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Aim: This study aims to apply deep learning algorithms for superpixel segmentation, herbaceous thresholding, and disease 
reference position estimation from DICOM images and clinical data of Non-Small Cell Lung Cancer (NSCLC) patients. 
Quantitative imaging data was integrated with clinical information. Various machine learning algorithms were employed to 
identify biomarkers and evaluate classification performance based on clinical data, imaging data, and their combination, 
assessing the model improvement rates. 
Materials and Methods: The clinical dataset included 43 patients with and 168 without an Epidermal Growth Factor 
Receptor (EGFR) mutation, and 38 with and 173 without a Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) mutation, 
totaling 211 NSCLC cases. A total of 2,231 images were analyzed. Using the VGG16 deep learning model, 25,088 features 
were extracted from each image. XGBoost, CatBoost, Random Forest, and Support Vector Machine (SVM) classification 
algorithms were used to predict mutation status. 
Results: Clinical data revealed significant differences in mutation status among NSCLC patients. The Random Forest 
algorithm was employed for feature selection, identifying the 50 most important variables for model training. XGBoost and 
CatBoost achieved the highest classification performance, with results for accuracy, balanced accuracy, precision, sensitivity, 
F1-score, and ROC-AUC as follows: 0.965 ± 0.015, 0.954 ± 0.021, 0.953 ± 0.024, 0.994 ± 0.007, 0.973 ± 0.011, and 0.990 ± 
0.005, respectively. 
Conclusion: The study’s findings demonstrate that XGBoost and CatBoost models were highly effective in predicting KRAS 
mutation status from imaging data. CatBoost also performed best in determining EGFR mutation status, outperforming 
other machine learning methods. 
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Radyogenomik Veri Setleri İçin Yapay Zeka Tabanlı Bir Hassas Tıp Karar Destek 
Sisteminin Geliştirilmesi 
Araştırma Makalesi ÖZ 

Amaç: Bu çalışma, küçük hücreli dışı akciğer kanseri (KHDAK) hastalarına ait DICOM görüntüleri ve klinik verilerden 
süperpiksel segmentasyonu, otsu eşikleme ve hastalık referans pozisyonu tahmini için derin öğrenme algoritmalarını 
uygulamayı amaçlamaktadır. Nicel görüntüleme verileri, klinik bilgilerle entegre edilmiştir. Klinik veriler, görüntüleme verileri 
ve bunların kombinasyonuna dayalı olarak biyobelirteçleri tanımlamak ve sınıflandırma performansını değerlendirmek için 
çeşitli makine öğrenmesi algoritmaları kullanılmış; model iyileşme oranları değerlendirilmiştir. 
Gereç ve Yöntem: Klinik veri seti, Epidermal Büyüme Faktörü Reseptör (EGFR) mutasyonu olan 43 ve olmayan 168, Kirsten 
Rat Sarkom Viral Onkogen Homoloğu (KRAS) mutasyonu olan 38 ve olmayan 173 hasta olmak üzere toplam 211 KHDAK 
vakasını içermektedir. Toplam 2.231 görüntü analiz edilmiştir. VGG16 derin öğrenme modeli kullanılarak her bir görüntüden 
25.088 özellik çıkarılmıştır. Mutasyon durumunu tahmin etmek için XGBoost, CatBoost, Random Forest ve Destek Vektör 
Makineleri (SVM) sınıflandırma algoritmaları kullanılmıştır. 
Bulgular: Klinik veriler, KHDAK hastaları arasında mutasyon durumlarına göre anlamlı farklılıklar olduğunu ortaya 
koymuştur. Model eğitimi için en önemli 50 değişkeni belirlemek amacıyla Random Forest algoritması ile özellik seçimi 
yapılmıştır. XGBoost ve CatBoost, en yüksek sınıflandırma performansını elde etmiştir. Elde edilen doğruluk, dengelenmiş 
doğruluk, kesinlik, duyarlılık, F1 skoru ve ROC-AUC değerleri sırasıyla şu şekildedir: 0.965 ± 0.015, 0.954 ± 0.021, 0.953 ± 
0.024, 0.994 ± 0.007, 0.973 ± 0.011 ve 0.990 ± 0.005. 
Sonuç: Çalışmanın bulguları, XGBoost ve CatBoost modellerinin görüntüleme verilerinden KRAS mutasyon durumunu 
tahmin etmede son derece etkili olduğunu göstermektedir. Ayrıca CatBoost, EGFR mutasyon durumunun belirlenmesinde 
de diğer makine öğrenmesi yöntemlerinden daha iyi performans göstermiştir. 
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Introduction 
 
Since the genomics revolution in the early 1990s, cancer 

research has concentrated on determining the genetic origins 
of illnesses in order to allow precision medicine therapies. 
Following the completion of the human genome project, the 
design of genes and proteins has progressed to functional 
levels of gene science and gene functions. Many cancer 
studies, such as the Cancer Genome Atlas (TCGA), have tried 
to acquire transcriptome, epigenomic, and proteomic data on 
genome type. 1,2 Consequently, protocols addressing the 
primary hazards and potential aggravating symptoms 
associated with genetic analysis technologies have been 
established.  

Genetic analysis may fail to correctly represent genetic 
variations in tissue biopsy samples due to intra- and inter-
group variability of tumor variables.3 As precision medicine 
and big data research advance, several professionals in the 
area underscore the significance of "Radiogenomics". 
Radiogenomics facilitates the establishment of multi-scale 
correlations between medical imaging and genetic data, 
enhancing analogous linkages and integrating the overlooked 
elements of radiomics and genomics. 4 Radiogenomics is a 
commonly utilized approach for predicting gamete mutations 
known as phenotype or genotype. To apply the classification 
model, the radiogenomic structure is divided into two or more 
groups, and the classification models are used to generate the 
appropriate prediction model.  

Model prediction for radiogenomics categorization is 
typically real-valued. The anticipated performance values are 
determined by considering true positive, true negative, false 
positive, and false negative values. 5-6 Lung cancer-related 
deaths are highly widespread over the World.7 Medical 
imaging radiography or computed tomography (CT) is used to 
diagnose lung cancer, and the results are often the existence 
of a lesion in the lung and the interaction between this tumor 
and the surrounding tissues. The discovered lesions are often 
biopsied to determine the cancer diagnosis and histological 
symptoms of the tumor, such as small cell lung cancer (SCLC), 
non-small cell lung cancer (NSCLC), and so on. 7 

Deep Learning (DL) models are a valuable tool in medical 
image analysis. Models derived from deep learning network 
architectures are extremely useful in many fields of health 
sciences, particularly medical image identification and 
segmentation. It is commonly used in areas such as early 
diagnosis and therapy. 8 DL challenges advance at a slower rate 
than other real-world problems in medical imaging and 
medical services. By evaluating the variables influencing the 
rise in the development of DL architectures and in accordance 
with medical imaging investigations, the application fields of 
Computed Tomography (CT) technology were explored and 
the associated topics were highlighted. 9 

The fundamental method for detecting the radiogenomics 
of lung cancer using DL techniques involves assessing the 
alterations in genomic biomarkers obtained from CT scans. A 
convolutional neural network (CNN) model was developed to 
analyze the epidermal growth factor (cell division, cell growth, 
cell survival, etc.) for assessing the mutation status using CT 
devices and identifying the most effective tree-based 
technique for the ideal procedure.10 Image analysis has 

demonstrated remarkable success employing CNNs in the 
medical industry for learning feature detection in lung nodes 
and mass segmentation applications. 11  

Although databases designed to compare data on publicly 
available biomedical images help to develop image analysis 
algorithms by providing resources for users to evaluate and 
compare previous models as well as generate new models, the 
fact that some datasets are distributed in multiple locations or 
indexed using different terminologies makes reliable model 
comparison and reproducibility difficult. The Lung Image 
Database Consortium (LIDC) image collection allows for a 
comparison of the fundamental accuracy of biological datasets 
to models.12-13  

This study aims to develop a medical decision support 
system that preprocesses clinical and radiogenomic datasets 
for NSCLC and then builds Machine Learning (ML) based 
prediction models for lung cancer. 
 
Materials and Methods 

 
Dataset 
This dataset comprises detailed medical records and 

imaging data from 211 NSCLC patients. The collection includes 
both well-reviewed descriptions of malignant tumors 
apparent on medical imaging and quantitative data on the 
related CT scan images. Tumor segmentation pictures from 
PET/CT scans are also presented.14 The dataset included 211 
samples, with 135 (64%) men and 76 (36%) females. There 
were 19 (14.10%) male patients having an Epidermal Growth 
Factor Receptor (EGFR) mutation. Male patients without EGFR 
mutation were 116 (85.90%), while male patients with Kirsten 
Rat Sarcoma viral oncogenic homolog (KRAS) mutation were 
27 (20%) and male patients without KRAS mutation were 108 
(80%). There were 24 (31.60%) female patients having an EGFR 
mutation. There were 52 female patients (68.40%) who did 
not have EGFR mutation. Female patients with KRAS mutation 
were 11 (14.50%), whereas female patients without KRAS 
mutation were 65 (85.50%). 

 
Radiogenomics 
Radiogenomics, which is developed by combining 

"Radiomics" and "Genomics" in the field of artificial 
intelligence(AI) health, has gained its position in the literature 
as the most recent technology science employed in the 
disciplines of precision medicine and cancer, as well as in other 
departments of science. Radiogenomics is the categorization 
of risk that combines precision medicine genetic data with 
large volumes of radiographic imaging data. Many AI studies 
involving patients in clinical settings have been used to develop 
models. In oncology research, life analytic forecasts and 
studies have demonstrated significant accomplishments using 
radiogenomic outcomes facilitated by AI.15 

Substantial advancements have been achieved in lung 
cancer treatment, encompassing sophisticated screening 
techniques employed by specialists in conjunction with 
artificial intelligence, the implementation of minimally invasive 
diagnostic and therapeutic procedures, radiation modalities 
such as stereotactic ablative therapy, and the development of 
novel targeted therapies and immunotherapeutics.16 The 
introduction of these novel therapy modalities has been linked 
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to enhanced survival rates, especially in patients with non-
small cell lung cancer. The two-year relative survival rate for 
NSCLC rose from 34% in 2009-2010 to 42% in 2015-2016. 17  

Image Processing 
Image processing techniques are employed to segment 

lung tissue and lesions. This procedure seeks to retrieve useful 
information by detecting and assessing the borders of lesions. 
Researchers underline the efficiency of this strategy by 
investigating the performance of automated lesion detection. 
18 Lesions are classified using ML algorithms based on their 
shape and density. This approach is proposed to distinguish 
between malignant and precancerous lesions.19 The outcomes 
of automated lesion recognition in CT scans were evaluated 
using sensitivity, specificity, and other metrics from image 
processing performance measurements. 20 

 
Artificial Intelligence (AI) 
Machines can use AI algorithms to compare data, arrange 

patient follow-up in the health sector, learn data, 
communicate, perceive, interpret images, and move and 
displace items. It is also a science that aids physicians in their 
decision-making processes while diagnosing and treating 
patients, as well as diagnosing diseases. AI may be used to 
create systems that imitate certain human actions (such as 
picking up things and depositing them in specified areas) as 
well as human thought processes (such as data computation 
and medical diagnosis).  

Although substantial improvements have been achieved, 
there is currently very little study in the subject of AI, and AI 
researchers are continually developing new technologies. The 
basic methodologies of AI include fuzzy logic, artificial neural 
networks, genetic algorithms, and expert systems. Computer 
systems can create, plan, diagnose, interpret, summarise, 
generalize, control, and provide suggestions 21.  

DL techniques suggest that some illnesses can be identified 
using radiological data. Chest radiography, for example, is the 
most prevalent form of radiological examination in the world, 
with a vast dataset. DL models appear to be able to identify 
clinically significant anomalies in chest radiography such as 
pneumonia and pneumothorax 22.  

 
Machine Learning (ML) 
A machine learning (ML) algorithm is a subfield of artificial 

intelligence that investigates strategies for improving data set 
performance by developing skill in processing large amounts 
of data. ML explains the data set using Supervised, 
Unsupervised, Semi-supervised, and Reinforcement learning 
approaches based on the data set's output variables. It gives 
the researcher a broad variety of information regarding the 
correlations between input and output data. ML algorithms 
are capable of solving a variety of perceptual problems.  

The basic objective of ML is to create predictive models 
capable of making data-driven assessments and choices while 
producing accurate and consistent forecasts. These models 
may be used to a broad range of tasks, including image 
recognition, model accuracy, natural language processing, and 
fraud detection. Its rising prominence may be attributed to the 
availability of vast volumes of data and increases in computer 
processing capacity 23,24. 

 
Approaches to Preprocessing Clinical Data 

Data mining and modeling is the process of preparing data 
and increasing data quality in order to make the data 
processing more efficient and accurate. This procedure often 
includes data cleaning, data transformation, data 
standardization, data reduction, RF and variable selection, and 
other activities necessary to prepare the data for future 
analysis. These stages fill in data gaps, fix discrepancies, and 
prepare the data for analysis 25. This study employed “scikit-
learn” for categorical data and utilized “TensorFlow” and 
“keras” libraries for picture normalization, since the “VGG16” 
model offers superior performance in data transformation.  

 
Preprocessing Approaches for Image Data 
Image preprocessing refers to a collection of tools and 

approaches used to analyze and meaningfully transform the 
raw data of digital photographs. This technique consists of 
multiple processes to increase picture quality, remove noise, 
and highlight certain characteristics.Image processing steps 
that make a picture suitable for analysis include adjusting the 
brightness, contrast, and color balance; cropping out 
unwanted areas; resizing the picture to make it a different size; 
applying filters to make the picture less noisy; identifying 
objects in the picture using edge detection methods; and 
finally, applying histogram equalization to make the picture 
more contrasty 26.  In this work, "OpenCV" was used for image 
normalization, "SciPy" from the python library for imge 
segmentation, and "OpenCV" was utilized for contour 
detection. Additionally, Image Thresholding Methods were 
employed.Additionally, Image Thresholding Methods were 
used. 

 
Random Forest (RF) 
Random Forest(RF) is one of the disciplines of research 

where it has been widely applied to image categorization. RF is 
recognized for its efficacy on datasets with numerous 
characteristics, has robust noise resilience, and attains 
elevated classification accuracy. The final classification 
outcome is determined by the majority vote of the decision 
trees inside the Random Forest model, which synthesizes the 
results from several trees trained on the data 27. It is trained 
less frequently due to its enhancement of the RF algorithm's 
dependability and stability. The technique is highly resilient 
regarding generalization and model correctness, therefore 
offering a dependable solution for prediction and classification 
challenges 28. The decision tree framework for the RF method, 
which generates a decision tree for each segment after 
partitioning the dataset into random subsets, is illustrated  29.  

 
Extreme Gradient Boosting (XGBoost)  
Chen and Guestrin created this effective ML algorithm for 

regression and classification procedures. It performs quite 
well, particularly on structured data. XGBoost is an improved 
version of the gradient boosting technique. This approach 
works by successively merging weak learners to fix model 
flaws, increasing the efficiency of these operations. XGBoost is 
widely employed across a variety of industries, including 
healthcare, finance, and clinical imaging. It works well with 
huge data sets and data with missing cells 30. The 
"XGBClassifier" package for the XGBoost method was used in 
this work, and classification performance for models with 200 
iterations was achieved. 
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Categorical Boosting Algorithm (CatBoost)  
The CatBoost algorithm is a machine learning system 

capable of processing both numerical and categorical input. 
CatBoost mitigates overfitting, a characteristic aspect of this 
technique, by including the algorithm's prior values with low-
frequency characteristics and regions of high density, so 
effectively handling points in noise. Gradient-assisted decision 
trees underpin the creation of the CatBoost methodology. 
CatBoost mitigates the bias in predicted values generated by 
the gradient descent method, hence enhancing data 
comprehension and outcome evaluation 31,32. This study 
employed the "CatBoostClassifier" library for the CatBoost 
method, utilizing 200 iterations to get metrics on classification 
performance. 

 
Support Vector Machines 
The Support Vector Machines (SVM) method seeks to 

reduce the empirical error probability of traditional pattern 
recognition approaches by improving performance on the 
training dataset. SVM, on the other hand, is concerned with 
minimizing structural risk, which refers to the danger of 
inaccurately categorizing unseen patterns based on the data's 
fixed but unknown probability distribution. The concept of 
uniform convergence in probability led to the development of 
a new principle of induction, which aims to minimize an upper 
constraint on the generalization error 33. 

 
Biostatistical Analyses 
This study presented quantitative data using mean ± 

standard deviation and qualitative data using number (%). 
Prior to deriving conclusions from the data analysis, 
examinations were performed to detect absent values or 
severe outliers within the dataset. The data set was amended 
using suitable procedures, if required. The Shapiro-Wilk test 
was employed to assess conformity with the normal 
distribution assumption, hence informing the selection of 
hypothesis tests for data analysis. The statistical significance 
threshold was established at p<0.05. IBM SPSS Statistics for 
Windows Version 27.0 package program was used for 
statistical analysis 34.  

Python programming language and "tensorflow, keras, 
preprocessing.image", "seaborn", "pandas", "OpenCv", 
"traceback", "os", "pydicom", "sklearn" for ML methods used 
in classification of biomedical data and image 
analysis.ensemble", "StratifiedKFold", "tqdm", 
"sklearn.metrics", "tensorflow, keras", "torch", 
"skimage.segmentation", "glob" libraries were used.  
 
Result 

 
The dataset for this study includes information on the 

presence and absence of EGFR and KRAS mutations. With 211 
samples total, there are 135 males and 76 females, or 64% and 
36% of the total, respectively. There were 19 male patients 
(14.10% of the total) who showed evidence of EGFR 
mutations. A total of 108 male patients (80%) lacked the KRAS 
mutation, 27 male patients (20%) possessed the EGFR 
mutation, and 116 male patients (85.90%) lacked the KRAS 

mutation. Among the patients, 24 had EGFR mutations, 
accounting for 31.60% of the total. Of the individuals analyzed, 
52 were female and accounted for 68.40% without an EGFR 
mutation. We found 65 female patients (85.50%) without 
KRAS mutation and 11 female patients (14.50%) with KRAS 
mutation. 35 

The demographic characteristics of the categorical 
variables are presented in Table 1. When the descriptive 
statistics table of categorical variables related to EGFR 
mutation status was analyzed, According to Table 1,  the 
variables of gender p=0.002, smoking status p<0.001, histology 
p=0.002, histopathologic grade p=0.014, and patient survival 
status p=0.046 (p<0.05) show a statistically significant 
difference between the groups in terms of EGFR mutation. In 
patients with EGFR mutation, 81.4% were connected with 
Stanford Health System/Hospital, and the proportion of 
female patients was 55.8%, which was greater than the 
proportion of male patients (44.20%).  

The percentage of patients who had never smoked was 
51.2%. Furthermore, all patients with the EGFR mutation 
exhibited adenocarcinoma histology, and their survival 
percentage was assessed to be 83.7%. However, there was no 
statistically significant difference in pathologic staging (T, N, 
M), lymphovascular invasion, pleural invasion, or adjuvant 
therapy characteristics (p>0.05). When analyzing the table 
based on KRAS mutation status, only the histology parameter 
showed a significant difference (p<0.05; p=0.010). Although 
97.4% of patients with the KRAS mutation had 
adenocarcinoma histology, there was no statistically 
significant difference in all other demographic and 
clinicopathologic parameters (gender, ethnicity, smoking 
status, pathologic staging, histopathologic grade, 
lymphovascular invasion, pleural invasion, adjuvant 
treatment, and survival) (p > 0.05). 

When Table 2 is analyzed according to EGFR and KRAS 
mutation status, there is no statistically significant difference 
between the groups in the variables of age at histologic 
diagnosis (68±10, 68±10, p=0.924) and (66±10, 68±10, 
p=0.165), weight (122±18, 123±22, p=0.783), The days 
between CT and surgery (39±27, 53±68, p=0.205) (p>0.05). 
The "Pack Years" variable quantifies the cumulative smoking 
exposure of patients, determined by multiplying the daily 
cigarette pack consumption by the total number of years 
smoked. 

Table 3 provides a comparative overview of the 
classification performance across different models for 
detecting EGFR and KRAS mutations. Among these, CatBoost 
emerged as the top-performing algorithm in both categories. 
Specifically, it achieved an accuracy of 96.7%, sensitivity of 
99.1%, F1-score of 97.9%, and ROC-AUC of 98.9% for EGFR, 
while delivering similarly high metrics for KRAS with 96.5% 
accuracy and 99.4% sensitivity. Although XGBoost followed 
closely behind, its sensitivity and F1-score remained marginally 
lower. Random Forest and SVM, on the other hand, yielded 
comparatively suboptimal outcomes, especially in balanced 
accuracy and precision. These results point to CatBoost’s 
strong predictive capacity and its potential utility in accurately 
distinguishing mutation types in genomic classification tasks. 
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Table 1. Descriptive Statistics of Categorical Variables Related To EGFR And KRAS Mutation Status 

Variables Categories 
EGFR Mutation KRAS Mutation 

Yes No p Yes No p-value 
N(%) N(%) 0.558* N(%) N(%) 

Recurrence No 30 (69.80) 127 (75.60) 28 (73.70) 129 (74.60) 0.987* 
Yes 13 (30.20) 41 (24.40) 10 (26.30) 44 (25.40%) 

Patient affiliation Veterans Affairs System 8 (18.60) 85 (50.60) <0.001* 19 (50.00) 74 (42.80%) 0.417* 
Stanford Health 
System/Hospital 

35 (81.40) 83 (49.40) 19 (50.00) 99 (57.20) 

Gender Male 19 (44.20) 116 (69.00) 0.002* 27 (71.10) 108 (62.40) 0.414* 
Female 24 (55.80) 52 (31.00) 11 (28.90) 65 (37.60) 

Ethnicity Caucasian 32 (74.40) 140 (83.30) 0.552** 33 (86.80) 139 (80.30) 0.508** 
Native Hawaiian/Pacific 
Islander 

0 (0.00) 3 (1.80) 0 (0.00) 3 (1.70%) 

Asia 10 (23.30) 14 (8.30) 2 (5.30) 22 (12.70) 
Afro-Amerikan 0 (0.00) 6 (3.60) 2 (5.30) 4 (2.30) 
Hispanik/Latino 1 (2.30) 5 (3.00) 1 (2.60) 5 (2.90) 

Smoking status Smokers 2 (4.70) 31 (18.50) <0.001* 8 (21.10) 25 (14.50) 0.119** 
Previous users 19 (44.20) 111 (66.10) 26 (68.40) 104 (60.10) 
Non-smokers 22 (51.20) 26 (15.50) 4 (10.50) 44 (25.40) 

Histology Adenokarsinom 43 
(100.00) 

129 (76.80) 0.002** 37 (97.40) 135 (78.00) 0.010** 

Squamous cell 
carcinoma 

0 (0.00) 35 (20.80) 0 (0.00) 35 (20.20) 

Pathological 
Tumor stage 

T1a 2 (4.70) 38 (22.60) 0.080** 8 (21.10) 32 (18.50) 0.750** 
T1b 8 (18.60) 23 (13.70) 5 (13.20) 26 (15.00) 
T2a 27 (62.80) 69 (41.10) 16 (42.10) 80 (46.20) 
T2b 1 (2.30) 9 (5.40) 2 (5.30) 8 (4.60) 
T3 3 (7.00) 18 (10.70) 6 (15.80) 15 (8.70) 
T4 1 (2.30) 6 (3.60) 0 (0.00) 7 (4.00) 
Tis 1 (2.30) 5 (3.00) 1 (2.60) 5 (2.90) 

Pathologic 
Lymph Node 
stage 

N0 38 (88.40) 140 (83.30) 0.699** 32 (84.20) 146 (84.40) 0.969** 
N1 2 (4.70) 13 (7.70) 3 (7.90) 12 (6.90) 
N2 3 (7.00) 15 (8.90) 3 (7.90) 15 (8.70) 

Pathologic 
Metastasis stage 

M0 42 (97.70) 164 (97.60) 0.989** 36 (94.70) 170 (98.30) 0.221** 
M1b 1 (2.30) 4 (2.40) 2 (5.30) 3 (1.70) 

Histopathological 
Grades 

G1  7 (16.30) 25 (14.90) 0.014** 5 (13.20) 27 (15.60) 0.650** 
G2  29 (67.40) 96 (57.10) 21 (55.30) 104 (60.10) 
G3  0 (0.00) 33 (19.60) 9 (23.70) 24 (13.90) 
Other, Type I 4 (9.30) 5 (3.00) 1 (2.60) 8 (4.60) 
Other, Type II 3 (7.00) 9 (5.40) 2 (5.30) 10 (5.80) 

Lymphovascular 
invasion 

Yes 3 (7.00) 18 (10.70) 0.579* 4 (10.50) 17 (9.80) 0.968* 
No 40 (93.00) 150 (89.30) 34 (89.50) 156 (90.20) 

Pleural invasion 
(elastic, visceral 
or parietal) 

No 34 (79.10) 135 (80.40) 0.998* 30 (78.90) 139 (80.30) 0.978* 
Yes 9 (20.90) 33 (19.60) 8 (21.10) 34 (19.70) 

Adjuvant 
Treatment 

No 37 (86.00) 125 (74.40) 0.158* 28 (73.70) 134 (77.50) 0.774* 
Yes 6 (14.00) 43 (25.60) 10 (26.30) 39 (22.50) 

Kemoterapi No 37 (86.00) 125 (74.40) 0.158* 28 (73.70) 134 (77.50) 0.774* 
Yes 6 (14.00) 43 (25.60) 10 (26.30) 39 (22.50) 

Radiation No 41 (95.30) 154 (91.70) 0.535* 35 (92.10) 160 (92.50) 0.980* 
Yes 2 (4.70) 14 (8.30) 3 (7.90) 13 (7.50) 

Survival Status Dead 7 (16.30) 56 (33.30) 0.046* 10 (26.30) 53 (30.60) 0.741* 
Live 36 (83.70) 112 (66.70) 28 (73.70) 120 (69.40) 

GFR: Epidermal Growth Factor Receptor; KRAS: Kirsten Rat Sarcoma viral oncogene homolog; G1: Well Differentiated; G2: Moderately Differentiated; 
G3: Poorly Differentiated; Type I: Good to moderately differentiated; Type II: Moderately to poorly differentiated; * : Pearson Chi-square; **: Fisher's 
Exact Test 
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Table 2. Descriptive Statistics For Quantitative Data 

Variables Age at Histologic 
Diagnosis 

Weight 
(lbs) 

Pack 
Years 

The days between CT and 
surgery 

EGFR Mutation 
Status 

Yes Mean ± SD 68±10 122±18 32±16 39±27 
No Mean ± SD 68±10 123±22 41±24 53±68 

p* 0.924 0.783 0.004 0.209 
KRAS Mutation 

Status 
Yes Mean ± SD 66±10 128±26 43±28 48±39 
No Mean ± SD 68±10 121±20 38±21 51±67 

p* 0.165 0.096 0.257 0.789 
EGFR: Epidermal Growth Factor Receptor; KRAS: Kirsten Rat Sarcoma viral oncogene homolog; * : Independent Two Sample t-test; SD: Standard 
Deviation. 

 
Table 3. Metrics on classification performance 

Group Model Accuracy Balanced 
Accuracy Precision Sensitivity F1-Score ROC-AUC 

EGFR CatBoost 0.967 ± 0.010 
(0.966 - 
0.967) 

0.931 ± 0.022 
(0.931 - 
0.932) 

0.968 ± 0.010 
(0.968 - 
0.969) 

0.991 ± 0.003 
(0.990 - 0.991) 

0.979 ± 0.006 
(0.979 - 0.980) 

0.989 ± 0.002 
(0.988 - 
0.989) 

Random 
Forest 

0.888 ± 0.017 
(0.887 - 
0.888) 

0.786 ± 0.038 
(0.785 - 
0.788) 

0.907 ± 0.017 
(0.907 - 
0.908) 

0.957 ± 0.006 
(0.956 - 0.957) 

0.931 ± 0.010 
(0.931 - 0.932) 

0.933 ± 0.021 
(0.932 - 
0.934) 

SVM 0.730 ± 0.015 
(0.730 - 
0.731) 

0.714 ± 0.015 
(0.713 - 
0.714) 

0.903 ± 0.011 
(0.902 - 
0.903) 

0.742 ± 0.028 
(0.741 - 0.743) 

0.814 ± 0.014 
(0.813 - 0.815) 

0.786 ± 0.017 
(0.786 - 
0.787) 

XGBoost 0.963 ± 0.010 
(0.963 - 
0.964) 

0.931 ± 0.012 
(0.930 - 
0.931) 

0.969 ± 0.004 
(0.968 - 
0.969) 

0.985 ± 0.009 
(0.985 - 0.986) 

0.977 ± 0.006 
(0.976 - 0.977) 

0.985 ± 0.007 
(0.984 - 
0.985) 

KRAS CatBoost 0.965 ± 0.015 
(0.964 - 
0.966) 

0.954 ± 0.021 
(0.953 - 
0.955) 

0.953 ± 0.024 
(0.952 - 
0.954) 

0.994 ± 0.007 
(0.994 - 0.995) 

0.973 ± 0.011 
(0.973 - 0.974) 

0.990 ± 0.005 
(0.990 - 
0.991) 

Random 
Forest 

0.879 ± 0.008 
(0.878 - 
0.879) 

0.839 ± 0.010 
(0.839 - 
0.840) 

0.848 ± 0.012 
(0.848 - 
0.849) 

0.986 ± 0.020 
(0.985 - 0.987) 

0.912 ± 0.007 
(0.911 - 0.912) 

0.942 ± 0.008 
(0.942 - 
0.942) 

SVM 0.813 ± 0.024 
(0.812 - 
0.814) 

0.795 ± 0.018 
(0.794 - 
0.796) 

0.846 ± 0.010 
(0.845 - 
0.846) 

0.863 ± 0.043 
(0.861 - 0.864 

0.854 ± 0.022 
(0.853 - 0.855) 

0.847 ± 0.013 
(0.847 - 
0.848) 

XGBoost 0.951 ± 0.006 
(0.950 - 
0.951) 

0.936 ± 0.007 
(0.935 - 
0.936) 

0.935 ± 0.009 
(0.934 - 
0.935) 

0.991 ± 0.011 
(0.991 - 0.992) 

0.962 ± 0.005 
(0.962 - 0.962) 

0.982 ± 0.011 
(0.981 - 
0.982) 

 
Figure 1 depicts the superpixel segmentation 

approach applied to lung slices from an NSCLC patient. By 
isolating the tumor from its surroundings, this technique 
serves as a critical preprocessing step for visual analysis 
and ML-based diagnostic systems. 

The Otsu thresholding approach, seen in Figure 2, 
facilitated the delineation of lung structures from the 
background and effectively highlighted lung areas 
throughout the segmentation phase. 

Figure 3 illustrates (a) Grid: a geometric network 
framework employed for superpixel segmentation; (b) the 
original grayscale DICOM image; (c) the binary 
segmentation mask delineating the tumor region in white; 
and (d) the analysis of the final reference points, with 

boundaries defined in red, alongside the evaluation and 
classification data. 

Figure 4 shows that the tumor locations detected from 
the pictures were colored green. Tumor centers were 
delineated in blue, and contours were used to identify 
tumor borders. Contours were delineated using red lines. 
In the NSCLC image processing phase, (a) Grid: denotes a 
geometric network framework utilized for superpixel 
segmentation; (b) the original grayscale DICOM image; (c) 
the binary segmentation mask illustrating the tumor 
region in white; and (d) signifies the final analytical 
outcome, encompassing a color image alongside the 
evaluation and classification data. 
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Figure 1. Superpixel Segmentation İn CT İmages And İts Results 

 

 

Figure 2. Masking The İmage After Herbaceous Thresholding And Determination Of Reference Points 

 

 

Figure 3. Segmentation, Masking And Contour Analysis Of DICOM İmages Of NSCLC Patients 
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Figure 4. Segmentation, Masking And Contour Analysis İn Lung İmages. 

 
Discussion 

 
The structural characteristics of NSCLC have lately 

provided professionals with an edge in patient therapy 
and decision-making.  Mutations in EGFR and KRAS enable 
healthcare providers to enhance therapeutic targets and 
implement tailored therapy.  The invasiveness of repeated 
biologics and tumor heterogeneity provide significant 
clinical problems in genomic profiling. Radiomics utilizes 
several features to extract picture characteristics from 
high-throughput radiographic images, facilitating 
biomarker prediction and non-invasive estimation of 
lesion phenotypes. Extensive research has been 
conducted on the use of radiomic characteristics in lung 
cancer prevention, including the selection of tumor 
phenotypes and the prediction of biomarkers. Non-
invasive imaging modalities, like ultrasound and MRI, are 
used to diagnose conditions such as cancer 36.  

Imaging methods are used by healthcare practitioners 
to identify disease types and forecast illness progression, 
facilitating early diagnosis and treatment. Non-invasive 
imaging technologies (CT, MRI, PET) are used to ascertain 
tumor size, quantity, and density within an image. Imaging 
techniques not only identify the existence of pulmonary 
illness but also provide critical information on biological or 
clinical biomarkers, including prognostic indicators such as 
disease progression, treatment efficacy, and life 
expectancy 37.  

This aim of the study was to assess the prevalence of 
EGFR and KRAS mutations in NSCLC patients in relation to 
clinical data and to analyze the effectiveness of different 

machine learning methodologies for early detection of 
these mutations in DICOM images. It may facilitate the 
implementation of customized medicine and targeted 
therapeutic choices. The research on The Cancer Imaging 
Archive (TCIA) comprises a comprehensive clinical dataset 
of 211 individuals with non-small cell lung cancer (NSCLC) 
and biomedical imaging datasets 38,39. A study utilizing the 
same dataset, augmented by 161 cohort patients from a 
total of 211 NSCLC patients, revealed that the XGBoost 
model achieved EGFR and KRAS scores of 0.83 and 0.86, 
respectively, through 10-fold cross-validation for 
predicting EGFR and KRAS mutations. The AUC-ROC values 
for these mutations were recorded at 0.89 and 0.812, 
respectively. Our study demonstrated significant 
performance in predicting EGFR and KRAS mutations in 
NSCLC patients by integrating clinical data with radiomic 
variables derived from 2,231 medical images, in 
comparison to the AUC values of the ML-based study and 
the reference study. Our methodology using CatBoost 
(AUC = 0.99 ± 0.00) and XGBoost (AUC = 0.99 ± 0.01) for 
the EGFR mutation scenario, as well as CatBoost (AUC = 
0.99 ± 0.00) and XGBoost (AUC = 0.98 ± 0.01) for the KRAS 
mutations scenario, demonstrates a significant increase in 
predictive accuracy. In contrast to the 10-fold cross-
validation method used in the reference research, we 
utilized 5-fold cross-validation for a precise evaluation of 
model performances. The models demonstrated 
consistency and reliability with a minimum standard 
deviation. The exceptional performance attained is 
founded on a cohesive data approach that amalgamates 
clinical characteristics with extensive radiomic variables, 
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alongside the utilization of sophisticated gradient 
boosting methods. Upon evaluating the model's 
performance for EGFR mutation status, four machine 
learning models were compared, with the CatBoost model 
demonstrating superior efficacy in predicting the 
mutation status. The CatBoost model exhibited superior 
performance with an accuracy of 0.967 ± 0.010, balanced 
accuracy of 0.931 ± 0.022, precision of 0.968 ± 0.010, 
sensitivity of 0.991 ± 0.003, F1-Score of 0.979 ± 0.006, and 
ROC-AUC of 0.989 ± 0.002, compared to the accuracy of 
0.888 ± 0.017, balanced accuracy of 0.786 ± 0.038, 
precision of 0.907 ± 0.017, sensitivity of 0.957 ± 0.006, F1-
Score of 0.931 ± 0.010, and ROC-AUC of 0.933 ± 0.021 of 
another model, as well as the SVM model's accuracy of 
0.730 ± 0.015, balanced accuracy of 0.714 ± 0.015, 
precision of 0.903 ± 0.011, sensitivity of 0.742 ± 0.028, F1-
Score of 0.814 ± 0.014, and ROC-AUC of 0.786 ± 0.017. The 
CatBoost model was succeeded by the XGBoost model, 
which exhibited comparable performance metrics, 
demonstrating commendable classification efficacy with 
an accuracy of 0.963 ± 0.010, precision of 0.969 ± 0.004, 
and ROC-AUC of 0.985 ± 0.007. The CatBoost and XGBoost 
models had excellent precision scores of 0.991 and 0.985, 
respectively. In this instance, false negatives are reduced, 
and all performance indicators exhibit low standard 
deviation values, indicating that the models are 
dependable and consistent. Upon analyzing the model's 
performance for KRAS mutation status it is evident that 
the CatBoost model exhibits superior performance across 
the machine learning measures. The CatBoost model 
exhibited the following metrics: accuracy (0.965 ± 0.015), 
balanced accuracy (0.954 ± 0.021), precision (0.953 ± 
0.024), sensitivity (0.994 ± 0.007), F1-score (0.973 ± 
0.011), and ROC-AUC (0.990 ± 0.005). The accuracy of the 
Random Forest model was 0.879 ± 0.008 (0.878 - 0.879), 
balanced accuracy was 0.839 ± 0.010 (0.839 - 0.840), 
precision was 0.848 ± 0.012 (0.848 - 0.849), precision was 
0.986 ± 0.020 (0.985 - 0.987), F1-score was 0.912 ± 0.007 
(0.911 - 0.912), and ROC-AUC was 0.942 ± 0.008 (0.942 - 
0.942). The performance metrics of the SVM model are as 
follows: accuracy is 0.813 ± 0.024 (0.812 - 0.814), balanced 
accuracy is 0.795 ± 0.018 (0.794 - 0.796), precision is 0.846 
± 0.010 (0.845 - 0.846), sensitivity is 0.863 ± 0.043 (0.861 
- 0.864), F1-score is 0.854 ± 0.022 (0.853 - 0.855), and 
ROC-AUC is 0.847 ± 0.013 (0.847 - 0.848). The XGBoost 
model exhibits an accuracy of 0.951 ± 0.006 (0.950 - 
0.951), a precision of 0.935 ± 0.009 (0.934 - 0.935), and a 
ROC-AUC of 0.982 ± 0.011 (0.981 - 0.982), which closely 
approximates the performance of the CatBoost method. 
Integrating biomedical data with data from images has not 
only improved the prediction accuracy of ML models, but 
also demonstrated strong generalization capabilities 
across different data splits. 
 
Conclusion 

 
The performance metrics of the models were 

evaluated using diverse machine learning methods on 
biomedical pictures of NSCLC patients and associated 

clinical data. Model performance indicators are evaluated 
against the outcomes derived from the integration of 
biological data and image-related factors. The CatBoost 
algorithm demonstrated superior classification 
performance in predicting both EGFR and KRAS mutation 
statuses. 
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