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ABSTRACT 

In this study, a multi-criteria data envelopment analysis (MCDEA) model, used in the literature to moderate the 
homogeneity of weights dispersion, is solved using pre-emptive goal programming. The MCDEA model solved 
using pre-emptive goal programming gives the same relative efficiency as the classical DEA model while it 
improves the homogeneity of input-output weights. This conclusion is confirmed by the computational results 
obtained when the two models are applied to a real data set relative to the socio-economic performances of 
European countries and to randomly generated instances with various numbers of decision making units, inputs 
and outputs. 
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1. INTRODUCTION 

Data envelopment analysis (DEA) is a fractional 
mathematical programming technique that was 
developed by Charnes et al [1]. It is used to measure the 
productive efficiency of decision making units (DMUs) 
and evaluate their relative efficiency. It determines the 
productivities of DMUs, specified as the ratio of the 
weighted sum of outputs to the weighted sum of inputs, 
compares them to each other and determines the most 
efficient DMU. DEA obtains the optimal weights for all 
inputs and outputs of each unit without imposing any 
constraint on these weights. While it is an advantage of 
DEA that these weights are free, the assigned weights 
are sometimes unrealistic. The issue of unrealistic 
weights has been investigated by the techniques of 
weights restriction. However, these techniques may 
give infeasible solutions for weights [2–14].  This paper 
addresses the problem of unrealistic weights- not by 
using weights restrictions, but by using pre-emptive 
goal programming. The proposed method gives the 
same relative efficiency values as the classical DEA 
model while improving the homogeneity of input-
output weights, as will be illustrated by the 
computational results. 

 
This paper is organized as follows. In Section 2, the 
basic classical DEA model is given. In Section 3, the 
multi criteria data envelopment analysis (MCDEA) 
model is presented and its formulation as a goal 

program (GPMCDEA) is explained. In Section 4, both 
the classical DEA and the GPMCDEA are applied to a 
real data set relative to the European countries and their 
solutions are compared. In Section 5, the simulation 
data performances of approaches are compared. Lastly, 
in Section 6, a summary of this research and its results 
is provided. 
 
2. DATA ENVELOPMENT ANALYSIS 

DEA evaluates the relative efficiency of homogeneous 
units by considering multiple inputs and outputs. Inputs 
can be resources used by a DMU and outputs can be 
products produced and/or performance measures of the 
DMU. The efficiency is defined as a ratio of the 
weighted sum of outputs to the weighted sum of inputs. 
DEA has been extensively used to compare the 
efficiencies of non-profit and profit organizations such 
as schools, hospitals, shops, bank branches and other 
environments where there are relatively homogeneous 
DMUs [15]. 
 
Assuming that there are n  DMUs, each with m  

inputs and s  outputs, the relative efficiency, ow , of a 
particular DMU o  is obtained by solving the following 
fractional programming problem: 
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where j  is the DMU index, 1,  . . . , j n= ; r  the 

output index, 1,  . . . , r s= ; i  the input index, 

1,  . . . , i m= ; rjy  the value of the thr  output for 

the thj  DMU, ijx  the value of the thi  input for the 
thj  DMU, ru  the weight given to the thr  output; and 

iv  the weight given to the thi  input. In this model, 

DMUo  is efficient if and only if 1ow = . 
 
A DMU is considered individually in determining its 
relative efficiency. This DMU is referred to as the target 
DMU. The target DMU effectively selects weights that 
maximize its output to input ratio, subject to the 
constraints that the output to input ratios of all the n  
DMUs with these weights are 1≤ . A relative 
efficiency score of 1 indicates that the DMU under 
consideration is efficient, whereas a score less than 1 
implies that it is inefficient. 
 
The proposed fractional program can be converted into 
a linear programming problem where the optimal value 
of the objective function indicates the relative efficiency 
of DMU o . The reformulated linear programming 
problem is as follows: 
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In model (2), the weighted sum of the inputs for the 
target DMU is forced to 1, thus allowing for the 
conversion of the fractional programming problem into 
a linear programming problem which can be solved by 
using a commercial linear programming software. 
 

Model (2) can be expressed equivalently in the form 
given by Li and Reeves [16]: 
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where od  is the deviation variable for DMUo  and 

jd  the deviation variable of DMU j . The quantity 

od , which is bounded by the interval ( ]0,1 , can be 

regarded as a measure of inefficiency.  Under model 
(3), DMUo  is efficient if and only if 0od =  or 

1
1

o

s

r r
r

u y
=

=∑ . If DMUo  is not efficient, its 

efficiency score is 1 od− . The smaller the value of 

od , the less inefficient (thus the more efficient) 

DMUo  is. We shall call model (2) or (3) the classical 
DEA model. We say that the classical DEA method 
minimizes DMUo ’s inefficiency, as measured by 

od , under the constraint that the weighted sum of the 
outputs is less than or equal to the weighted sum of the 
inputs for each DMU. 
 
3. MULTIPLE CRITERIA DEA MODEL 

The form of the multiple criteria data envelopment 
analysis (MCDEA) model is not unique; it depends 
upon the efficiency criteria used. A MCDEA problem 
that has the three criteria: minimizing od , the deviation 

of the DMUo, minimizing M , the maximum 

deviation, and minimizing 
1=
∑

n

j
j

d , the sum of the 

deviations, can be modeled as in Li and Reeves [16]: 
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The first objective of model (4) is identical to the 
objective of model (3). The variable M  in the second 
objective represents the maximum quantity among all 
deviation variables , 1,  2,  . . . , =jd j n . The third 

objective function is a straightforward representation of 
the sum of the deviations. The feasible region for the 
decision variables ru  and iv  in model (4) is the same 
as that in model (3). The constraints 

0 , 1,  2, . . . − ≥ =jM d j n , that define the 

maximum deviation M  do not change the decision 
feasible region of decision variables as discussed in 
[16]. There are several solution methods for the 
multiple objective linear programming model (4), such 
as the Steuers’s narrowing cone, the multiple criteria 
simplex method,  compromise programming and goal 
programming [17].  

 
Goal programming is a branch of multiple objective 
programming, also known as multiple-criteria decision 
making (MCDM). It can be thought of as an extension 
of linear programming to handle multiple, normally 
conflicting objective measures. Each of these measures 
is given a goal or target value to be achieved. Unwanted 
deviations from this set of target values are then 
minimised in an achievement function. This function 
can be a vector or a weighted sum dependent on the 
goal programming variant used. As satisfaction of the 
target is deemed to satisfy the decision maker(s), an 
underlying satisficing philosophy is assumed [18]. 
 

The initial goal programming formulations ordered the 
unwanted deviations into a number of priority levels, 
with the minimisation of a deviation in a higher priority 
level being of infinitely more importance than any 
deviations in lower priority levels. This is known as 
lexicographic or pre-emptive goal programming. 
Ignizio [19] gives an algorithm showing how a pre-
emptive goal program can be solved as a series of linear 
programmes. Pre-emptive goal programming should be 

used when there exists a clear priority ordering amongst 
the goals to be achieved.  

 
Thus, pre-emptive goal programming is used in solving 
the multi objectives and assigning priority to objectives 
in model (4). The assignment of priorities to these 
objectives is generally decided by the decision maker 
[18, 19]. The measure of relative efficiency, od , is the 
main objective (since it is an efficiency measure of the 
unit considered); thus the top priority is assigned to it. It 
must be satisfied first, prior to the other two objectives, 
the second priority minimizes the maximum deviation 
and the third priority minimizes the sum of deviations 
(the order of the second and the third priorities may be 
changed).  Therefore, for any DMU, the above 
mentioned MCDEA model can be formulated as a goal 
program (Goal Programming Multiple Criteria Data 
Envelopment Analysis-GPMCDEA) as follows:  

1 1 2 3

1 1
1

2 2
1

1 1

3 3

min  ,  ,   

          1

          1

         0 ,   1,  2,  . . . , 

         0   ,   1,  2,  . . . , 

    

=

=

= =

⎧ ⎫
= + +⎨ ⎬
⎩ ⎭

+ − =

+ − =

− + = =

− + − = =

∑ ∑

∑

∑

∑ ∑

j j
j j

m

i io
i
s

r ro
r

s m

r rj i ij j
r i

j j j

a n p p n d

v x n p

u y n p

u y v x d j n

M d n p j n

1 1 2 2

3 3

     0,     1, 2,  . . . ,
         0,     1, 2,  . . . ,
         0,     1,  2,  . . . , 

         , , , 0
        , 0   ,   1,  2,  . . . , 

≥ =
≥ =
≥ =

≥
≥ =

r

i

j

j j

u r s
v i m
d j n

n p n p
n p j n

        (5) 

where for the DMU under evaluation, 1n  and 1p  are 
the unwanted deviation variables for the goal which 
makes the weighted sum of inputs to unity, 2n  is the 
wanted deviation variable for the goal which makes the 
weighted sum of outputs less than or equal to unity, 2p  
is the unwanted deviation variable for the goal which 
makes the weighted sum of outputs less than or equal to 
unity, 3 jn ’s are the unwanted deviation variables for 

the goal (i.e., 0   ,   1,  2,  . . . , jM d j n− ≥ = ) 

which realizes M  as the maximum deviation, and 

3 jp ’s are the wanted deviation variables for the same 

goal (i.e., 0   ,   1,  2,  . . . , jM d j n− ≥ = ). 
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our second priority is to minimize 3 j
j

n∑ , and under 

the first two priorities our third priority is to minimize 

the sum of deviations (i.e, j
j

d∑ ).    

 
4. AN APPLICATION 

The efficiency and weights dispersion of the classical 
and the goal programming DEA are evaluated using a 
real data set relative to the efficiency of 27 European 

countries.  The set extracted from [20] characterizes 
each country by four inputs and four outputs as 
illustrated in Table 1. The input variables are: 1 jx , the 

unemployment rate, 2 jx , the inflation rate, 3 jx , the 

infant mortality rate (per 1000 new borns), and 4 jx , 

the population (in millions) whereas the output 
variables are: 1 jy , the gross national product by 

purchasing power parity per capita (in 1000 Euros), 

2 jy , the health expenditure per capita (in Euros), 3 jy , 

the percent of gross national product spent on 
education, and 4 jy , the percent of gross national 

product spent on research and development.

 
 
Table 1. The input and output levels for 27 European countries as extracted from [20] 
 

Country j  
1 jx  2 jx  3 jx  4 jx  1 jy  2 jy  3 jy  4 jy  

Belgium 1 8.6 2.4 0.147 10.47 29.0 2081 3.1 1.6 
Germany 2 8.9 1.8 0.123 82.46 27.0 3402 5.1 2.3 
Greece 3 9.3 3.3 0.156 11.08 20.8 1106 3.1 0.5 
Spain 4 8.1 3.6 0.135 43.30 24.0 1215 5.0 0.8 
France 5 9.3 2.0 0.128 62.70 26.3 2957 6.0 2.2 
Ireland 6 4.3 2.9 0.155 4.17 34.1 1430 6.0 1.5 
Italy 7 7.1 2.3 0.138 58.60 24.4 1788 4.9 1.1 
Luxembourg 8 4.6 3.2 0.120 0.45 63.0 2217 4.0 1.6 
Holland 9 3.9 1.6 0.134 16.31 30.9 2271 5.1 1.9 
Austria 10 5.1 1.8 0.121 8.23 30.2 1968 5.4 1.6 
Portugal 11 7.6 2.9 0.154 15.56 17.1 1238 5.8 0.6 
Slovenia 12 6.1 2.5 0.133 2.01 20.5 1054 2.8 0.6 
Finland 13 7.7 1.3 0.101 5.24 27.7 1508 7.5 1.6 
Czech. Rep. 14 7.4 2.5 0.146 10.23 18.7 934 5.1 1.3 
Denmark 15 3.8 2.0 0.220 5.41 30.0 2131 8.1 1.9 
Estonia 16 5.4 4.4 0.263 1.34 15.9 512 2.7 0.6 
Latvia 17 7.4 6.7 0.396 2.30 12.8 487 2.5 0.5 
Lithuania 18 5.9 3.8 0.271 3.41 13.5 687 2.4 0.5 
Hungary 19 7.3 3.9 0.628 10.08 15.6 705 4.6 0.7 
Malta 20 7.0 3.0 0.557 0.40 17.1 878 4.1 0.7 
Poland 21 13.9 1.4 0.378 38.16 12.5 498 7.5 0.6 
Slovakia 22 14.3 4.5 0.627 5.40 14.6 938 4.7 0.8 
Sweden 23 7.3 1.5 0.087 9.03 28.5 1748 8.3 3.8 
England 24 5.3 2.4 0.151 60.21 28.7 3619 5.3 2.4 
Bulgaria 25 8.9 7.0 0.409 7.74 8.4 756 3.1 0.7 
Romania 26 7.6 6.8 0.563 21.62 8.8 678 2.9 0.6 
Turkey 27 9.8 10.2 0.887 72.06 6.9 457 3.2 0.7 
 

Tables 2 and 3 summarize respectively the results of the 
classical and of the preemptive goal programming 
models.  Column 3 displays the efficiency of the 
DMUp, jw . Columns 4-7 report the input weights ijv , 

1,  . . . , 4=i  whereas columns 8-11 tally the output 

weights iju , 1,  . . . , 4=i .  Finally, column 12 

indicates the coefficient of variation jc  of the weights.  

jc , the ratio of sample standard deviation to the 

sample mean, measures the variability of the weights 
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relative to their mean (or average).  It compares the 
relative dispersion in one type of data with the relative 

dispersion in another type of data.  

Table 2. Results of the classical DEA model for the data set relative to 27 European countries 
 

 
Table 2 is characterized by a large number of zero 
weights.  It infers that the second and third input as well 
as the second and fourth outuput were not used to 
evaluate the efficiency of the DMUs.  These resulting 
models are counter-intuitive.  They are invalid from a 
socio-economic context where the inflation rate ( 2 jx ) 

and infant mortality rate ( 3 jx ), as well as the health 

expenditure per capita ( 2 jy ) and percent of gross 

national product spent on research and development 
( 4 jy ) are fundamental indices of the development of a 

country. Table 3, on the other hand, has few zero 
weights.  Some of the weights might be small in 
magnitude, but their inputs and outputs are accounted 
for in the model.  The dispersion of weights given in 
Table 3 is more homogeneous than the dispersion of  
weights given by the classical model and reported in 
Table 2.  Indeed, the comparison of the last column of 
Tables 2 and 3 indicates a smaller coefficient of 
variations for the weights induced by the GPMCDEA 
model than for the weights produced by the classical 
model.  This conclusion is further supported by the 
comparative bar graph displayed in Figure 1, which 
shows that the coefficient of variation of GPMCDEA is 
consistently smaller for all 27 countries than its 
classical model counterpart.  On the other hand, the two 
models yield similar efficiency values for all 27 
countries, as can be deduced from Figure 2. 

 
5. A COMPARISON OF THE METHODS BY 
SIMULATION 

In the preceding section, the results obtained 
undoubtedly applied to one sample.  In this section, the 
performance of the multi-criteria and the classical DEA 
models are compared using randomly generated 
instances, where the performance is measured in terms 
of the homogeneity of weight dispersion; which in turn 
is evaluated by the coefficient of variation of the input 
and output weights. If the coefficient of variation of the 
weights of every DMU j , 1,  . . . , =j n , of 

GPMCDEA is smaller than its counterpart for the 
classical DEA model, then GPMCDEA yields more 
homogeneous weight dispersions; otherwise, the 
classical DEA model yields more homogeneous weight 
dispersions. The computational investigation considers 
randomly generated instances with eight levels of n , 

and five levels for each pair of ( ),m r . For each 

combination of n , and ( ),m r , 10000 random 

instances are generated with the ijx  and rjy , 

1,  . . . , =i m , 1,  . . . , =r s , and  

1,  . . . , =j n , randomly generated from the 
Uniform(0,1000). The instances are solved using 
MATLAB 7. The results are summarized in Table 4, 

Country j  jw  1 jv  2 jv  3 jv  4 jv  1 ju  2 ju  3 ju  4 ju  jc  

Belgium 1 0,812 0 0.201 1.739 0 0 0.0004 0 0 2.35 
Germany 2 1 0.0411 0.352 0 0 0.0044 0.0003 0 0 2.32 
Greece 3 0,365 0 0.081 3.399 0 0 0.0003 0 0 2.59 
Spain 4 0,533 0.086 0 2.215 0 0.0054 0 0.0807 0 2.42 
France 5 0,915 0.0005 0 5.749 0.0041 0 0.0003 0 0 2.64 
Ireland 6 0,938 0.0731 0 3.089 0.0496 0.0026 0 0.1418 0 2.40 
Italy 7 0,628 0.0332 0.1579 2.9091 0 0.0084 0.0002 0.0225 0 2.43 
Luxembourg 8 1 0.2174 0 0 0 0.0065 0.0003 0 0 2.56 
Holland 9 1 0.2360 0.0134 0 0.0036 0.0047 0.0004 0 0 2.40 
Austria 10 1 0 0.3212 1.034 0.0259 0.0039 0.0004 0 0 1.96 
Portugal 11 0,579 0.0878 0 2.1604 0 0 0 0.0999 0 2.40 
Slovenia 12 0,553 0 0.2295 0 0.2120 0 0.0001 0.1768 0 1.30 
Finland 13 1 0.0557 0.4264 0 0.0032 0.0226 0 0.0500 0 1.95 
Czech. Rep. 14 0,532 0.0898 0 2.2996 0 0.0056 0 0.0838 0 2.42 
Denmark 15 1 0 0.111 0 0.1317 0 0 0.1235 0 1.29 
Estonia 16 0,493 0.1420 0 0 0.1741 0 0 0.1829 0 1.30 
Latvia 17 0,315 0.0979 0 0 0.1200 0 0 0.1260 0 1.30 
Lithuania 18 0,306 0.0992 0 0 0.1216 0 0 0.1278 0 1.30 
Hungary 19 0,301 0.0509 0 0 0.0624 0 0 0.0655 0 1.30 
Malta 20 1 0.0193 0.2540 0 0.2571 0.0009 0 0.2401 0 1.23 
Poland 21 0,928 0 0.7143 0 0 0 0 0.1238 0 2.23 
Slovakia 22 0,408 0.0068 0 0.0847 0.0929 0 0 0.0870 0 2.00 
Sweden 23 1 0.0059 0.1201 0 0.0860 0 0 0.0577 0.1371 1.06 
England 24 1 0.1615 0 0 0.0024 0.0029 0.0003 0 0 2.26 
Bulgaria 25 0,217 0.0544 0 0 0.0667 0 0 0.0700 0 1.30 
Romania 26 0,179 0.1316 0 0 0 0 0 0.0617 0 1.87 
Turkey 27 0,153 0.1020 0 0 0 0 0 0.0479 0 1.87 
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which indicates the number of DMUs, n, the number of 
inputs, m, the number of outputs, s, the number of times 
GPMCDEA yields better results than the classical DEA, 
k , and the CPU time(in seconds) of the classical DEA, 

DEAcpu , and of GPMCDEA, GPMCDEAcpu . For 

example, when 15n = , 1=m , and 1=s , the 
weight dispersion GPMCDEA gives more 
homogeneous solutions than the classical DEA model 

9264=k  times out of 10,000 instances; which 
means that the classical DEA model outperforms 
GPMCDEA only on 736 occasions out of the 10,000 
tested instances.  
 
 

 
 

 
Table 3. Results of the preemptive goal programming DEA model for the data set relative to 27 European countries 
 

Country j  jw  1v  2v  3v  4v  1u  2u  3u  4u  c  

Belgium 1 0,810 0.0285 0.171 1.175 0.0167 0.0102 0.0002 0.0154 0.0318 2.09 
Germany 2 1 0.0311 0.119 0.0101 0.0062 0.0082 0.0002 0.0065 0.0301 1.38 
Greece 3 0,359 0.0027 0.081 2.137 0 0.0037 0.0002 0.0234 0.0001 2.49 
Spain 4 0,531 0.0168 0.0198 2.115 0.0117 0.0068 0 0.0707 0.0378 2.42 
France 5 0,911 0.0069 0.0891 2.951 0.0062 0 0.0002 0.0507 0.0151 2.48 
Ireland 6 0,937 0.0937 0 1.876 0.0756 0.0028 0.0001 0.1026 0.0584 2.19 
Italy 7 0,625 0.0332 0.1519 1.504 0.0036 0.0055 0.0002 0.0198 0.0357 2.22 
Luxembourg 8 1 0.1379 0.0858 0.0878 0.1898 0.0014 0.0003 0.0204 0.098 0.81 
Holland 9 1 0.2169 0.0184 0.0083 0.0076 0.0038 0.0003 0.0387 0 1.88 
Austria 10 1 0.0087 0.3212 0.7031 0.0359 0.0048 0.0004 0 0.0398 1.69 
Portugal 11 0,571 0.0981 0.0052 0.9013 0.0064 0.0128 0.0002 0.01047 0.0871 2.06 
Slovenia 12 0,553 0.01089 0.2095 0.0098 0.2012 0.0068 0.0001 0.1092 0 1.25 
Finland 13 1 0.0601 0.3062 0 0.0268 0.0223 0 0.05 0 1.65 
Czech. Rep. 14 0,531 0.0838 0.0387 0.8221 0.0161 0.0039 0.0002 0.0534 0 2.07 
Denmark 15 1 0 0.1058 0.0616 0.1435 0.0039 0.0001 0.0791 0.0188 0.99 
Estonia 16 0,492 0.1021 0.0695 0.0794 0.0865 0.0103 0 0.1231 0.0209 0.69 
Latvia 17 0,315 0.0612 0.0564 0 0.0734 0.0107 0.0001 0.0487 0.0065 0.89 
Lithuania 18 0,305 0.1102 0 0.0854 0.0979 0.0008 0.0002 0.0623 0.0098 0.98 
Hungary 19 0,301 0.0319 0.0412 0.0897 0.0539 0.0078 0.0001 0.0218 0.0055 0.89 
Malta 20 1 0.0193 0.254 0 0.2571 0.0046 0.0001 0.2001 0.0203 1.18 
Poland 21 0,921 0 0.5143 0.7607 0 0.0204 0 0.0802 0.0942 1.47 
Slovakia 22 0,408 0.0141 0 0.2104 0.1235 0.0045 0.0001 0.0523 0 1.43 
Sweden 23 1 0.0019 0.1034 0 0.0926 0.0057 0.0002 0.0134 0.1021 1.16 
England 24 1 0.1015 0.0058 0.0046 0.0075 0.0056 0.0002 0.0067 0.0347 1.53 
Bulgaria 25 0,217 0.0671 0 0.0304 0.0513 0.0187 0 0.0234 0 0.98 
Romania 26 0,173 0.0941 0.0105 0.0069 0.0097 0.0127 0 0.0218 0.0137 1.32 
Turkey 27 0,158 0.0322 0.0178 0.0026 0.007 0.0036 0.0001 0.0244 0.0091 0.89 
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Figure 1.Comparison of the coefficient of variation of the weights for the classical DEA and GPMCDEA models for the 

27 European country data set. 
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Figure 2. The Comparison of the relative efficiency resulting from the classical DEA and GPMCDEA models for the 27  
European country data set. 

 



124 G.U. J. Sci., 20(4):117-125 (2007)/ Hasan BAL, H. Hasan ÖRKÇÜ 
 
Table 4 shows k, the number of times GPMCDEA 
produces more homogeneous weights than the classical 
DEA models in 10,000 replications of each problem 
instance, and the corresponding average CPU times: 

DEAcpu  and GPMCDEAcpu . Each instance is 

characterized by the number of DMUs, n, the number of 
inputs, s, and the number of outputs, m. This table 
shows that GPMCDEA performs better than the 
classical DEA model in more than 88% of the cases and 
reaches 92.64% of the cases for n=15, s=1, and =1.   

 
Table 4. Comparison of the GPMCDEA and the classical models in terms of weighted dispersion and computation time on 

10000 replications of randomly generated instances. 
n  s m  k  DEAcpu  GPMCDEAcpu  

1 1 9264 2.87 4.02 
1 2 9128 2.90 4.03 
2 1 9058 2.89 4.10 
2 2 9067 2.91 4.15 

 
15 

2 3 9214 2.95 4.25 
2 4 9098 3.17 5.68 
3 3 8976 3.12 5.73 
3 4 9087 3.25 5.87 
4 2 9001 3.24 5.71 

 
30 

4 3 9201 3.30 5.90 
3 2 9082 3.82 6.02 
3 3 9000 3.87 6.14 
3 5 8899 4.12 6.21 
4 4 9025 4.15 6.17 

 
45 

4 5 8945 4.28 6.20 
3 2 9148 4.78 7.61 
3 5 9008 4.87 7.58 
4 5 9178 4.76 7.63 
5 5 8938 4.86 7.91 

 
60 

5 6 9002 4.91 7.88 
4 4 9128 4.77 8.05 
2 5 9098 4.81 8.02 
6 5 8888 4.98 8.14 
6 7 9024 4.95 8.26 

 
80 

3 8 9149 5.03 8.17 
4 6 9100 5.10 8.88 
7 5 8983 5.15 8.57 
4 7 8825 5.17 8.64 
5 8 9069 5.21 8.84 

 
100 

7 8 9164 5.19 8.90 
5 7 9000 6.02 10.05 
8 5 8869 5.98 10.35 
8 8 9043 6.24 10.24 
7 10 9029 6.32 10.47 

 
150 

10 9 8814 6.45 10.68 
7 9 9101 7.87 12.68 
8 6 9133 7.91 12.95 

10 10 8992 8.26 12.88 
12 12 8968 8.68 13.04 

 
200 

15 13 9007 8.51 13.51 
 
This better performance is reached at the cost of a 
higher computational time.  However, the increase of 
CPU time is of the order of only few seconds; which 
undoubtedly does not hinder the usefulness of 
GPMCDEA.  Indeed, the largest observed average run 
time is 13.51 seconds, whereas the corresponding 
average run time for the classical model is 8.51 seconds. 
 

6. CONCLUSIONS  

In many instances, classical DEA models yield non-
homogeneous weight dispersion of input and output 
parameters.  Indeed, they yield several input-output 
weights that are zero or that have extreme values which 
imply that the corresponding parameters are not taken 
into account to interpret the efficiency of the decision 
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making units.  This paper overcomes this problem by 
solving a multi-criteria data envelopment analysis 
model using pre-emptive goal programming.  The 
obtained solution improves the dispersion of weights as 
demonstrated by a real case data set and randomly 
generated instances.  The results can be further 
improved if weighted linear goal programming is used 
to balance the weights and reduce the number of 
efficient DMUs. 
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