modernizing drug discovery and development, offering 
promising avenues for more efficient and cost-effective 
therapeutic innovations. 

 
AI-Supported Clinical Application 
Clinical decision support systems (CDSS) powered by 

AI are transforming HIV care by assisting healthcare 
providers in tailoring ART regimens to individual patient 
profiles. These systems integrate data from various 
sources, including genetic markers, comorbidities, and 
treatment history, to recommend optimized therapeutic 
strategies. 44 One such system, EuResist, utilizes a 
combination of three statistical learning models to predict 
the probability of treatment success based on HIV-1 
genotype and supplementary patient data. The system 
demonstrated 76% accuracy in predicting virological 
response over an 8-week period, outperforming human 
HIV drug resistance experts in clinical decision-making. 45 
Similarly, the HIV-TRePS (HIV Treatment Response 
Prediction System) employs Random Forest models to 
predict the probability of successful treatment response, 
even in cases where key baseline clinical data (such as 
genotype or CD4 count) are missing. This system has been 
validated across a large dataset of over 250,000 patients, 
achieving an AUC of 0.89 in independent testing. 46 For 
example, an AI-based CDSS implemented in a South 
African clinic demonstrated a 20% improvement in 
treatment adherence and a reduction in virological failure 
rates. 47 This was primarily due to the system's ability to 
dynamically adapt ART regimens based on real-time 
patient data and drug resistance mutations. 48 

Such systems also enable real-time monitoring of 
patient progress and adaptive adjustments to therapy, 
enhancing overall treatment efficacy. 49 AI-driven CDSS 
facilitates continuous patient monitoring, allowing for the 
detection of early warning signs of treatment failure and 
timely interventions. Compared to traditional rule-based 
CDSS, these ML-powered systems offer superior 
predictive accuracy and adaptability, making them 
invaluable tools in resource-limited settings. 47 

 
Mobile Applications and Remote Monitoring 
Mobile health (mHealth) applications equipped with AI 

features are playing an increasingly prominent role in HIV 
management. These apps offer functionalities such as 
medication reminders, symptom tracking, and virtual 
consultations, thereby improving patient adherence to 
treatment protocols. 50,51 

AI algorithms embedded in these apps analyze user 
data to provide personalized recommendations and 
identify early signs of treatment failure. For instance, a 
mHealth app developed in Kenya uses AI to predict 

adherence patterns based on user interactions and sends 
tailored reminders, significantly boosting adherence rates 
among young adults. 52 

Remote monitoring tools powered by AI have also 
facilitated decentralized care delivery. Wearable devices 
that continuously collect and analyze physiological data 
enable healthcare providers to remotely track patient 
health and intervene promptly when necessary. 53 

 
Optimizing ART Regimens 
The optimization of ART regimens has greatly 

benefited from AI applications, which predict drug-drug 
interactions, minimize adverse effects, and tailor 
treatments to individual patient needs. Predictive models 
analyze patient-specific data to identify the most suitable 
combinations of antiretroviral drugs, improving treatment 
outcomes and patient satisfaction. 54 These systems 
incorporate genetic and clinical data to identify optimal 
ART regimens, enhancing therapeutic efficacy and 
minimizing adverse effects. ML models like random 
forests and support vector machines have demonstrated 
significant accuracy in predicting patient-specific drug 
responses by analyzing genetic variants linked to drug 
metabolism, particularly CYP450 enzymes. 
Pharmacogenomics-based approaches have been 
instrumental in tailoring HIV therapies by predicting drug 
efficacy and potential resistance, ensuring improved 
patient outcomes. 55 

Traditional simulations rely on predefined 
mathematical models and static assumptions, whereas AI-
driven simulations utilize machine learning algorithms to 
dynamically predict and adapt HIV progression patterns 
based on real-world patient data. 30 

Moreover, AI-driven simulations of HIV dynamics have 
been used to test the efficacy of novel treatment 
strategies in silico before clinical implementation, 
accelerating the development of innovative therapies. 56 
These simulations integrate viral and immune system 
dynamics to refine dosing schedules and anticipate 
resistance evolution, significantly accelerating the 
development pipeline for new ART strategies. 56,57 
Furthermore, these simulations allow researchers to 
predict the consequences of treatment interruptions or 
dose changes before clinical trials, providing a cost-
effective and ethical approach to optimizing ART 
strategies. 58 However, the ethical implications of AI-
driven ART optimization should not be overlooked. While 
AI enhances treatment personalization, it raises concerns 
regarding data privacy, algorithmic bias, and transparency 
in decision-making. Ensuring equitable access to AI-
assisted HIV treatments, maintaining patient 
confidentiality, and mitigating biases in predictive models 
are crucial factors in the responsible implementation of AI 
in HIV care. 13,59 These considerations are further 
discussed in the "Ethical and Social Challenges" section. 

 Given the diverse applications of AI in treatment, 
various models have been developed, each leveraging 
different data types and evaluation metrics. Table 2 
provides a comparative overview of the primary AI models 
used in HIV diagnosis and treatment, summarizing their 
applications, input data types, and performance metrics. 

 
13 
, 
Tur
kiye 
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Table 2: AI Models Used in HIV Treatment 
 

AI Model Application Input Data Type Performance Metrics References 

Vela Diagnostics 
NGS Platform 

HIV-1 genotyping 
& drug resistance 
analysis 

Plasma RNA 
samples 

Identifies major and minor drug 
resistance mutations with high 
sensitivity 

Vashisht et al.33 
 

NGS-based AI 
model 

HIV drug 
resistance 
prediction 

Whole-genome 
sequencing data 

Detects drug resistance 
mutations at <20% abundance; 
higher sensitivity than Sanger 
sequencing 

Ávila et al.23 

Convolutional 
Neural Networks 
(CNNs) 

Predicting drug 
resistance 

HIV-1 genetic 
sequences 

High classification 
performance; importance of 
biologically relevant features 

Steiner et al.60 

NGS-based AI 
model 

HIV drug 
resistance 
prediction 

Whole-genome 
sequencing data 

Detects drug resistance 
mutations with higher 
sensitivity than population 
sequencing; 93.5% success rate 
in high viral load samples 

Fogel et al.32  

 CNNs Virtual screening 
for new HIV drugs 

2D/3D molecular 
structures & 
chemical 
properties 

High precision in identifying 
potential antiviral compounds 

Gawehn et al.46 

Deep Neural 
Networks (DNNs) 

Drug efficacy 
prediction 

Molecular 
descriptors & 
chemical 
structures 

Improved accuracy in 
predicting antiviral drug activity 

Gawehn et al.46 

Random Forest 
Model 

Predicting 
patient-specific 
drug responses 

Genetic variants 
(CYP450 enzymes) 

85% accuracy (95% CI: 0.79–
0.90) in classifying 
pharmacogenomic variants 

Pandi et al.61 

 

 
These AI models have significantly contributed to the 

advancement of HIV diagnostic accuracy and treatment 
optimization. By utilizing diverse data sources, AI 
enhances predictive capabilities and facilitates 
personalized care strategies. The integration of these 
models into clinical workflows can further streamline the 
diagnostic process and support early intervention efforts. 

 
Data Analytics and Epidemiological Models 
AI-driven data analytics have transformed HIV 

epidemiological studies, enabling better understanding 
and management of the disease at a population level. 

 
Big Data and AI in HIV Epidemiology 
AI tools have facilitated the analysis of large-scale 

datasets, uncovering patterns in HIV transmission and 
identifying high-risk populations. Predictive models using 
AI have also been used to forecast epidemic trends and 
allocate resources efficiently. 62 For instance, predictive 
analytics have been utilized to study viral transmission 
clusters using genetic data, which aids in early outbreak 
detection and intervention planning. Specifically, a CNN 
model was developed to analyze pairwise genetic distance 
matrices derived from HIV-1 sequences, successfully 

identifying active outbreaks with high accuracy (specificity 
>98%, sensitivity >92%). 63,64 However, AI is not the only 
automation approach used in HIV epidemiology. 
Traditional methods such as rule-based systems and 
statistical models have also been employed. 

Rule-based expert systems, which rely on predefined 
if-then decision trees, were historically used for HIV risk 
stratification but lacked adaptability to complex datasets. 
Similarly, logistic regression and Bayesian networks have 
been widely used to model HIV transmission patterns and 
disease progression, but they struggle with nonlinear 
relationships and unstructured data. 12 In contrast, AI-
driven models, such as deep learning and reinforcement 
learning techniques, outperform these traditional 
methods by handling high-dimensional data and capturing 
intricate patterns in transmission Dynamics. 65 

For example, a study comparing logistic regression 
with machine learning models found that AI-based 
approaches improved predictive accuracy in identifying 
high-risk populations by nearly 12%. 13 While traditional 
models remain useful for structured data analysis, AI 
provides a more robust and adaptive solution for real-
time epidemiological modeling and outbreak prediction 
(Table 3) 
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Table 3: Comparison of Traditional Automation Methods and AI Models in HIV Research 
 

Category Method Example Use Case Strengths Limitations Reference 
Traditional 
Methods 

Rule-Based 
Systems 

Patient risk 
stratification in 
infectious diseases 

Interpretable, works well 
with structured data 

Poor scalability, cannot 
handle complex patterns 

Wiens et 
al.12 

Traditional 
Methods 

Statistical 
Models (Logistic 
Regression, Cox 
Models) 

Predicting HIV 
treatment failure 

Transparent, widely used 
in epidemiology 

Limited ability to model 
complex relationships 

Wiens et 
al.12 

Traditional 
Methods 

Back-Calculation 
Models 

Estimating past HIV 
incidence 

Useful for reconstructing 
infection history 

Requires accurate case 
reporting, sensitive to 
missing data 

Sun et al.66 

 AI-Based 
Models 

AI-Based Risk 
Prediction 

Identifying high-
risk HIV patients 
for care 

Helps target resources 
effectively 

Can introduce racial bias 
if trained on biased 
healthcare cost data 

Obermeyer 
et al.13 

AI-Based 
Models 

AI for Global 
Health 

Disease diagnosis, 
outbreak 
prediction, health 
policy 

Uses ML, NLP, signal 
processing, expert 
systems for diagnosis & 
surveillance 

Ethical, regulatory, and 
scalability challenges 

Schwalbe 
et al.65 

AI-Based 
Models 

Neural Networks 
for HIV 

Predicting HIV drug 
resistance 

Personalized treatment 
recommendations 

Requires large datasets, 
risk of overfitting 

Kuo et al.67 

AI-Based 
Models 

AI-Driven ART 
Optimization 

ML-driven ART 
selection using 
patient biomarkers 

Personalized, improves 
treatment adherence 

Data privacy concerns, 
model interpretability 
issues 

Kuo et al.67 

 
Risk Group Identification and Treatment Strategies 
AI systems have been employed to segment populations 

based on risk factors, enabling targeted interventions. These 
models analyze demographic, behavioral, and clinical data to 
design effective treatment strategies and prevention 
campaigns. 68 One study applied ML models to clinical and 
demographic datasets, identifying individuals with 
heightened risks of acquiring HIV and sexually transmitted 
infections within 12 months. 63 Such risk-prediction tools are 
now being integrated into digital health platforms to 
encourage targeted testing and preventive measures. 64 

 
Ethical and Social Challenges 
The adoption of AI in HIV diagnosis and treatment raises 

several ethical and social considerations that must be 
addressed to ensure equitable and responsible use. 

 
Data Privacy and Security 
The use of AI in healthcare requires access to sensitive 

patient data, raising concerns about data privacy and security. 
Robust data encryption and governance frameworks are 
essential to protect patient confidentiality. 59 

 
Equity and Fairness in AI Implementation 
AI applications must be accessible to all, including 

marginalized populations disproportionately affected by HIV. 
Efforts must be made to mitigate biases in AI algorithms and 
ensure equitable access to AI-driven healthcare solutions. 31 

 
Ethical Considerations in AI-Driven HIV Care 
While AI has the potential to transform HIV diagnosis, 

treatment, and epidemiological modeling, its implementation 
raises significant ethical concerns. The use of AI in healthcare 
involves complex issues related to data privacy, patient consent, 

bias in AI algorithms, and regulatory frameworks. Addressing 
these ethical challenges is essential to ensure the responsible 
and equitable deployment of AI-driven healthcare solutions. 

 
Data Privacy and Patient Consent 
AI models rely on vast amounts of patient data, often 

derived from electronic health records (EHRs), genomic 
sequencing, and real-time monitoring devices. While these 
datasets enable AI to improve diagnosis and treatment, they 
also increase the risk of data breaches and unauthorized access. 
59 

A major concern in AI-driven HIV care is the potential misuse 
of sensitive health information. HIV status is a highly sensitive 
medical condition, and any breach of confidentiality could lead 
to stigma, discrimination, and psychological distress for patients. 
69 Therefore, robust encryption methods, secure data storage, 
and transparent data-sharing policies are essential to protect 
patient privacy. 

Additionally, informed consent in AI-based healthcare is a 
critical ethical issue. Many AI systems operate in black-box 
models, where the reasoning behind predictions is not easily 
interpretable. This lack of transparency can make it difficult for 
patients to provide truly informed consent. Ethical AI 
implementation requires explainable AI (XAI) approaches, 
where patients and clinicians can understand how AI reaches 
conclusions. 6 

 
Algorithmic Bias and Fairness 
AI systems can inherit and amplify biases present in the 

datasets they are trained on, potentially leading to 
discriminatory outcomes. 13 In the context of HIV care, biased AI 
models could result in misdiagnosis or unequal access to 
treatment for marginalized populations. If AI models for HIV 
detection and treatment are primarily trained on data from 
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high-income countries, they may perform poorly when applied 
to populations in low-resource settings, where healthcare 
access and epidemiological factors differ. 65 

To mitigate algorithmic bias, AI developers should: 
• Ensure diverse and representative training datasets that 

include data from different ethnic, geographic, and 
socioeconomic backgrounds. 

• Conduct fairness audits to detect and correct biases 
before deploying AI models in clinical practice. 

• Develop regulatory guidelines to monitor AI fairness in 
real-world applications. 70 

 
Legal and Regulatory Challenges 
The legal landscape for AI in healthcare is still evolving, and 

many countries lack clear policies governing AI-driven medical 
decisions. In regions with strict data protection laws, such as 
the European Union’s General Data Protection Regulation 
(GDPR), AI developers must ensure compliance with data 
security and patient consent regulations. 69 

However, in low-resource settings, the absence of 
regulatory frameworks creates challenges in ensuring 
accountability and ethical AI deployment. 59 This legal 
uncertainty raises several concerns: 
• Who is responsible if an AI model provides an incorrect 

diagnosis or treatment recommendation? 
• How should AI-driven clinical decisions be integrated into 

existing medical liability frameworks? 
• What safeguards should be in place to prevent AI from 

making life-altering medical decisions without human 
oversight? 

To address these issues, governments and international 
health organizations should develop standardized AI 
regulations, ensuring that AI applications in HIV care are held 
to the same ethical and legal standards as traditional medical 
interventions. 
 

Balancing AI Automation with Human Oversight 
While AI enhances diagnostic accuracy and treatment 

recommendations, it should not replace human clinical 
judgment. Over-reliance on AI can lead to automation bias, 
where clinicians blindly trust AI-generated results without 
questioning their validity. 71 

A study on AI-driven CDSS found that when AI systems 
made incorrect recommendations, clinicians who were over-
reliant on AI were less likely to override the system’s 
suggestions, increasing the risk of medical errors. 70 

To ensure safe AI adoption in HIV care, AI should: 
• Complement rather than replace human expertise. 
• Include mechanisms for human-AI collaboration, where 

clinicians can override AI predictions when necessary. 
• Be continuously monitored and updated to reflect the 

latest medical knowledge. 
 
Conclusion 

 
Ethical challenges in AI-driven HIV care must be addressed 

to ensure equitable, fair, and responsible implementation. 
Strategies such as enhancing data diversity, strengthening 
regulatory oversight, improving transparency, and ensuring 
human oversight are essential for maximizing AI’s benefits 
while minimizing risks. As AI continues to evolve, ongoing 

dialogue between healthcare professionals, policymakers, AI 
developers, and patient advocacy groups will be crucial in 
shaping the future of ethical AI in HIV management. 

Limitations and Potential Risks of AI in HIV Care 
Despite the transformative potential of AI in HIV diagnosis, 

treatment, and epidemiological modeling, several challenges 
must be addressed to ensure its effective and ethical 
implementation in healthcare settings. 

 
Reliability and Reproducibility of AI Models 
A significant limitation of AI models in HIV care is their 

reliability and reproducibility across different populations and 
healthcare environments. Many AI models are trained on 
datasets that may not be representative of diverse patient 
demographics, leading to inconsistencies in real-world 
applications. For instance, a study found that ML models 
trained in high-resource settings had significantly reduced 
accuracy when applied in low-resource settings, where 
variations in healthcare infrastructure and genetic differences 
in HIV strains play a role. 12 Ensuring model generalizability 
requires diverse, high-quality datasets and rigorous external 
validation, yet many studies lack real-world validation. 

 
Bias and Health Disparities in AI-Driven HIV Care 
AI systems inherit biases present in the data they are 

trained on, potentially exacerbating existing healthcare 
inequalities. A study published in Science found that a widely 
used commercial prediction algorithm exhibited significant 
racial bias by using healthcare costs as a proxy for health 
status. As a result, Black patients—who historically have less 
access to healthcare—were systematically assigned lower risk 
scores despite experiencing more severe illnesses. The study 
estimated that correcting this bias could increase the 
percentage of Black patients receiving additional healthcare 
support from 17.7% to 46.5%, demonstrating how algorithmic 
biases can reinforce existing racial disparities. 13 

In the realm of HIV care, such biases can lead to inaccurate 
diagnoses or suboptimal treatment recommendations for 
marginalized populations. AI models predominantly trained on 
data from North American and European patients may not 
perform effectively in regions like sub-Saharan Africa and 
Southeast Asia, where different HIV subtypes and healthcare 
contexts prevail. This misalignment underscores the necessity 
of incorporating diverse populations into AI training datasets. 
Additionally, conducting thorough fairness assessments prior 
to deploying these models is crucial to mitigate potential 
biases and ensure equitable healthcare outcomes. 72 

 
Ethical and Regulatory Challenges in AI 

Implementation 
The adoption of AI in HIV care raises significant ethical 

concerns, including data privacy, patient consent, and 
accountability. AI models often rely on vast amounts of 
patient data from electronic health records (EHRs) and 
genomic sequencing, which increases the risk of data 
breaches and unauthorized Access. 59 

Furthermore, legal and regulatory frameworks for AI-
driven healthcare applications vary widely across 
countries, making standardized implementation difficult. 
For example, the European Union’s General Data 
Protection Regulation (GDPR) has strict data privacy 
requirements, while the United States lacks a unified AI 
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regulatory policy. 69 This lack of uniformity complicates 
the deployment of AI-based HIV interventions globally. 

 
Challenges in Real-World Integration and Scalability 
Many AI models require advanced computational 

resources, stable internet connectivity, and trained 
personnel for implementation—factors that are often 
lacking in low-resource settings. 73 Additionally, many AI-
driven diagnostic tools do not seamlessly integrate with 
existing hospital information systems, creating barriers to 
widespread adoption. 6 

A recent study on AI-assisted HIV diagnostics in Africa found 
that poor interoperability between AI systems and local 
laboratory software limited clinical adoption, despite the 
technology’s high diagnostic accuracy. 65 Without proper 
integration strategies, AI tools risk remaining experimental 
rather than becoming clinically impactful solutions. 

 
Over-Reliance on AI and the Risk of Automation Bias 
While AI has shown remarkable accuracy in HIV 

diagnosis and treatment optimization, there is a growing 
concern about over-reliance on AI-generated predictions, 
potentially reducing human oversight and clinical 
judgment. 70 

Automation bias—the tendency for humans to over-trust 
automated decisions, even in cases of AI error—has been 
documented in multiple healthcare settings. A study found 
that clinicians were less likely to question incorrect AI-
generated diagnoses when working under high workload 
conditions, increasing the risk of medical errors. 71 

To prevent excessive dependence on AI models, 
healthcare providers should use AI as an assistive tool 
rather than a replacement for human expertise. Clinicians 
must critically evaluate AI-generated outputs rather than 
passively accepting them as infallible. 

 
AI Implementation Challenges in Turkey 
While AI adoption in healthcare has gained 

momentum globally, its integration into the Turkish 
healthcare system presents unique challenges. Despite 
Turkey’s highly developed public healthcare 
infrastructure, AI implementation remains limited due to 
regulatory uncertainty, data-sharing restrictions, and 
interoperability issues between AI-driven solutions and 
existing hospital information systems. 

One of the primary barriers is the absence of a 
comprehensive legal framework governing AI applications 
in medicine. Currently, Turkey lacks dedicated legislation 
addressing AI in healthcare, and existing regulations 
primarily focus on general data protection laws, such as 
the Personal Data Protection Law (KVKK), which is similar 
to the European General Data Protection Regulation 
(GDPR). While these regulations ensure data privacy, they 
also create bureaucratic obstacles for AI-driven research 
and clinical deployment, as hospitals and research 
institutions face strict limitations on patient data usage for 
AI model training. 74 

Additionally, Turkey’s AI infrastructure in healthcare is 
still in its early stages, with limited AI integration into 

electronic health record (EHR) systems. Unlike in 
countries where AI is embedded into routine clinical 
workflows, Turkish hospitals and laboratories still 
primarily rely on conventional diagnostic and treatment 
decision-making tools. A major challenge is ensuring that 
AI solutions can seamlessly integrate with Türkiye’s 
National Health Information System (e-Nabız), which 
serves as the central database for patient records. 75 

Another concern is unequal access to AI-driven 
healthcare solutions across different regions of Turkey. 
While metropolitan hospitals in cities like Istanbul, 
Ankara, and Izmir have started piloting AI-based decision 
support systems, hospitals in rural and underdeveloped 
regions often lack the necessary digital infrastructure, 
trained personnel, and computational resources to adopt 
AI solutions effectively. 76 This regional disparity raises 
concerns about healthcare equity, as patients in rural 
areas may not benefit from AI-driven innovations at the 
same rate as those in urban centers. 

To overcome these barriers, Turkey must: 
1. Develop a comprehensive AI regulatory framework 

tailored for medical applications. 
2. Invest in nationwide AI training programs for 

healthcare professionals to bridge the expertise gap. 
3. Strengthen AI integration in national health 

infrastructure, ensuring that AI-driven tools are 
compatible with existing hospital management 
systems. 

4. Encourage public-private partnerships, leveraging 
collaborations between government agencies, 
academic institutions, and technology firms to 
accelerate AI adoption. 

Despite these challenges, Turkey has significant 
potential for AI expansion in healthcare, particularly 
through its large-scale national health initiatives and 
increasing investment in digital health transformation. 
Addressing regulatory, infrastructural, and regional 
disparities will be crucial to ensuring equitable and 
efficient AI implementation in HIV care and beyond. 

 
Conclusion and Future Perspectives 
AI has emerged as a transformative force in the fight 

against HIV, revolutionizing diagnostic accuracy, 
treatment optimization, and public health strategies. AI-
driven innovations, such as ML models and data analytics, 
have enabled early detection through biomarker analysis, 
optimized ART regimens, and facilitated personalized 
medicine by integrating pharmacogenomics and patient-
specific data. Furthermore, AI-powered epidemiological 
models have enhanced the ability to predict and mitigate 
HIV transmission at the population level, ensuring more 
efficient resource allocation and targeted interventions. 

Despite these promising advancements, challenges 
persist. Ethical concerns, including data privacy and 
algorithmic bias, need to be systematically addressed to 
ensure equitable healthcare delivery. Accessibility 
remains a significant hurdle, particularly in low-resource 
settings, where technological infrastructure and trained 
personnel may be limited. In addition, the integration of 
AI into healthcare systems requires robust regulatory 
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frameworks, interdisciplinary collaboration, and sustained 
financial investment to ensure scalability and 
sustainability. 

Future research should focus on refining AI algorithms 
to improve their interpretability, accuracy, and 
generalizability across diverse populations. Efforts must 
also be directed toward building inclusive datasets that 
minimize biases and reflect the demographics of those 
most affected by HIV. Collaborative initiatives between 
governments, private sectors, and non-governmental 
organizations (NGOs) can accelerate the global 
deployment of AI tools, particularly in regions with the 
highest HIV burdens. 

As the capabilities of AI continue to expand, its role in 
combatting HIV is likely to evolve further. By embracing 
these technologies responsibly and ensuring that their 
benefits are distributed equitably, the global health 
community can make significant strides toward reducing 
new infections, improving the quality of life for those 
living with HIV, and ultimately achieving an AIDS-free 
generation 
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