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Abstract 

This paper introduces a new generalization of Transmuted Power Function distribution named 

as Exponentiated Transmuted Power Function distribution with its fundamental properties. The 

expressions of failure and survival rate functions on the basis of their graphs are provided. We 

compute moments, moment generating function, quantile function. Then, Rényi entropy is 

discussed and the expressions of the order statistics are derived.  Parameters of the proposed 

distribution are estimated using the maximum likelihood method. Real lifetime data application 

shows the flexibility of the proposed distribution and its better fit as compared to some existing 

models with the confidence that the model provide better performance to deal with the problems 

related to electronics and engineering reliability.  
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1. INTRODUCTION 

 

Statistical models are commonly used to predict the real-life data. Although literature presents many 

univariate models with appropriate real life examples, some models are more flexible to explain the real 

life phenomenon with respect to failure rate and reliability analysis. From last few decades, Power 

function (PF) distribution is commonly used to explain the limited and scarce data sets [20]. The PF 

distribution is a special case of beta distribution and also considered as an inverse Pareto distribution 

[10]. This distribution is preferred for the better fit as compared to lognormal, Weibull, exponential and 

Gaussian distribution due to its simplicity, applicability and therefore attractiveness to reliability 

engineering. It is frequently used in social sciences, physics, economics, engineering and many other 

fields [16]. 

 

The fundamental statistical properties of the PF distribution are studied [1-2, 4, 9, 13-14]. 

Characterization and estimation of parameters of the PF distribution by [1-2]. Reliability analysis for 

the PF distribution [3]. Further, authors estimate the parameters using different methods, Bayesian 

analysis of the PF distribution under double prior [20]. Robust estimators for the PF distribution by 

[19]. Then, some generalized forms of the PF distribution have been formed to obtain more flexible and 

appropriate model for the real life data. For example, beta PF distribution [7], Weibull PF distribution 

[21], Kumaraswamy PF distribution [18], exponentiated Kumaraswamy PF distribution [6], McDonald 

Power function [11] and transmuted Weibull power function distribution [12].  

 

The probability density function (pdf) and cumulative distribution function (cdf) of the transmuted PF 

distribution [10] are, respectively, given as follows: 
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where and are shape parameters and  is scale parameter. 

 

The exponentiated family of distribution is derived by using the cdf of an arbitrary parent distribution 

by a shape parameter say θ>0. The pdf of the generator is given by 
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and its correspondingly cdf is 

    ; , ; , G y F y
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                                                                                                                   (4) 

 

where represents the parameters of baseline distribution and 0   represents another shape 

parameter. 

 

The motivation of this study is to obtain more flexible model (A model which can deal with various 

kind of data sets) and to get goodness of fit to deal with the real-life data related to the electronics and 

engineering reliability. Furthermore, the basic motivations for using the new distribution in practice are 

the following: 1. to make the kurtosis more flexible compared to the baseline model; 2. to produce a 

skewness for symmetrical distributions; 3. to construct heavy-tailed distributions that are not longer-

tailed for modeling real data; 4. to generate distributions with symmetric, left-skewed, right-skewed and 

reversed-J shaped; 5. to define special models with all types of the hazard functions. 

 

The purposes of our study are to extend the transmuted PF distribution to its standard exponentiated 

transmuted PF distribution, explain its properties and show flexibility on the basis of real life examples. 

The rest of the study is organized as follows: Section 2 introduces exponentiated transmuted PF 

distribution with its shapes and reliability analysis. Section 3 elaborates some fundamental properties 

including moments, incomplete moments, generating function, quantile function, random number 

generation, mean deviation, mode, entropies, order statistics, and maximum likelihood estimation. 

Section 4 gives application for justifying the flexibility of model as compared to other existing models 

and Section 5 concludes the study. 

 

2. EXPONENTIATED TRANSMUTED POWER FUNCTION DISTRIBUTION 

 

If  ; , ,  F y    is the cdf of transmuted PF distribution with parameter ,   are shape parameters and 

β is scale parameter, then Eq. (2) yields a new model ET-PF cumulative distribution  0( )for y   , 

say        ; , , ,G y G y     , reduces to 
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where β is a scale parameter, 0, 0   and 0  are three positive shape parameters. The 

corresponding pdf of the ET-PF distribution is obtained by inserting (1) and (2) in Eq. (3) as  
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Sub-models of the ET-PF distribution are given below: 
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1. If θ=1, the ET-PF distribution converts into the transmuted PF distribution TPF(α,β,γ). 

2. If γ=1, we obtain the exponentiated PF distribution EPF(α,β,θ). 

3. If θ=γ=1, we get the PF distribution PF(α,β). 

 

Figures 1 (a) and (b) represent the pdf of the ET-PF distribution graphically on different combination of 

parameters α,γ and θ for fixed β=2 and β=1, respectively. As seen from Figures 1 (a) and (b), observed 

distribution have different subfamilies depends on value of θ. The density function can take various 

forms depending on the parameter values. Both unimodal and monotonically decreasing and increasing 

shapes appear to be possible. It is evident that the ET-PF distribution is much more flexible than the T-

PF and PF distributions. 

 

 

  

 

 

Figure 1. Plots of the pdf for ET-PF distribution with some selected parameter values 

 

Due to the complex behavior of density function following expansion is used. For 0 1  , we have  
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By using above expansions, the pdf from Eq. (6) can also be written in its simplified form as  
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2.1. Survival and hazard functions  
 

An important measure to explain and characterize the phenomenon of life is hazard function. Therefore, 

the survival function S(y) and hazard function h(y) of the ET-PF distribution are, respectively, given as 

 



663 Rana Muhammad USMAN et al. / GU J Sci, 31(2): 660-675 (2018) 

 

  1 1
y y

S y

 

 
 

    
       

     

                                                                                              (8) 

 

1
1

1 2 1

1 1

y y y

h y

y y

  

 


   

   

 
 


         

           
           

    
      
     

                                                        (9) 

 

Figure 2 explains the behavior of hazard function of the ET-PF distribution for several parameter 

values. 

 

 
 

Figure 2. Plots of hazard function of the ET-PF distribution for some selected parameter values 

 

Figure 2 shows that the distribution has increasing, bathtub behavior, upside-down bathtub behavior 

and exponentially decreasing behavior starts from y-axis. It seems that the ET-PF distribution is much 

appropriate in explaining the death rate and existence rate for the lifetime of the certain product. These 

different shapes show that the hazard rate function of the ET-PF is useful and suitable for non-

monotone empirical hazard behaviors which are more likely to be encountered or observed in real life 

situations. 

 

3. MATHEMATICAL PROPERTIES 

 

Algebraic expressions explain capable the structural quantities for a distribution as compared to the 

numerical illustration of density functions. Under this concept, we derive some expressions for 

important properties of the ET-PF distribution. 

 

3.1. Moments 

The rth moments has much importance in statistical analysis and in real life applications. Moreover, it 

helps to explain central tendencies, dispersions, skewness and kurtosis and some other characteristics of 

the observed model. By the matter of fact, it is essential to develop rth moment for a new proposed 

distribution. 

 

Theorem 1: Let Y be a random variable (r.v.) from the ET-PF distribution. Then, its rth moment is 

given by  
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Proof: The r
th
 moment of Y can be obtained from 
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By inserting r =1, we get the mean of the ET-PF distribution as  
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3.2. Incomplete Moments 

 

Incomplete moments are mostly used to obtain Lorenz and Bonferroni curves, to evaluate mean 

residual life and mean waiting time, to find mean deviation about mean and median. Moreover, it has 

much application in other areas such as reliability, insurance, demography, and economics. 

 

Theorem 2: Let Y has the ET-PF distribution. Then, its r
th 

incomplete moment is given by  
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Proof: The rth incomplete moment of Y follows ET-PF distribution with pdf given in Eq. (7) can be 

obtained from  
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By inserting the value of
,i j  and after integration, we get 
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3.3. Moment generating function 

Here, we present a closed form of moment generating function (mgf) M(t) for the ET-PF distribution as 

follows: 
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Proof: The mgf of the ET-PF distribution is obtained as 
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After integration and simplification, we get the mgf in the form of the incomplete gamma function. 

 

3.4. Quantile function and random number generation 
 

The quantile function of variable Y belong to the ET-PF distribution can be obtained from Eq. (5) as 

 F y q and  1y F q , where q is a uniform random variate with unit interval (0, 1). After 

simplification, the quantile function is given by 
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3.5. Mode 
 

The mode of the ET-PF distribution for variable Y is obtained as  
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Proof: We can find mode by using its definition as
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 for all , , , 0 and 0 y       . Therefore, after 

simplification we get 
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By using quadratic formula, the result follows that 
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The second derivative may be used if required. 

 

3.6. Mean deviation 

 

Mean deviation is a tool to evaluate the dispersion in a population by measuring the totality of absolute 

deviation from mean and median. Mean deviation about mean and median is defined as respectively 

 

         ' ' ' ' '

1 1 1 1 1 1
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2 2y E Y y f y dy F



                                                         (15) 
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       '

1 1

0

2M y E y M y M f y dy M



                                                                (16) 

 

where  '

1 E Y   can be obtained from Eq. (10),
'

1( )F  can be calculated from Eq. (5) and 
'

1 1( )   is 

the first incomplete moment computed from Eq. (11). 

 

3.7. Skewness and kurtosis 

 

Skewness is the measure of the asymmetry of the probability distribution and kurtosis is the measure of 

peakedness of the density function. Both measures are the descriptive measures of the shape of the 

probability distribution. Skewness and kurtosis can be easily determined by the following expressions 

based on first four mean moments calculated by Eq. (11) or Eq. (12) 

 

3 4
1 23 2

22
2

             and            
 

 




                                                                                                 (17) 

 

3.8. Rényi Entropy 
 

The entropy of a random variable Y is used to measure the variation of the uncertainty. Mostly, the 

Rényi entropy is used as a common measure of entropy. 

 

Theorem: If the random variable Y is defined as Eq. (5), then the Rényi entropy is given by 

  , , ,

, , 0 0

log log 1
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1 1 1
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i j s
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i k s j

I
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   
  




 

 
     

    
                                            (18) 

 

where 𝛿 > 0 and for 𝛿 ≠ 1 

 

Proof: If Y has the ET-PF distribution, then the Rényi entropy is defined as 

 

   
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log
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
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                                                                                                                 (18a) 
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After simplification final expression is 
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Substituting Eq. (18b) in Eq. (18a), the result follows. Note that the q entropy (Hq) is defined by  
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    q R

1
H log 1 1 q I δ

q 1
  


                                                                                                     (19) 

 

Substitution of Eq. (18) completes the proof. 

 

 

3.9. Order Statistics  
 

Let Y be r.v. and its ordered values is denoted as        1 2 3
  ,  , ,  ,

n
Y Y Y Y . The pdf of order statistics is 

obtained using the function 
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The density of the s
th
 ordered statistics follows the ET-PF distribution is derived as follows 
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The pdf of the first-order statistics is obtained as  
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The density of the largest order statistic is given by  
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3.10.  Estimation 

 

Many estimation methods have argued in literature but maximum likelihood estimation (MLE) method 

provides maximum information about the properties of estimated parameters and mostly used. 

Moreover, normal approximation of these estimators can frankly be managed systematically and 

mathematically for large sample theory. Consequently, the MLE has adopted to estimate the unknown 

parameters  , ,  and     of the ET-PF distribution. 

 

Let Y have vector of parameters  , ,  and 
T

     with size n. The sample likelihood function is 

achieved as 
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The log-likelihood function is  
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Now we have to maximize the above log-likelihood function given in Eq. (20) to get MLEs of 

unknown parameters of exponentiated transmuted PF distribution. For this purpose, we take the first 

derivative of the above log-likelihood equation with respect to parameters and equate to zero 

respectively. 
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The exact solution of above-derived ML estimator for unknown parameters is not possible. So it is 

well-situated to use nonlinear optimization algorithms such as a Newton-Raphson algorithm to 

maximize the above likelihood function numerically. We can use R (optimal function or maxBFGS 

function), or MATHEMATICA (Maximize function). After application of large sample property of 

MLEs,̂ can be treated as being approximately normal with mean θ and variance-covariance matrix 
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equal to the inverse of the expected information matrix, i.e.       10,    ˆ ,  n N n I I      is 

the information matrix then its inverse of matrix is  1 I 
 provide the variances and covariance’s. The 

 ˆI  variance-covariance matrix is actually equal to the inverse of the expected information matrix 

 1 ˆ I 
 is given as 
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4. SIMULATION STUDY 

 

In this section, we examine the performance of the ET-PF distribution by carrying out various 

simulations for different example sizes and different parameter values by using Monte Carlo 

Simulation using R language. Quantile function is used to generate random data from ET-PF 

distribution. The simulation study is repeated N=5000 times each with sample size n=50, 100, 200 and 

the parameter values I: 𝛼 = 0.5, 𝛽 = 10, 𝜃 = 6, 𝛾 = 0.7 and II: 𝛼 = 2, 𝛽 = 7, 𝜃 = 5, 𝛾 = 1 Two 

quantities are computed in this simulation: Average bias of the MLE 𝜃 of the parameter 𝛼, 𝛽, 𝜃, 𝛾 and 

Root mean square error (RMSE) of the MLE 𝜃defined as  
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The parameter combinations for the simulation study are shown in Table 1. The values in Table 1 

indicate that as the sample size increases the biases and RMSEs of the estimates decrease. 

 

Table 1. Monte Carlo simulation results 

 Set-I Set-II 

Parameter Sample size Average Bias RMSE Average Bias RMSE 

𝒂 

50 -0.174 0.287 -0.231 0.276 

100 -0.122 0.285 -0.142 0.271 

200 -0.067 0.298 -0.081 0.277 

𝜷 

50 3.682 5.498 4.232 5.521 

100 2.638 4.445 2.543 3.985 

200 1.794 3.428 1.512 2.813 

𝜽 

50 0.255 0.871 0.245 0.594 

100 0.196 0.752 0.251 0.572 

200 0.101 0.602 0.163 0.448 

𝜸 

50 0.219 0.694 0.476 1.154 

100 0.081 0.393 0.061 0.466 

200 0.035 0.243 0.025 0.297 
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5. REAL DATA APPLICATIONS  

In this section, we provide three applications based on real data sets from different areas to illustrate the 

flexibility of the ET-PF distribution in contrast to other models including power, transmuted-power and 

transmuted-Rayleigh distributions. The MLEs of the parameters are determined fort the ET-PF 

distribution and three other models with goodness-of-fit statistics are computed for checking the 

adequacy of the all four models. 

 

Data set 1: The first real data set consists of the survival times of guinea pigs injected with different 

doses of tubercle bacilli [5]. It is well known that guinea pigs have high susceptibility to human 

tuberculosis and that is why they were used in that study. In this study, we used the data of animals in 

the same cage that under the same regimen; the data includes 72 observations. The data are: 12, 15, 22, 

24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 

63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 

129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 376. 

 

Data set 2: The second real data set refers to air conditioning failures given by [8]. These data were 

analyzed a lot of researchers and for an alternative approach, failure data also used in this study. The 

data are: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 

16, 90, 1, 16, 52, 95. 

 

Data set 3: The third real data set is about traffic and consisting of the length of intervals between 

times at which vehicles pass a point on a road [15]. The data are: 2.5, 2.6, 2.6, 2.7, 2.8, 2.8, 2.9, 3,3, 

3.1, 3.2, 3.4, 3.7, 3.9, 3.9, 3.9, 4.6, 4.7, 5, 5.6, 5.7, 6, 6, 6.1, 6.6, 6.9, 6.9, 7.3, 7.6, 7.9, 8, 8.3, 8.8, 9.3, 

9.4, 9.5, 10.1, 11, 11.3, 11.9, 11.9, 12.3, 12.9, 12.9, 13, 13.8, 14.5, 14.9, 15.3, 15.4, 15.9, 16.2, 17.6, 

20.1, 20.3, 20.6, 21.4, 22.8, 23.7, 23.7, 24.7, 29.7, 30.6, 31, 34.1, 34.7, 36.8, 40.1, 40.2, 41.3, 42, 44.8, 

49.8, 51.7, 55.7, 56.5, 58.1, 70.5, 72.6, 87.1, 88.6, 91.7, 119.8. Table 2 gives summary about 

descriptive statistics of each data set.  

 

Table 2. Descriptive statistics for the data sets 

n Minimum Median Mean Maximum Variance Skewness Kurtosis 

72 12 70 99.829 376 6580.122 1.796 5.614 

30 1 22 59.600 261 5167.421 1.694 4.967 

83 2.500 12.300 21.757 119.800 579.530 1.897 6.498 

 

These data sets are modeled by ET-PF distribution and compared with the power, transmuted-power 

and transmuted-Rayleigh distributions. Their associated densities are given by: 

 

The pdf of the PF distribution is 
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The pdf of the TPF [10] distribution is 
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The pdf of the TR distribution [17] is 
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The MLEs of the parameters are computed using a script of the R-language, the Adequacy Model. In 

Adequacy Model package, there exists many maximization algorithms like NR (Newton-Raphson), 

BFGS (Broyden-Fletcher-Goldfrab-Shanno), BHHH (Berndt-Hall-HAll-Hausmann), SANN 

(Simulated-Annealing), NM (Nelder-Mead) and Limited-Memory quasi-Newton code for Bound-

constrained optimization (L-BFGS-B) [22]. Here, the MLEs are computed using SANN method.  

 

Table 3, 4 and 5 describe the estimated parameters of ET-PF distribution with goodness of fit measures 

such as log-likelihood (Log-L), Akaike Information Criterion (𝐴𝐼𝐶 = 2𝑝 − 2𝑙𝑛(𝐿)), Bayesian 

Information Criterion (𝐵𝐼𝐶 = 𝑝𝑙𝑛(𝑛) − 2𝑙𝑛(𝐿)) and Kolmogrov-Smirnov (K-S) test for all data sets. 

In information criterions, 𝐿 is the value of the likelihood function evaluated at the parameter estimates, 

𝑛 is the number of observations, and 𝑝 is the number of estimated parameters. 

 

Table 3. Estimates and goodness of fit measures under considered distributions based on data set 1 

Model 
ML 

Estimates 
LogL AIC BIC 

K-S 

Statistics 
p-value 

Power 
𝛼=0.747 

𝛽= 280.633 
397.342 798.684 803.210 0.273 0.000 

Transmuted-

Power 

𝛼 =0.890 

𝛽 = 357.233 

𝛾=0.831 

398.406 802.812 809.600 0.232 0.001 

Transmuted-

Rayleigh 

𝛼=86.227 

𝛾 =0.517 
393.396 790.792 795.317 0.157 0.061 

Exponentiated 

Transmuted-

Power 

𝛼 =-0.156 

𝛽 =342.899 

𝜃=5.508 

𝛾 =1.171 

381.921 771.841 780.892 0.137 0.141 

 

Table 4. Estimates and goodness of fit measures under considered distributions based on data set 2 

Model 
ML 

Estimates 
LogL AIC BIC K-S Statistics p-value 

Power 
𝛼=0.414 

𝛽=318.298 
157.068 318.137 320.939 0.232 0.079 

Transmuted-

Power 

𝛼=0.607 

𝛽=268.507 

𝛾=0.725 

152.531 311.061 315.265 0.182 0.276 

Transmuted-

Rayleigh 

𝛼=65.078 

𝛾=0.618 
175.859 355.719 358.521 0.438 0.000 

Exponentiated 

Transmuted-

Power 

𝛼=-0.074 

𝛽=258.734 

𝜃=8.318 

𝛾=1.268 

149.291 306.187 312.187 0.118 0.798 

 

Table 5. Estimates and goodness of fit measures under considered distributions based on data set 3 

Model 
ML 

Estimates 
LogL AIC BIC K-S Statistics p-value 

Power 
𝛼=0.454 

𝛽=113.087 
359.338 722.677 727.514 0.233 0.000 

Transmuted-

Power 

𝛼=0.647 

𝛽=114.848 

𝛾=0.879 

346.975 699.950 707.206 0.167 0.019 

Transmuted-

Rayleigh 

𝛼=25.470 

𝛾=0.685 
379.003 762.005 766.843 0.346 0.000 
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Exponentiated 

Transmuted-

Power 

𝛼=-0.118 

𝛽=123.359 

𝜃=1.315 

𝛾=1.678 

322.995 653.991 663.666 0.061 0.921 

 

The values of the statistics Log-L, AIC and BIC of ET-PF distribution are comparatively smaller than 

the other distributions on three data sets. Therefore, the results show that ET-PF distribution provides a 

significantly better fit than the other models. So, it could be chosen as the best model. 

 

 
Figure 3. Plots of the estimated pdf and cdf of the distributions for the first data set 

 

 

 
Figure 4. Plots of the estimated pdf and cdf of the distributions for the second data set 

 

 

 
Figure 5. Plots of the estimated pdf and cdf of the distributions for the third data set 

 

 

More information is provided by a usual comparison of the histograms of the data sets with the fitted 

pdf. The plots of fitted distributions and the histograms of the data sets are given Figure 3, 4 and 5. 

They indicate that the ET-PF distribution provides more adequate fit than the other distributions.  

 

6. CONCLUSION 

 

Various univariate lifetime distributions have been constructed for better fit real life data belong to 

numerous fields. This study explain a new life time distribution, the exponentiated transmuted power 

function distribution, by using exponentiated-G generator. Some fundamental properties have studied 

including mean deviation, moments, entropies and order statistics. It provides a flexible distribution 
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then some existing models. We hope this model will have greater interest in several fields of research 

and broader application in electronic industry. 
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