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ABSTRACT

In this study, a multi-criteria data envelopment analysis (MCDEA) model, used in the literature to moderate the
homogeneity of weights dispersion, is solved using pre-emptive goal programming. The MCDEA model solved
using pre-emptive goal programming gives the same relative efficiency as the classical DEA model while it
improves the homogeneity of input-output weights. This conclusion is confirmed by the computational results
obtained when the two models are applied to a real data set relative to the socio-economic performances of
European countries and to randomly generated instances with various numbers of decision making units, inputs

and outputs.
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1. INTRODUCTION

Data envelopment analysis (DEA) is a fractional
mathematical programming technique that was
developed by Charnes et al [1]. It is used to measure the
productive efficiency of decision making units (DMUs)
and evaluate their relative efficiency. It determines the
productivities of DMUs, specified as the ratio of the
weighted sum of outputs to the weighted sum of inputs,
compares them to each other and determines the most
efficient DMU. DEA obtains the optimal weights for all
inputs and outputs of each unit without imposing any
constraint on these weights. While it is an advantage of
DEA that these weights are free, the assigned weights
are sometimes unrealistic. The issue of unrealistic
weights has been investigated by the techniques of
weights restriction. However, these techniques may
give infeasible solutions for weights [2—14]. This paper
addresses the problem of unrealistic weights- not by
using weights restrictions, but by using pre-emptive
goal programming. The proposed method gives the
same relative efficiency values as the classical DEA
model while improving the homogeneity of input-
output weights, as will be illustrated by the
computational results.

This paper is organized as follows. In Section 2, the
basic classical DEA model is given. In Section 3, the
multi criteria data envelopment analysis (MCDEA)
model is presented and its formulation as a goal
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program (GPMCDEA) is explained. In Section 4, both
the classical DEA and the GPMCDEA are applied to a
real data set relative to the European countries and their
solutions are compared. In Section 5, the simulation
data performances of approaches are compared. Lastly,
in Section 6, a summary of this research and its results
is provided.

2. DATA ENVELOPMENT ANALYSIS

DEA evaluates the relative efficiency of homogeneous
units by considering multiple inputs and outputs. Inputs
can be resources used by a DMU and outputs can be
products produced and/or performance measures of the
DMU. The efficiency is defined as a ratio of the
weighted sum of outputs to the weighted sum of inputs.
DEA has been extensively used to compare the
efficiencies of non-profit and profit organizations such
as schools, hospitals, shops, bank branches and other
environments where there are relatively homogeneous
DMUs [15].

Assuming that there are N DMUs, each with M

inputs and S outputs, the relative efficiency, W, of a

particular DMU O is obtained by solving the following
fractional programming problem:
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(M

where j is the DMU index, j =1, ...,N; T the
output index, =1, ...,S; | the input index,
i = I, ...,m; yrj the value of the I'th output for
the jth DMU, Xij the value of the ith input for the
jth DMU, U, the weight given to the r“‘ output; and

. . sth . .
V; the weight given to the I" input. In this model,
DMU;, is efficient if and only if W, =1.

A DMU is considered individually in determining its
relative efficiency. This DMU is referred to as the target
DMU. The target DMU effectively selects weights that
maximize its output to input ratio, subject to the
constraints that the output to input ratios of all the N

DMUs with these weights are <1. A relative
efficiency score of 1 indicates that the DMU under
consideration is efficient, whereas a score less than 1
implies that it is inefficient.

The proposed fractional program can be converted into
a linear programming problem where the optimal value
of the objective function indicates the relative efficiency
of DMU O. The reformulated linear programming
problem is as follows:

S
W, = Max D Uy,

r=1

. | @

In model (2), the weighted sum of the inputs for the
target DMU is forced to 1, thus allowing for the
conversion of the fractional programming problem into
a linear programming problem which can be solved by
using a commercial linear programming software.

Model (2) can be expressed equivalently in the form
given by Li and Reeves [16]:

r=1

mind, (or max Zurymj
zvi Xio =1 (3)
i1

DUy, - vx+d; =0 j=12,...,n
r=1 i=1

U0, r=12,....5

v,20, i=12,....m
d, >0, j=1,2,...,n

where do is the deviation variable for DNIU0 and

d j the deviation variable of DMU i The quantity

do, which is bounded by the interval (0, 1], can be

regarded as a measure of inefficiency. Under model
3), DMU0 is efficient if and only if d0 =0 or

s
Zuryr =1.1f Dl\/ﬂj0 is not efficient, its
r=1

efficiency score is l—do, The smaller the value of

d

DMUo is. We shall call model (2) or (3) the classical
DEA model. We say that the classical DEA method

minimizes DMUO’S inefficiency, as measured by

o> the less inefficient (thus the more efficient)

d o » under the constraint that the weighted sum of the

outputs is less than or equal to the weighted sum of the
inputs for each DMU.

3.MULTIPLE CRITERIA DEA MODEL

The form of the multiple criteria data envelopment
analysis (MCDEA) model is not unique; it depends
upon the efficiency criteria used. A MCDEA problem

that has the three criteria: minimizing do , the deviation

of the DMUo, minimizing M, the maximum
n

deviation, and minimizing Zdj , the sum of the

j=1
deviations, can be modeled as in Li and Reeves [16]:
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S
min d, (or max Zurymj
r=1

min M
min Zd i
j=1
DX, =1 “
i=1

Zslu,y”.—ivixiﬁdj =0,j=12,...,n
r=1 i=1

M-d;>0 , j=12,...,n
u =0, r=.2,...5
v, 20, i=12,...,m
d; 20, j=12,...,n

The first objective of model (4) is identical to the

objective of model (3). The variable M in the second
objective represents the maximum quantity among all

deviation variables dj, j =1, 2, ..., N.The third

objective function is a straightforward representation of
the sum of the deviations. The feasible region for the

decision variables U, and V; in model (4) is the same
as that in model (3). The constraints
M—deO,j=1, 2,...N, that define the

maximum deviation M do not change the decision
feasible region of decision variables as discussed in
[16]. There are several solution methods for the
multiple objective linear programming model (4), such
as the Steuers’s narrowing cone, the multiple criteria
simplex method, compromise programming and goal
programming [17].

Goal programming is a branch of multiple objective
programming, also known as multiple-criteria decision
making (MCDM). It can be thought of as an extension
of linear programming to handle multiple, normally
conflicting objective measures. Each of these measures
is given a goal or target value to be achieved. Unwanted
deviations from this set of target values are then
minimised in an achievement function. This function
can be a vector or a weighted sum dependent on the
goal programming variant used. As satisfaction of the
target is deemed to satisfy the decision maker(s), an
underlying satisficing philosophy is assumed [18].

The initial goal programming formulations ordered the
unwanted deviations into a number of priority levels,
with the minimisation of a deviation in a higher priority
level being of infinitely more importance than any
deviations in lower priority levels. This is known as
lexicographic or pre-emptive goal programming.
Ignizio [19] gives an algorithm showing how a pre-
emptive goal program can be solved as a series of linear
programmes. Pre-emptive goal programming should be

used when there exists a clear priority ordering amongst
the goals to be achieved.

Thus, pre-emptive goal programming is used in solving
the multi objectives and assigning priority to objectives
in model (4). The assignment of priorities to these
objectives is generally decided by the decision maker

[18, 19]. The measure of relative efficiency, d o> 18 the

main objective (since it is an efficiency measure of the
unit considered); thus the top priority is assigned to it. It
must be satisfied first, prior to the other two objectives,
the second priority minimizes the maximum deviation
and the third priority minimizes the sum of deviations
(the order of the second and the third priorities may be
changed).  Therefore, for any DMU, the above
mentioned MCDEA model can be formulated as a goal
program (Goal Programming Multiple Criteria Data
Envelopment Analysis-GPMCDEA) as follows:

min a:{nl+ P+ P, Znsj’ ZdJ}
j i

zvixio +n—p =1
)

: ©)
Zuryro +n,—p, =1
r=1

S m
Duy—>vx+d; =0, j=1,2,...,n
r=1 i=1

M—dj+n3j_p3j20 > j:l’ 2""’”

u =0, r=12 ...,
v, 20, i=12,...,m
d;20, j=1,2....n
n,p,Nn,p,=0

n3j,p3j20 . j:L 2’.__’n

where for the DMU under evaluation, N, and [, are
the unwanted deviation variables for the goal which
makes the weighted sum of inputs to unity, N, is the
wanted deviation variable for the goal which makes the
weighted sum of outputs less than or equal to unity, P,

is the unwanted deviation variable for the goal which
makes the weighted sum of outputs less than or equal to

unity, Ny j ’s are the unwanted deviation variables for
the goal (i.e, M —dj >0 , j=1, 2, ...,N)

which realizes M as the maximum deviation, and

P;;j ’sare the wanted deviation variables for the same

goal (i.e., M —dj >0 , j=1,2,...,m.
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Whereof our aim is to minimize the sum of unwanted

Py Ge> vx,=1)  and
i=1

deviations n,

P, (equivalently minimizing d0 or maximizing

S
Z:uryro ) in the first priority, under this first priority
r=1
our second priority is to minimize Z n, i and under
i
the first two priorities our third priority is to minimize

the sum of deviations (i.e, Z d j ).
j

4. AN APPLICATION

The efficiency and weights dispersion of the classical
and the goal programming DEA are evaluated using a
real data set relative to the efficiency of 27 European

countries. The set extracted from [20] characterizes
each country by four inputs and four outputs as

illustrated in Table 1. The input variables are: X > the
unemployment rate, X, i the inflation rate, X, i the

infant mortality rate (per 1000 new borns), and X, i
the population (in millions) whereas the output
variables are: y”., the gross national product by
purchasing power parity per capita (in 1000 Euros),
Y, j , the health expenditure per capita (in Euros), Y, i
the percent of gross national product spent on
education, and Y, i the percent of gross national
and development.

product spent on research

Table 1. The input and output levels for 27 European countries as extracted from [20]

Country ] X i Xsj X4 Yij Yaj Y3 Yaj
Belgium 1 8.6 2.4 0.147 10.47 29.0 2081 3.1 1.6
Germany 2 8.9 1.8 0.123 82.46 27.0 3402 5.1 2.3
Greece 3 9.3 33 0.156 11.08 20.8 1106 3.1 0.5
Spain 4 8.1 3.6 0.135 43.30 24.0 1215 5.0 0.8
France 5 9.3 2.0 0.128 62.70 26.3 2957 6.0 2.2
Ireland 6 4.3 2.9 0.155 4.17 34.1 1430 6.0 1.5
Italy 7 7.1 2.3 0.138 58.60 24.4 1788 4.9 1.1
Luxembourg 8 4.6 3.2 0.120 0.45 63.0 2217 4.0 1.6
Holland 9 3.9 1.6 0.134 16.31 30.9 2271 5.1 1.9
Austria 10 5.1 1.8 0.121 8.23 30.2 1968 5.4 1.6
Portugal 11 7.6 2.9 0.154 15.56 17.1 1238 5.8 0.6
Slovenia 12 6.1 2.5 0.133 2.01 20.5 1054 2.8 0.6
Finland 13 7.7 1.3 0.101 5.24 27.7 1508 7.5 1.6
Czech. Rep. 14 7.4 2.5 0.146 10.23 18.7 934 5.1 1.3
Denmark 15 3.8 2.0 0.220 5.41 30.0 2131 8.1 1.9
Estonia 16 5.4 4.4 0.263 1.34 15.9 512 2.7 0.6
Latvia 17 7.4 6.7 0.396 2.30 12.8 487 2.5 0.5
Lithuania 18 5.9 3.8 0.271 3.41 13.5 687 2.4 0.5
Hungary 19 7.3 3.9 0.628 10.08 15.6 705 4.6 0.7
Malta 20 7.0 3.0 0.557 0.40 17.1 878 4.1 0.7
Poland 21 13.9 1.4 0.378 38.16 12.5 498 7.5 0.6
Slovakia 22 14.3 4.5 0.627 5.40 14.6 938 4.7 0.8
Sweden 23 7.3 1.5 0.087 9.03 28.5 1748 8.3 3.8
England 24 5.3 2.4 0.151 60.21 28.7 3619 5.3 2.4
Bulgaria 25 8.9 7.0 0.409 7.74 8.4 756 3.1 0.7
Romania 26 7.6 6.8 0.563 21.62 8.8 678 2.9 0.6
Turkey 27 9.8 10.2 0.887 72.06 6.9 457 3.2 0.7
Tables 2 and 3 summarize respectively the results of the weights uij = I, ...,4. Finally, column 12

classical and of the preemptive goal programming

models. Column 3 displays the efficiency of the

DMUp, Wj . Columns 4-7 report the input weights Vij s

= 1, ... ,4 whereas columns 8-11 tally the output

indicates the coefficient of variation C i of the weights.
C i the ratio of sample standard deviation to the

sample mean, measures the variability of the weights
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relative to their mean (or average).
relative dispersion in one type of data with the relative

Table 2. Results of the classical DEA model for the data set relative to 27 European countries

It compares the

dispersion in another type of data.

121

Country ] Wj Vlj sz V3j V4j ulj U2J- U3j U4j Cj

Belgium 1 0,812 0 0.201 1.739 0 0 0.0004 0 0 2.35
Germany 2 1 0.0411 0.352 0 0 0.0044 0.0003 0 0 2.32
Greece 3 0,365 0 0.081 3.399 0 0 0.0003 0 0 2.59
Spain 4 0,533 0.086 0 2.215 0 0.0054 0 0.0807 0 2.42
France 5 0,915 0.0005 0 5.749 0.0041 0 0.0003 0 0 2.64
Ireland 6 0,938 0.0731 0 3.089 0.0496 0.0026 0 0.1418 0 2.40
Italy 7 0,628 0.0332 0.1579 2.9091 0 0.0084 0.0002 0.0225 0 2.43
Luxembourg 8 1 0.2174 0 0 0 0.0065 0.0003 0 0 2.56
Holland 9 1 0.2360 0.0134 0 0.0036 0.0047 0.0004 0 0 2.40
Austria 10 1 0 0.3212 1.034 0.0259 0.0039 0.0004 0 0 1.96
Portugal 11 0,579 0.0878 0 2.1604 0 0 0 0.0999 0 2.40
Slovenia 12 0,553 0 0.2295 0 0.2120 0 0.0001 0.1768 0 1.30
Finland 13 1 0.0557 0.4264 0 0.0032 0.0226 0 0.0500 0 1.95
Czech. Rep. 14 0,532 0.0898 0 2.2996 0 0.0056 0 0.0838 0 2.42
Denmark 15 1 0 0.111 0 0.1317 0 0 0.1235 0 1.29
Estonia 16 0,493 0.1420 0 0 0.1741 0 0 0.1829 0 1.30
Latvia 17 0,315 0.0979 0 0 0.1200 0 0 0.1260 0 1.30
Lithuania 18 0,306 0.0992 0 0 0.1216 0 0 0.1278 0 1.30
Hungary 19 0,301 0.0509 0 0 0.0624 0 0 0.0655 0 1.30
Malta 20 1 0.0193 0.2540 0 0.2571 0.0009 0 0.2401 0 1.23
Poland 21 0,928 0 0.7143 0 0 0 0 0.1238 0 2.23
Slovakia 22 0,408 0.0068 0 0.0847 0.0929 0 0 0.0870 0 2.00
Sweden 23 1 0.0059 0.1201 0 0.0860 0 0 0.0577 0.1371 1.06
England 24 1 0.1615 0 0 0.0024 0.0029 0.0003 0 0 2.26
Bulgaria 25 0,217 0.0544 0 0 0.0667 0 0 0.0700 0 1.30
Romania 26 0,179 0.1316 0 0 0 0 0 0.0617 0 1.87
Turkey 27 0,153 0.1020 0 0 0 0 0 0.0479 0 1.87

Table 2 is characterized by a large number of zero
weights. It infers that the second and third input as well
as the second and fourth outuput were not used to
evaluate the efficiency of the DMUs. These resulting
models are counter-intuitive. They are invalid from a

socio-economic context where the inflation rate ( X, i )
and infant mortality rate ( X, j ), as well as the health

expenditure per capita (Y, j) and percent of gross
national product spent on research and development
(Yy j ) are fundamental indices of the development of a

country. Table 3, on the other hand, has few zero
weights. Some of the weights might be small in
magnitude, but their inputs and outputs are accounted
for in the model. The dispersion of weights given in
Table 3 is more homogeneous than the dispersion of
weights given by the classical model and reported in
Table 2. Indeed, the comparison of the last column of
Tables 2 and 3 indicates a smaller coefficient of
variations for the weights induced by the GPMCDEA
model than for the weights produced by the classical
model. This conclusion is further supported by the
comparative bar graph displayed in Figure 1, which
shows that the coefficient of variation of GPMCDEA is
consistently smaller for all 27 countries than its
classical model counterpart. On the other hand, the two
models yield similar efficiency values for all 27
countries, as can be deduced from Figure 2.

5. A COMPARISON OF THE METHODS BY
SIMULATION

In the preceding section, the results obtained
undoubtedly applied to one sample. In this section, the
performance of the multi-criteria and the classical DEA
models are compared using randomly generated
instances, where the performance is measured in terms
of the homogeneity of weight dispersion; which in turn
is evaluated by the coefficient of variation of the input
and output weights. If the coefficient of variation of the

weights of every DMU;, j=1...,n, of

GPMCDEA is smaller than its counterpart for the
classical DEA model, then GPMCDEA yields more
homogeneous weight dispersions; otherwise, the
classical DEA model yields more homogeneous weight
dispersions. The computational investigation considers
randomly generated instances with eight levels of N,

and five levels for each pair of (m, r). For each
combination of N, and (m,r), 10000 random

instances are generated with the Xij and y”.,
i=1...,m,
j=L ...,n,

Uniform(0,1000). The instances are solved using
MATLAB 7. The results are summarized in Table 4,

r=1,...,s, and

randomly generated from the
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which indicates the number of DMUs, n, the number of
inputs, m, the number of outputs, S, the number of times
GPMCDEA yields better results than the classical DEA,

K , and the CPU time(in seconds) of the classical DEA,
CPUpen s and of GPMCDEA, CPUgpycpea- For
example, when N=15, M=1, and S=1, the

weight  dispersion ~ GPMCDEA  gives  more
homogeneous solutions than the classical DEA model

k=9264 times out of 10,000 instances; which
means that the classical DEA model outperforms
GPMCDEA only on 736 occasions out of the 10,000
tested instances.

Table 3. Results of the preemptive goal programming DEA model for the data set relative to 27 European countries

Country bW, v, v, v, v, u, u, u, u, | ¢

Belgium I | 0810 | 00285 | 0.171 | 1.175 | 0.0167 | 0.0102 | 0.0002 | 0.0154 | 0.0318 | 2.09
Germany 2 I | 0.031T | 0.119 | 0.0101 | 0.0062 | 0.0082 | 0.0002 | 0.0065 | 0.0301 | 138
Greece 3 | 0359 | 00027 | 0.081 | 2137 | 0 | 0.0037 | 0.0002 | 0.0234 | 0.0001 | 2.49
Spain 4 | 0,531 | 0.0168 | 0.0198 | 2.115 | 0.0117 | 0.0068 | 0 | 0.0707 | 0.0378 | 2.42
France 5 | 0911 | 0.0069 | 0.0891 | 2.951 | 0.0062 | 0 | 0.0002 | 0.0507 | 0.0151 | 2.48
Treland 6 | 0937 | 00937 | 0 | 1876 | 0-0756 | 0.0028 | 0.0001 | 0.1026 | 0.0584 | 519
Ttaly 7 | 0,625 | 0.0332 | 0.1519 | 1.504 | 0.0036 | 0.0055 | 0.0002 | 0.0198 | 0.0357 | 2.22
Luxembourg | 8 I [ 0.1379 | 0.0858 | 00878 | 0.1898 | 0.0014 | 0.0003 | 0.0204 | 0.098 | 081
Holland 9 I | 02169 | 0.0184 | 0.0083 | 0.0076 | 0.0038 | 0.0003 | 0.0387 | 0 | 1.88
Austria 10 | 1T | 00087 | 03212 | 07031 | 0-0359 | 0.0048 | 0.0004 | 0 | 0.0398 | | 69
Portugal 1T | 0,571 | 0.0981 | 0.0052 | 0.9013 | 0.0064 | 0.0128 | 0.0002 | 0.01047 | 0.0871 | 2.06
Slovenia 12| 0,553 | 0.01089 | 0.2095 | 00098 | 0-2012 | 0.0068 | 0.0001 | 0.1092 | 0 | 125
Finland 13 1 | 00601 |03062] 0 |0.0268]00223| 0 0.05 0 | 165
Czech.Rep. | 14 | 0,531 | 0.0838 | 0.0387 | 0.8221 | 0.0161 | 0.0039 | 0.0002 | 0.0534 | 0 | 207
Denmark 15 | 1 0 | 0.1058 | 0.0616 | 0.1435 | 0.0039 | 0.0001 | 0.0791 | 0.0188 | 0.99
Estonia 16 | 0492 | 0.1021 | 0.0695 | 0.0794 | 0.0865 | 0.0103 | 0 | 0.1231 | 0.0209 | 0.69
Latvia 17 | 0315 | 0.0612 | 0.0564 | o | 0.0734 | 0.0107 | 0.0001 | 0.0487 | 0.0065 | .89
Lithuania 18 | 0305 | 0.1102 | 0 | 0.0854 | 0.0979 | 0.0008 | 0.0002 | 0.0623 | 0.0098 | 0.98
Hungary 19 [ 0,301 | 0.0319 | 0.0412 [ 0.0897 | 0.0539 | 0.0078 | 0.0001 | 0.0218 | 0.0055 | .89
Malta 20 | 1| 00193 | 0254 | 0 | 02571 | 0.0046 | 0.0001 | 0.2001 | 0.0203 | 1.18
Poland 21 | 0921 0 | 0514307607 | 0 |00204| 0 | 0.0802 | 0.0942 | |47
Slovakia 22 | 0408 | 0.0141 | 0 | 0.2104 | 0.1235 | 0.0045 | 0.0001 | 0.0523 | 0 | 143
Sweden 23| 1 [ 00019 [0.1034 | ¢ | 0.0926 | 0.0057 | 0.0002 | 0.0134 | 0.1021 | | 16
England 24 | 1 | 01015 | 0.0058 | 0.0046 | 0.0075 | 0.0056 | 0.0002 | 0.0067 | 0.0347 | 153
Bulgaria 25 [ 0217 | 0.0671 | 0 | 0.0304 | 0.0513 | 00187 | 0 | 0.0234 | 0 | o8
Romania 26 | 0,173 | 0.0941 | 0.0105 | 0.0069 | 0.0097 | 0.0127 | 0 | 0.0218 | 0.0137 | 1.32
Turkey 27 | 0,158 | 0.0322 | 0.0178 | 0.0026 | 0.007 | 0.0036 | 0.0001 | 0.0244 | 0.0091 | (.89
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Figure 1.Comparison of the coefficient of variation of the weights for the classical DEA and GPMCDEA models for the
27 European country data set.
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Figure 2. The Comparison of the relative efficiency resulting from the classical DEA and GPMCDEA models for the 27
European country data set.
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Table 4 shows k, the number of times GPMCDEA
produces more homogeneous weights than the classical
DEA models in 10,000 replications of each problem
instance, and the corresponding average CPU times:

CPUpg, and  CPUgpycpea- Each  instance  is

characterized by the number of DMUs, n, the number of
inputs, S, and the number of outputs, m. This table
shows that GPMCDEA performs better than the
classical DEA model in more than 88% of the cases and
reaches 92.64% of the cases for n=15, s=1, and =1.

Table 4. Comparison of the GPMCDEA and the classical models in terms of weighted dispersion and computation time on

10000 replications of randomly generated instances.

n ° m k CpuDEA CpuGPMCDEA

1 1 9264 2.87 4.02

15 1 2 9128 2.90 4.03
2 1 9058 2.89 4.10

2 2 9067 2.91 4.15

2 3 9214 2.95 425

2 4 9098 3.17 5.68

30 3 3 8976 3.12 5.73
3 4 9087 3.25 5.87

4 2 9001 3.24 5.71

4 3 9201 3.30 5.90

3 2 9082 3.82 6.02

45 3 3 9000 3.87 6.14
3 5 3899 412 6.21

4 4 9025 4.15 6.17

4 5 8945 428 6.20

3 2 9148 478 7.61

60 3 5 9008 4.87 7.58
4 5 9178 4.76 7.63

5 5 8938 4.86 7.91

5 6 9002 491 7.88

4 4 9128 477 8.05

80 2 5 9098 481 8.02
6 5 3888 4.98 8.14

6 7 9024 495 8.26

3 8 9149 5.03 8.17

4 6 9100 5.10 3.88

100 7 5 8983 5.15 8.57
4 7 8825 5.17 3.64

5 8 9069 521 8.84

7 3 9164 5.19 8.90

5 7 9000 6.02 10.05

150 8 5 8869 5.98 10.35
8 8 9043 6.24 10.24

7 10 9029 6.32 10.47

10 9 3814 6.45 10.68

7 9 9101 7.87 12.68

200 8 6 9133 791 12.95
10 10 8992 8.26 12.88

12 12 8968 8.68 13.04

15 13 9007 8.51 13.51

This better performance is reached at the cost of a
higher computational time. However, the increase of
CPU time is of the order of only few seconds; which
undoubtedly does not hinder the usefulness of
GPMCDEA. Indeed, the largest observed average run
time is 13.51 seconds, whereas the corresponding
average run time for the classical model is 8.51 seconds.

6. CONCLUSIONS

In many instances, classical DEA models yield non-
homogeneous weight dispersion of input and output
parameters. Indeed, they yield several input-output
weights that are zero or that have extreme values which
imply that the corresponding parameters are not taken
into account to interpret the efficiency of the decision
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making units. This paper overcomes this problem by
solving a multi-criteria data envelopment analysis
model using pre-emptive goal programming. The
obtained solution improves the dispersion of weights as
demonstrated by a real case data set and randomly
generated instances.  The results can be further
improved if weighted linear goal programming is used
to balance the weights and reduce the number of
efficient DMUs.
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