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SUMMARY 

Objective: Preeclampsia (PE) is a disease that characterized by hypertension and proteinuria during pregnancy. 
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites which have vasodilatator, anti-inflammatory and 

profibrinolytic effects. Soluble epoxide hydrolase (sEH; EC 3.3.3.2) catalyses the degradation of EETs to their inactive 

diols (DHETs). Low circulating levels of EETs may be related to high blood pressure in preeclampsia. The aim of this 

study is to determine the level of 11,12-DHETs, a representative metabolite of sEH-mediated metabolism of EET, in 

preeclamptic patients.  

Method: 11,12-DHET levels were measured by ELISA in plasma samples of 75 PE patients and 75 normotensive 

pregnant women as controls.  

Results: It was found that lasma 11,12-DHET levels of PE patients was significantly increased compared to the control 

group (p <0.05).  

Conclusions: These results and our previous findings suggest that high sEH activities in PE patients may cause to 

produce more 11,12-DHETs in PE. sEH enzyme with high catalytic activity may play a role in the pathogenesis of PE 

by contributing to the reduction of vasodilatator, anti-hypertensive and anti-inflammatory effects of EETs by rapid 

degradation of these molecules.  
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ÖZET 

Amaç: Preeklampsi (PE) hamilelik sırasında hipertansiyon ve proteinüri ile karakterize bir hastalıktır. 

Epoksieikozatrienoik asitler (EET) vazodilatatör, antienflamatuar ve profibrinolitik etkiye sahip araşidonik asit 

metabolitleridir. Çözünür epoksit hidrolaz (çEH EC 3.3.3.2) EET’ lerin inaktif diollerine (DHET’ ler) yıkımını 

katalizler. EET’ lerin düşük dolaşım düzeyleri preekalampsideki yüksek kan basıncıyla ilişkili olabilir. Bu çalışmanın 

amacı preeklampsi hastalarında EET’ lerin çEH aracılı metabolizmasının temsili bir metaboliti olan 11,12-DHET 

düzeylerinini belirlenmesidir.  

Yöntem: 75 PE hastası ve control grubu olarak 75 normotansif gebe kadının plazma örnkelerinde 11,12-DHET 

düzeyleri ELISA yöntemi ile ölçüldü. 

Bulgular: PE hastalarının plazma 11,12-DHET düzeylerinin control grubuna kıyasla analmalı olarak yükseldiği 

saptandı. 

Sonuç: Bu sonuçlar ve daha önceki bulgularımız PE hastalarında yüksek çEH aktivitesinin daha fazla 11,12-DHET 
üretimine neden olduğuna işaret etmektedir. Yüksek katalitik aktiviteli çEH enzimi, EET’ lerin hızlı yıkımı yoluyla bu 

moleküllerin vazodilatatör, antihipertansif, antienflamatuar etkilerinin azalmasına katkı sağlayarak PE patogenizinde bir 

rol oynuyor olabilir.  

Anahtar sözcükler: Dihidroksi-ekzoatrienoik asit, Epoksieikozatrienoik asit, Preeklampsi, Çözünür epoksit hidrolaz 
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INTRODUCTION 

Preeclampsia is a pregnancy specific multi-system 
syndrome characterized by the new onset of 
hypertension and proteinuria during the second 
half of pregnancy1. It is the leading cause of 

maternal and fetal mortality and morbidity 
affecting 3-5 % of all pregnancies2,3. Evidence is 
accumulating that women with history of PE may 
have increased risk of cardiovascular diseases 
(CVD) later in life4-6. Although the 
pathophysiological mechanism of PE is unclear, a 
substantial amount of evidence indicates that 

immunological alterations, systemic 
inflammation, endothelial dysfunction and genetic 
factors contribute to the pathogenesis of the 
disease7. Clinical manifestations such as 
hypertension and proteinuria indicate the 
endothelium as the target of the disease8 and it is 
believed that endothelial dysfunction is a hallmark 
of PE9, 10.  

Vascular endothelium releases vasodilatators such 
as nitric oxide (NO), prostacyclin and 

endothelium derived hyperpolarizing factors 
(EDHF) and also vasoconstrictors to regulate 
vascular tone11-13. Endothelial dysfunction, 
characterized by a disrupted balance in the 
production and/or degradation between these 
molecules resulting in higher concentration of 
vasoconstrictors is a major predisposing factor for 

PE14-15. Endothelium-dependent vasodilatation 
mediated by other than prostacyclin and NO has 
been attributed to EDHF that includes 
epoxyeicosatrienoic acids (EETs), hydrogene 
peroxide (H2O2), potassium and probably other 
factors16. Published data provide convincing 
evidence for EETs action as EDHFs in arteries 
from a variety of species including humans17- 24. 

EETs are synthesized from arachidonic acid (AA) 
by CYP 450 epoxigenases localized in endothelial 
and vascular smooth muscle cells. CYP2C and 
CYP2J families of CYP epoxygenases convert 
AA to four biologically active EETs (5, 6-EET, 8, 
9-EET, 11, 12-EET, and 14, 15-EET) that have 
vasoprotective, antihypertensive, 

antiimflammatory and profibrinolytic effects25-27. 
In addition to circulating levels of EETs, they are 
formed in the placenta, trophoblast, amnion, 
chorion, decidua, and myometrium of the gravid 
uterus28-30. Growing evidence suggest that EETs’ 
contribute to the physiological response to normal 
pregnancy and the pathophysiology of pregnancy 

induced hypertension. Jiang et al. reported that 
EETs may modulate systemic and fetoplacental 
hemodynamics in normal and preeclamptic 
pregnancies. Decreased renal EET generation may 
be associated with the hypertension in 

preeclampsia31. Catella et al. showed an increase 
in the biosynthesis of EETs in human pregnancy 
and a further increment in pregnancy induced 
hypertension32. Zhou et al. suggested that EET 

synthesis in the kidney was elevated during 
pregnancy and EETs may contribute to the control 
of blood pressure during pregnancy. Inhibition of 
EET producing enzymes (CYP2C11, 2C23, and 
CYP2J2) by PPOH (an epoxygenase inhibitor) 
caused hypertension in pregnant rats 33.  

 The EETs are hydrated enzymatically to the 
corresponding dihydroxy-eicosatrienoic acids 
(DHETs) by epoxide hydrolases. DHETs are less 

active than EETs and more readily excreted. The 
reaction catalysed by soluble epoxide hydrolase 
(sEH; EC 3.3.3.2) is the main pathway in the 
metabolism of EETs, inhibition of sEH prevents 
EET hydrolysis and prolongs their biological 
activities34. Our previous study including 260 PE 
patients and 260 healthy pregnant women 
revealed that women having more active form 

(K55R) of sEH were more susceptible to develop 
PE suggesting that decreased bioavailability of 
EETs due to the higher degradation rate may play 
a role in development of PE35. In the present 
study, we investigated the association between 
plasma levels of 11, 12 DHET (an EET 
metabolite) and PE. 

MATERIAL AND METHODS 

Study population: This study included 75 
pregnant women with PE  and 75 normotensive 
controls that 20 or more week pregnant without 

cardiovascular diseases and diabetes. PE was 
defined as the new onset of hypertension (systolic 
blood pressure ≥140 mmHg or diastolic blood 
pressure ≥90 mmHg) and either proteinuria 
(Proteinuria ≥0.3 g. in a 24-hour urine specimen 
or protein: creatinine ratio ≥0.3) or end-organ 
dysfunction (platelet 

count <100,000/microliter, serum creatinine 
>1.1 mg/dL or doubling of the serum creatinine, 
elevated serum transaminases to twice normal 
concentration) after 20 weeks of gestation36. 
Pregnant women with baseline hypertension, 
diabetes, cardiovascular diseases, proteinuria, or 
renal diseases were excluded from the study. 

Plasma samples used in this study are blood 
samples taken from the study group of the 
previous study, which has been approved by 
Ethical Committee of Cumhuriyet University in 
Sivas, Turkey (The Decision Number; 2010-
01/09). Informed consent was obtained from all 
patients and the controls. This work was 
supported by the Scientific Research Project Fund 
of Cumhuriyet University (grant number T-551).  

http://europepmc.org/abstract/med/20200774/?whatizit_url=http://europepmc.org/search/?page=1&query=%22preeclampsia%22
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Blood Sampling and Plasma 11, 12 DHET 

Assay: Blood samples of PE patients and the 
controls were collected into sitrat containing 
tubes. The blood samples were centrifuged at 

1900g for 10 min at 4 °C. Plasma samples were 
stored at -20°C until analysed. 11, 12 DHET level 
in plasma was measured using ELISA kit (Eagle 
Biosciences, Inc.) according to manufacturer's 
instructions. The results were expressed as nM 11, 
12 DHET in plasma. 

RESULTS 

The characteristics of the study population were 
presented Table 1. Mean systolic and diastolic 
blood pressures were significantly different 
between patients and controls (p<0.05), although 

no statistically significant difference was observed 
in terms of mean age, gravidity and parity 
(p>0.05).  

 
Table 1. Demographic features of subject 

 

*p<0.05: statistically significant; S: standard deviation; X : Mean; SBP: (systolic blood pressure  ); DBP 
(diastolic blood pressure). 
As can be seen in Table 2 plasma 11,12 DHET levels in PE  patients were significantly higher than controls. 

 

Table 2. Plasma11,12 DHET levels in patients and controls. 

 Patient(n=75)  Median 

(min-max)  

Control (n=75) Median 

(min-max)  

p 

11,12-DHET (nM) 190,2 (8,6-58031,3) 99,7 (14,4-2692,5) 0,001* 

*P<0.05: statistically significant; 11, 12-DHET: 11,12 dihydroxyeicosatrienoicacid. 

 

 

 

 Patient (N=75) Control (N=75) p 

Age±SD ( X ± S) 28.6±7.1 28.1±6.0 0.5900 

Gravida ( X ± S) 2.4 ± 1.8 2.1 ±1.9 0.765 

Parity( X ± S) 1.4±1.4 1.2± 0.8 0.480 

SBP (mmHg; X ± S) 147.4±10.1 116.8±9.1 0.0001* 

DBP (mmHg; X ± S) 98.7 ± 9.4 71.4 ± 7.6 0.0001* 
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DISCUSSION 

EETs are CYP 450 metabolites of AA that have 
vasodilatatory, antihypertensive, antiinflamatory 
properties. It is well established that EETs act as 
an endothelial-derived hyperpolarizing factor. 

Recent evidence suggests an important role for 
EETs in the development and progression of some 
metabolic diseases. A considerable amount of data 
indicates their roles in cardioprotective 
mechanisms. EETs are mainly generated in the 
liver, kidney and vascular endothelium 5. In 
addition to circulating levels of EETs, they are 

formed in the placenta, trophoblast, amnion, 
chorion, decidua, and myometrium of the gravid 
uterus 28-30. Therefore in recent years their 
contribution to physiological response to normal 
pregnancy and the pathophysiology of pregnancy 
induced hypertension is pointed out more 
extensively. EETs are mostly hydrolyzed by sEH 

into DHETs, which circulate in the blood and are 
excreted in the urine4. Here we investigated the 
plasma levels of EET metabolite, 11,12 DHET, in 
preeclampsia patients and healthy pregnant 
women. We found about 2 fold higher levels of 
blood 11,12 DHET in preeclamptic women than 
in healthy pregnant controls. Catella et al.32 found 
increased urinary excretion of 11,12 DHET in 

healthy pregnant women compared with 
nonpregnant female controls and even further 
increase in patients with pregnancy induced 
hypertension. Our results agree with theirs that we 
found higher plasma 11,12 DHET levels in 
preeclampsia patients than normotensive pregnant 
women.    

Jiang et al.31 found increased plasma levels of 
EETs in both preeclamptic and normotensive 
pregnancy compared to nonpregnant women and 

reduced urinary excretion of EETs in the form of 
DHETs in preeclamptic than normotensive 
pregnancy. But we found higher plasma 11,12 
DHET levels in preeclamptic women than 
normotensive pregnants in our study that may 
reflect the systemic rather than intrarenal levels of 
EETs and also 11,12 DHETs. In our view this 

difference is generated by using urine for 
measurement of 11,12 DHET in their study. 
Because intrarenal rather than systemic EETs 
contribute to the level of urinary DHETs31 and 
DHETs could be subject to tubular uptake and 
secretion with the kidney32.    

From our results, one can conclude that DHET 
levels increase in plasma as a result of increased 
plasma EET levels in preeclampsia. Because 
several studies reported enhanced EET formation 

in human pregnancy and a further increase in 

pregnancy induced hypertension31, 32. However we 
bring another point of view to explain the results 
of the present study that increased sEH activity 
may be responsible for the elevated plasma 11,12 

DHETs in preeclampsia compared to 
normotensive pregnancy. sEH is the enzyme that 
converts EETs hydrolytically to DHETs. DHETs 
are generally thought to be inactivation products 
of EETs37, 38.  At least six human sEH variants 
exist in the human population and that at least 
four of these may influence sEH-mediated 

metabolism of endogenous epoxide substrates in 
vivo. K55R polymorphism results in higher 
enzyme activity39 and rapid degradation of EETs 
by this variant of sEH can cause the higher blood 
11,12 DHET levels in PE. An association was 
reported between K55R polymorphism and 
hypertension, stroke40 and CVD41. Minuz et al.42 

found reduced ratio of plasma EETs: DHETs in 
renovascular disease and essential hypertension 
patients compared to control subjects. They 
suggest that this reduction may reflect increased 
sEH activity that will reduce EET levels and, 
thereby, decrease antipressor activity in 
renovascular disease and essential hypertension. 
Because the PE and CVD share many risk factors 

and pathophysiological features43 and EETs 
contribute to the physiological response to normal 
pregnancy and the pathophysiology of pregnancy-
induced hypertension, we think that individual 
differences in EET catabolism rate may be a 
susceptibility factor for PE. Moreover in our 
previous study we reported for the first time that 

increased sEH activity caused by K55R 
polymorphism and /or the promotor 
hypomethylation of the gene encoding sEH 
(EPHX2) was significantly associated with PE35. 
These results together with the results of our 
previous study lead us to conclude that increased 
activity of sEH may result in increased plasma 

11,12 DHET levels in PE and rapid degradation of 
EETs due to attenuation of beneficial effects of 
these molecules (anti-inflammatory, 
vasoprotective and antihypertensive) in pregnancy 
may play a role in development of the disease. 
Further epidemiological and mechanistic studies 
are needed to understand the effect of EET 
metabolism on the development of PE. 
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