<u>Gazi University Journal of Science</u> GU J Sci 25(1):107-117 (2012)

ORIGINAL ARTICLE

A New Approach To Cross Efficiency In Data Envelopment Analysis and Performance Evaluation of Turkey Cities

H.Hasan ÖRKCÜ^{1,♠}, Hasan BAL¹

¹Gazi University, Science Faculty, Department of Statistics, 06500, Ankara, TURKEY

Received: 09.03.2011 Accepted: 14.04.2011

ABSTRACT

The cross-efficiency evaluation (CEE) method, which was developed as a contribution to classical Data Envelopment Analysis (DEA), has been successively used to solve problems involving unrealistic weight distribution as well as problems that do not require prior information for ranking the decision making units (DMUs). Originally, the CEE method included the efficiency evaluations that were obtained for a DMU by the classical DEA for the reuse of optimal weights in the other DMUs. As the optimal weights in the classical DEA solutions usually have multiple solutions, this reduces the usefulness of the CEE method. Hence, this study suggests a new technique that could be used in the second stage of the CEE method for removing the problem of multiple optimal weights and for determining the reasonable ranks of DMUs. The performance of the proposed model is examined on real data set relative to the efficiencies of Turkey cities.

Key Words: Data envelopment analysis, cross efficiency, ranking.

1. INTRODUCTION

Data Envelopment Analysis (DEA) is a nonparametric efficiency method that was first developed by Charnes et al. [7] with the purpose of measuring the relative efficiencies of similar economical DMUs for the goods and services produced. This method is characterized by the following properties: it describes the inefficiency amount and sources for each DMU; it does not put forward any functional assumption on the variables; and it has relative evaluated efficiencies (since the efficiency for each DMU is computed with respect to the other

DMUs). Thus far, the DEA method has been widely applied in various areas and is being developed further through interaction with various techniques. In fact, DEA seems to be the most popular approximation that has gained rapid development and widespread applications, particularly in the areas of operations research and management science. However, the improvements made to the DEA technique have resulted in several new problems [1, 15]. These problems are interdependent and have been known for a long time, for example, the issue

^{*}Corresponding author, e-mail: hhorkcu@gazi.edu.tr.

of unrealistic weights distribution, the weak discrimination power, and having multiple optimal solutions to weights for efficient DMUs.

The problem of unrealistic weight distribution for DEA occurs when some DMUs are rated as efficient owing to input and output weights having extreme or zero values [4, 5, 6, 12, 17]. Moreover, having multiple optimal solutions to weights affects to a great extent the consistency of operations related to weights cross efficiency method is the most frequently studied topic in DEA literature. The problem of unrealistic weight distribution is dealt with using techniques of weight restriction. Besides, the case having multiple solutions to weights has an effect on the other two problems (unrealistic weights distribution and the weak discrimination power). In this way, the issues are interdependent. The problem of having multiple solutions to optimal weights occurs specifically in the cross efficiency method wherein the efficiencies of DMUs are evaluated by means of optimal weights of any given DMU.

On the other hand, the problem of weak discrimination power or the lack of discrimination power appears in the case where the number of DMUs under evaluation is insufficient in comparison with the total number of inputs and outputs. For the classical DEA models, this situation often results in the solutions determining several DMUs as efficient. To arrive at a solution for this problem of DEA, the models of super efficiency and cross efficiency approaches have been developed [2, 6, 11]. For all efficient DMUs, the super efficiency concept has been proposed when the number of efficient DMUs is more than one. Andersen and Petersen [2] introduced one of the super efficiency models for ranking efficient DMUs in DEA. Their method enables an extreme efficient unit o to achieve an efficiency score greater than one by removing the p^{th} constraint in the envelopment linear programming formulation.

Sexton et al. [16] developed the cross efficiency method to rate the DMUs. Their technique made use of the cross evaluation scores computed as related to all DMUs and hence identified the best DMUs [3]. The basic idea of cross evaluation is to use DEA as machinery in peer evaluation rather than self evaluation. Peer evaluation refers to the assigned score for each DMU that is obtained using the optimal weights of other DMUs. The advantages of the cross efficiency method include the ability to rate DMUs and the capability of being a useful tool without the need of any expert opinion or prerequisites to solve unenviable cases such as multiple solutions and solutions with extreme or zero values for the weights in DEA.

Despite the extensive use of the cross efficiency method, it has some limitations arising from the classical DEA. Doyle and Green [11] stated that the non-uniqueness, i.e., having multiple solutions to optimal weights in DEA, decreases the usefulness of the cross efficiency method. Sexton et al. [16] and Doyle and Green [11] recommended the use of a secondary objective (model) for the cross efficiency evaluation related to the nonuniqueness of optimal weights in DEA. They proposed the aggressive and benevolent models for achieving the secondary objective. The basic idea in the benevolent approach is to obtain the set of optimal weights maximizing not only the efficiency of a DMU under evaluation but also the average efficiency of other DMUs. On the contrary, the aggressive models are focused on searching for the set of optimal weights minimizing the average efficiency of other DMUs. Recently, Liang et al. [14] made some new suggestions for the second stage in cross efficiency evaluation. Their suggestions are comprised of three different models: the minimization of deviations from the ideal point (the minsum efficiency); the minimization of maximum inefficiency amount (the minmax efficiency); and the minimization of absolute deviations from the average efficiency. The first two models are used in the multicriteria DEA approach proposed by Li and Reeves [13] for dealing with the problems of ranking the units as well as unrealistic weight distribution.

This study is aimed at presenting an alternative suggestion for the approaches used in cross efficiency evaluation and determining the reasonable ranks of DMUs. In the proposed model the input and output components are respectively approximated to the weighted input and weighted output sums in order to provide reasonable ranking. The performance of the proposed model is examined on real data set relative to the efficiencies of Turkey cities.

This article is organized as follows. In Section 2, the basic DEA model and the related concepts are introduced. In Section 3, the cross efficiency method is presented and its aggressive formulation is explained. In Section 4, the model in which the input and output components are respectively approximated to the weighted input and weighted sums is presented for the second stage of cross efficiency evaluation. In Section 5, the basic CCR model, super efficiency method, the aggressive cross efficiency evaluation are applied to real data set relative to the efficiencies of Turkey cities and their solutions are compared. Lastly, in Section 6, a summary of the research and the results are provided.

2. DATA ENVELOPMENT ANALYSIS

Data Envelopment Analysis (DEA) is a mathematical programming approach that utilizes multiple inputs and outputs to measure the relative efficiencies within a group of decision making units (DMUs). In DEA, it is assumed that there are *n* DMUs to be evaluated in terms of *m* inputs and *s* outputs. Let x_{ij} (i = 1, ..., m) and y_{rj} (r = 1, ..., s) represent the input and output values of DMU_j (j = 1, ..., n), respectively. Subsequently, the efficiency of DMU_p can be calculated as

$$\theta_{p} = \frac{\sum_{i=1}^{3} u_{r} y_{rp}}{\sum_{i=1}^{m} v_{i} x_{ip}}$$
(1)

(2)

where, v_i (i = 1, ..., m) and u_r (r = 1, ..., s) are the input and output weights assigned to i^{th} input and r^{th} output, respectively. Charnes et al. [7]

$$\max \theta_p = \frac{\sum_{\substack{r=1\\r=1}}^{s} u_r y_{rp}}{\sum_{\substack{i=1\\r=1}}^{m} v_i x_{ip}}$$
s.t.
$$\frac{\sum_{\substack{r=1\\r=1}}^{s} u_r y_{rj}}{\sum_{\substack{i=1\\r=1}}^{m} v_i x_{ij}} \le 1,$$
$$j = 1, 2, \dots, n$$

established a model as

$$u_r \ge 0$$
, $r = 1, \dots, s$
 $v_i \ge 0$, $i = 1, \dots, m$

where, DMU_p refers to the DMU under evaluation. This fractional program, well known as the CCR model, can be converted into a linear programming problem wherein the optimal value of the objective function indicates the relative efficiency of DMU_p . Hence, the reformulated linear programming problem can be defined as follows:

$$\max \ \theta_{p} = \sum_{r=1}^{s} u_{r} y_{rp}$$
s.t.

$$\sum_{i=1}^{m} v_{i} x_{ip} = 1$$
(3)

$$\sum_{r=1}^{s} u_{r} y_{rj} - \sum_{i=1}^{m} v_{i} x_{ij} \le 0,$$
 $j = 1, 2, ..., n$
 $u_{r} \ge 0,$
 $r = 1, ..., s$
 $v_{i} \ge 0,$
 $i = 1, ..., m$

In the above-mentioned models, DMU_p is considered to be efficient if and only if $\theta_p^* = 1$; otherwise, it is referred to as non-efficient.

3. CROSS EFFICIENCY EVALUATION

The cross efficiency method was developed as a DEA extension tool to be utilized for identifying the best performing DMUs and for ranking DMUs using cross efficiency scores that are linked to all DMUs [3]. The basic idea of the cross efficiency method that alleviates the weak discrimination of the classical DEA model can be explained in two stages: In the first stage, the classical DEA analysis is performed and the optimal weights of inputs and outputs are calculated for each DMU. However, the optimal weights computed by classical DEA have multiple solutions especially for the efficient DMUs and these solutions provide unrealistic weights, i.e., weights with extreme or zero values. In the second stage, these drawbacks are reduced and a suitable set of weights preserving the efficiency values obtained by DEA is selected for each DMU.

In the first stage, the optimal weights of inputs and outputs are calculated for each DMU using the classical DEA formulation. Given the results of the first stage, the weights used by the DMU can be utilized for calculating the peer rated efficiency for each of the other DMUs. The peer evaluation score, $\theta_{p,j}$, indicates the efficiency score for DMU_j using the weights obtained by DMU_p [16].

$$\theta_{p,j} = \frac{\sum_{i=1}^{s} u_{r,p} y_{rj}}{\sum_{i=1}^{m} v_{i,p} x_{ij}}$$
(4)

In general, the optimal weights obtained using classical DEA in the first stage are multiple solutions. Therefore, the values $\theta_{p,i}$ will change depending on these values in the second stage. To reduce this undesirable case, there are some model suggestions for preserving the self efficiency scores, $\theta_{p,p}$, obtained for each DMU. The one so-called aggressive efficiency model developed by Sexton et al. [16] and extended by Doyle and Green [11] is given in (5) below. In this approach, an attempt is made to minimize the efficiencies of other DMUs while preserving the efficiency of the DMU under evaluation. Contrary to this, in the benevolent approach, an attempt is made to maximize the efficiencies of other DMUs. Since the discrimination of DMUs is an important problem in DEA, the aggressive model seems more beneficial when compared to the benevolent model in respect of the discrimination problem.

$$\min \sum_{r=1}^{s} \left(u_{rp} \sum_{j=1; j \neq p}^{n} y_{rj} \right)$$

s.t.

min

$$\sum_{i=1}^{m} \left(v_{ip} \sum_{j=1; j \neq p}^{n} x_{ij} \right) = 1$$
(5)
$$\sum_{r=1}^{s} u_{r} y_{rj} - \sum_{i=1}^{m} v_{i} x_{ij} \leq 0, \quad j = 1, \dots, n; \quad j \neq p$$

$$\sum_{r=1}^{s} u_{r} y_{rp} - \theta_{p,p} \sum_{i=1}^{m} v_{i} x_{ip} = 0$$

$$u_{r} \geq 0, \quad r = 1, \dots, s$$

$$v_{i} \geq 0, \quad i = 1, \dots, m$$

The second stage is repeated for each DMU_p; p = 1, ..., n. The weights $u_{r,p}$ and $v_{i,p}$ obtained from *model* (5) are used in computing the score $\theta_{p,j}$ for DMU_j through equality (4). Following the computation of all the cross evaluation scores, the cross efficiency score for DMU_k is derived using the method proposed by Anderson et al. [3] as follows:

$$CE_{k} = \frac{\sum_{j=1}^{n} \theta_{j,k}}{n}.$$
(6)

4. APPROXIMATING THE INPUT AND OUTPUT COMPONENTS TO WEIGHTED INPUT AND OUTPUT SUM

It is known that the optimal weights in the classical DEA, especially the optimal weights obtained for the efficient units, are multiple optimal. In addition, in the case wherein the values of an output (input) variable are greater than the values of other output (input) variables, the weight assigned to this output (input) generally becomes zero or very near zero. In this way, a variable that is capable of affecting the performance of a DMU makes no (ability of) contribution to the efficiency of the DMU under evaluation. This drawback can be eliminated by giving importance to each input and each output in proportion to their respective greatness.

The proposed approach is aimed at approximating each weighted output (input) component to weighted output (input) sum in order to contribute to the efficiency account of each output component in proportion to the output (input) values, i.e., to the extent of their greatness or smallness. It is also aimed at obtaining weights that are more appropriate when compared to those obtained by the classical DEA model. In the second stage of cross evaluation, a model is presented (8) in which the classical DEA efficiency scores for each unit are preserved and more appropriate optimal weight values are selected for the units for which the optimal weights obtained by classical DEA in the first stage possibly have multiple and inappropriate solutions.

$$w_{p} = z_{p}$$

s.t.

$$\sum_{r=1}^{s} u_{r} y_{rp} = \theta_{p}^{*}$$

$$\sum_{i=1}^{m} v_{i} x_{ip} = 1$$
(8)

$$\sum_{r=1}^{s} u_{r} y_{rj} - \sum_{i=1}^{m} v_{i} x_{ij} \le 0, j = 1, 2, ..., n$$

$$\sum_{r=1}^{s} u_{r} y_{rp} - u_{r} y_{rp} \le z_{p}, r = 1, 2, ..., s$$

$$\sum_{i=1}^{m} v_{i} x_{ip} - v_{i} x_{ip} \le z_{p}, i = 1, 2, ..., m$$

$$u_{r} \ge 0, \qquad r = 1, 2, ..., s$$

$$v_{i} \ge 0, \qquad i = 1, 2, ..., m$$

$$z_{p} \ge 0$$

where, θ_p^* is the efficiency value for DMU_p obtained from the classical DEA given in (3). The z_p variable in the model symbolizes the maximum deviation from the weighted output sum and the weighted input sum for the output component and the input component, respectively.

The new approach is similar to the Cooper et al. model [8, 9]. Cooper et al. [8, 9] proposed a two-step procedure that could be used for the selection of the weights from the alternative optimal solution set. The two-step procedure proposed for the selection of weights is based on two general criteria of selection and is implemented by means of two mixed integer linear programming problems. In this procedure, based on the weights chosen in the first step, those weights are selected in the second step which maximize the relative value of the variable with the minimum value for the corresponding "virtual"

input or output that is represented by $V_i X_{ip}$ and $u_r Y_{rp}$.

In the second step of the Cooper et al. model, those weights are determined that have associated programs of performance in which the inputs and outputs globally maximize their relative "importance". For a detailed discussion about the relative importance, consider the following references [8, 9, 10, 18].

5. A REAL-WORLD APPLICATION: *EFFICIENCY* EVALUATION OF TURKEY CITIES

The ranking values of the proposed *model (8)*, super efficiency method and the aggressive cross efficiency were evaluated using a real data set relative to the efficiency of 81 Turkey cities. The set extracted from [19] characterizes each country by four inputs and seventeen outputs as illustrated in *Appendix A*. The output and input variables are provided in Table 1.

The classical DEA (CCR model) efficiency scores, super efficiency scores, aggressive cross efficiency scores, and cross efficiency scores obtained using *model* (8), as well as the rank values of cities (DMUs) obtained using these models for each DMU are given in Table 2.

Owing to the structure of objective functions for the proposed models, normalized data obtained by dividing each input-output with their highest value are used.

The results are shown in Table 2. In the table, column 3 displays the rank of cities obtained from SPO (State Planning Organization) by means of some multivariate statistical methods. The SPO is headed by an undersecretary in Turkey. It is comprised of eight

departments: economic planning, social planning, coordination, and priority regional development, relations with the European Union, credit allocation, foreign capital investment, and evaluation of yearly programs. The main duties of the SPO are to advise the government in determining economic, social, and cultural policies, as well as targets of the country and to prepare development plans and annual programs that conform to the targets determined by the government. From the socio-economic, cultural, industry, tourism, and trade points of view, the most prominent cities in Turkey are İstanbul, Ankara, İzmir, Bursa, Kocaeli, Eskişehir, Yalova, Adana, and Antalya. The SPO calculations have assigned the best ranking values to these cities.

Table 1. The output and input variables.

Outputs:
y_1 : Urbanization rate, 2003
y_2 : The ratio of employment in agriculture sector to total employment, 2003
y_3 : The ratio of employment in industry sector to total employment, 2003
y_4 : The ratio of employment in trade sector to total employment, 2003
y_5 : The ratio of paid workers to total employment, 2003
y_6 : The ratio of paid women workers to total employment, 2003
y_7 : The ratio of employers to total employment, 2003
y_8 : The ratio of literate population, 2003
y_9 : Number of doctors per ten thousand people, 2003
y_{10} : Number of hospital beds per ten thousand people, 2003
y_{11} : Agricultural production value, 2003
y_{12} : The ratio of gross domestic product of country to total gross domestic product, 2003
y_{13} : Gross domestic product in per capita, 2003
y_{14} : Number of banks, 2003
y_{15} : The total population receiving adequate drinking water, 2003
y_{16} : Number of private cars per ten thousand people, 2003
y_{17} : Electricity consumption amount per capita, 2003
Inputs:
X_1 : Infant mortality, 2003
X_2 : Municipal expenditures per capita, 2000
X_3 : Public investment amount per capita, 2000
X_4 : Number of people having free health card, 2003

Table 2. Turkey cities results.

				CCR S	Super Effi	ciency	CCR Agg	ressive Cross	Proposed Model (8)				
No	Cities (DMUs)	Rank based SPO	CCR Eff.	Eff.	Rank	diff	Eff.	Rank	diff	Eff.	Rank	diff.	
1	Adana	8	1	1.465	12	4	0.572	39	31	0.701	5	3	
2	Adıyaman	65	1	1.131	41	24	0.639	21	44	0.248	63	2	
3	Afyon	44	0.917	0.917	67	23	0.562	43	1	0.345	42	2	
4	Ağrı	80	1	1.385	16	64	0.560	44	36	0.152	80	0	
5	Amasya	39	0.814	0.814	78	39	0.507	58	19	0.401	37	2	
6	Ankara	2	1	1.727	5	3	0.541	48	46	0.766	3	1	
7	Antalya	10	1	1.534	11	1	0.597	36	26	0.685	6	4	
8	Artvin	43	1	1.433	14	29	0.626	26	17	0.342	43	0	
9	Aydın	22	1	1.081	48	26	0.620	30	8	0.518	23	1	
10	Balıkesir	15	1	1.195	30	15	0.633	25	10	0.618	12	3	
11	Bilecik	18	0.942	0.942	66	48	0.457	70	52	0.584	16	2	
12	Bingöl	76	0.903	0.903	69	7	0.291	81	5	0.205	75	1	
13	Bitlis	79	1	1.031	54	25	0.563	42	37	0.158	79	0	
14	Bolu	14	1	1.815	4	10	0.764	2	12	0.625	11	3	
15	Burdur	31	1	1.237	26	5	0.703	4	27	0.457	28	3	
16	Bursa	5	1	1.177	34	29	0.467	64	59	0.661	8	3	
17	Çanakkale	24	1	1.002	58	34	0.566	41	17	0.514	24	0	
18	Çankırı	59	1	1.191	32	27	0.672	13	46	0.284	58	1	
19	Çorum	46	0.847	0.847	75	29	0.465	67	21	0.334	45	1	
20	Denizli	12	1	1.083	47	35	0.614	31	19	0.611	13	1	
21	Diyarbakır	63	0.648	0.648	80	17	0.347	80	17	0.241	64	1	
22	Edirne	16	1	1.192	31	15	0.635	22	6	0.562	19	3	
23	Elazığ	36	1	1.306	22	14	0.694	7	29	0.415	34	2	
24	Erzincan	58	0.996	0.996	62	4	0.472	63	5	0.281	59	1	
25	Erzurum	60	1	1.136	39	21	0.507	59	1	0.276	60	0	
26	Eskişehir	6	1	1.019	57	51	0.544	46	40	0.714	4	2	
27	Gaziantep	20	1	1.673	6	14	0.654	18	2	0.571	17	3	
28	Giresun	50	0.998	0.998	60	10	0.593	37	13	0.321	49	1	
29	Gümüşhane	71	1	1.198	29	42	0.550	45	26	0.225	69	2	
30	Hakkari	77	0.986	0.986	64	13	0.449	71	6	0.201	76	1	
31	Hatay	29	1	1.092	46	17	0.719	3	26	0.437	31	2	
32	Isparta	28	1	1.434	13	15	0.634	24	4	0.469	27	1	
33	Mersin	17	0.830	0.830	77	60	0.474	62	45	0.511	25	8	
34	İstanbul	1	1	4.383	1	0	0.703	5	4	0.852	1	0	
35	İzmir	3	1	1.366	17	14	0.678	12	9	0.801	2	1	
36	Kars	67	0.771	0.771	79	12	0.403	77	10	0.221	70	3	
37	Kastamonu	51	0.999	0.999	59	8	0.528	55	4	0.318	50	1	
38	Kayseri	19	1	1.212	27	8	0.666	16	3	0.566	18	1	
39	Kırklareli	11	1	1.140	38	27	0.684	10	1	0.602	14	3	
40	Kırşehir	42	1	1.030	55	13	0.568	40	2	0.333	46	4	
	~~ //												
41	Kocaeli	4	1	1.408	15	11	0.383	78	74	0.671	7	3	

42	Konya	26	1	1.543	10	16	0.681	11	15	0.521	22	4
43	Kütahya	40	0.988	0.988	63	23	0.601	34	6	0.352	41	1
44	Malatya	41	1	1.021	56	15	0.610	32	9	0.366	40	1
45	Manisa	25	1	1.624	7	18	0.813	1	24	0.529	21	4
46	K.Maraş	48	1	1.067	51	3	0.535	51	3	0.324	48	0
47	Mardin	72	1	2.526	2	70	0.640	20	52	0.217	71	1
48	Muğla	13	1	1.053	52	39	0.427	74	61	0.594	15	2
49	Muş	81	1	1.164	35	46	0.467	65	16	0.145	81	0
50	Nevşehir	34	0.858	0.858	73	39	0.491	60	26	0.429	33	1
51	Niğde	49	0.877	0.877	70	21	0.534	52	3	0.291	57	8
52	Ordu	62	1	1.073	49	13	0.621	28	34	0.262	62	0
53	Rize	37	1	1.124	42	5	0.660	17	20	0.409	35	2
54	Sakarya	23	0.916	0.916	68	45	0.510	57	34	0.541	20	3
55	Samsun	32	0.852	0.852	74	42	0.478	61	29	0.434	32	0
56	Siirt	73	1	1.561	9	64	0.598	35	38	0.209	74	1
57	Sinop	57	0.627	0.627	81	24	0.370	79	22	0.294	56	1
58	Sivas	53	0.997	0.997	61	8	0.439	73	20	0.301	55	2
59	Tekirdağ	7	1	1.351	19	12	0.670	14	7	0.659	9	2
60	Tokat	61	1	1.135	40	21	0.649	19	42	0.271	61	0
61	Trabzon	38	1	1.184	33	5	0.692	9	29	0.398	38	0
62	Tunceli	52	1	1.101	45	7	0.423	75	23	0.302	54	2
63	Şanlıurfa	68	1	1.238	25	43	0.539	49	19	0.234	66	2
64	Uşak	30	1	1.310	20	10	0.692	8	22	0.404	36	6
65	Van	75	1	1.207	28	47	0.538	50	25	0.198	77	2
66	Yozgat	64	1	1.117	43	21	0.623	27	37	0.237	65	1
67	Zonguldak	21	1	1.037	53	32	0.519	56	35	0.444	29	8
68	Aksaray	56	1	2.199	3	53	0.669	15	41	0.307	53	3
69	Bayburt	66	0.874	0.874	71	5	0.462	69	3	0.231	67	1
70	Karaman	35	0.865	0.865	72	37	0.533	54	19	0.379	39	4
71	Kırıkkale	33	1	1.104	44	11	0.462	68	35	0.441	30	3
72	Batman	70	1	1.157	36	34	0.586	38	32	0.214	72	2
73	Şırnak	78	1	1.359	18	60	0.542	47	31	0.197	78	0
74	Bartın	55	0.971	0.971	65	10	0.533	53	2	0.309	52	3
75	Ardahan	74	1	1.073	50	24	0.448	72	2	0.211	73	1
76	Iğdır	69	1	1.148	37	32	0.413	76	7	0.228	68	1
77	Yalova	9	1	1.573	8	1	0.602	33	24	0.643	10	1
78	Karabük	27	1	1.287	23	4	0.621	29	2	0.509	26	1
79	Kilis	54	1	1.265	24	30	0.634	23	31	0.315	51	3
80	Osmaniye	47	1	1.308	21	26	0.695	6	41	0.328	47	0
81	Düzce	45	0.833	0.833	76	31	0.465	66	21	0.341	44	1
				Sum dif	ference	1910	Sum di	fference	1802	Sum dit	ference	154

In Table 2, the efficiency, the DMU_p , and the CCR

Eff are displayed in column 4. In columns 5, 6, and 7, the CCR super efficiency, the rank value, and the absolute differences from rank based SPO are respectively reported. In columns 8, 9, and 10, the CCR aggressive cross efficiency, rank value, and the absolute differences from rank based SPO are reported, respectively. In columns 11, 12, and 13, the cross efficiency value obtained from proposed *model* (8) efficiency, the rank value, and the absolute differences from rank based SPO are reported, respectively.

According to the ratings of proposed *model* (8), İstanbul, İzmir, Ankara, Adana, Antalya, Bursa, Yalova, Eskişehir and Kocaeli are considered to be the best cities of Turkey. However, the super efficiency and aggressive cross efficiency methods do not rate all of these cities as the best ones.

At the bottom of column 7, the *1910* value indicates the sum of difference between super efficiency ranking and SPO ranking. For the aggressive cross efficiency method and proposed *model* (8), this difference is *1802* and *154*, respectively. It was found that the ranking values obtained from proposed *model* (8) is closer to the SPO ranking value when compared with the super efficiency and aggressive cross efficiency ranking values. Thus, it was concluded that the rankings of the new *model* (8) is more compatible with SPO ranking than with the super efficiency and aggressive cross efficiency rankings.

ACKNOWLEDGEMENT: This research was supported by the Scientific and Technological Research Council of Turkey (project no: 109T337).

REFERENCES

- Adler, N., Friedman, L., Sinuany-Stern, Z., "Review of ranking methods in the data envelopment analysis context", *European Journal of Operational Research*, 140: 249–265(2002).
- [2] Andersen, P., Petersen, N., "A procedure for ranking efficient units in data envelopment analysis", *Management Science*, 39(10): 1261–1264(1993.
- [3] Anderson, T.R., Hollingsworth, K.B., Inman, L.B., "The fixed weighting nature of a cross evaluation model", *Journal of Productivity Analysis*, 18(1): 249–255(2002).
- [4] Bal, H., Örkcü, H.H., "A goal programming approach to weight dispersion problem in data envelopment analysis", *G.U. Journal of Science*, 20(4): 117–125 (2007).
- [5] Bal, H., Örkcü, H.H., Çelebioglu, S., "A new method based on dispersion of weights in data envelopment analysis", *Computers & Industrial Engineering* 54(3): 502–512 (2008).
- [6] Bal, H., Örkcü, H.H., Çelebioglu, S., "Improving the discrimination power and weights dispersion in the data envelopment analysis", *Computers & Operations Research*, 37(1): 99–107 (2010).
- [7] Charnes, A., Cooper, W.W., Rhodes, E., "Measuring the efficiency of decision making units", *European Journal of Operational Research*, 2: 429-444 (1978).
- [8] Cooper, W.W., Ruiz, J.L., Sirvent, I., "Choosing weights from alternative optimal solutions of dual multiplier dual models in DEA", *European Journal* of Operational Research, 180: 443-458 (2007).
- [9] Cooper, W.W., Ruiz, J.L., Sirvent, I., "Selecting non zero weights to evaluate effectiveness of basketball players with DEA", *European Journal of Operational Research* 195: 563-574 (2009).
- [10] Cooper, W.W., Seiford, L.M., Tone, K., "Data Envelopment Analysis", *Kluwer Academic Publishers*, Boston, USA, (2000).
- [11] Doyle, J.R., Green, R., "Efficiency and crossefficiency in data envelopment analysis: derivatives, meanings and uses", *Journal of Operational Research Society*, 45(5): 567-578 (1994).

- [12] Jahanshahloo, G.R., Memariani, A., Hosseinzadeh, F., Shoja, N., "A feasible interval for weights in data envelopment analysis", *Applied Mathematics and Computation*, 160:155–168 (2005).
- [13] Li, X.B., Reeves, G.R., "A multiple criteria approach to data envelopment analysis", *European Journal of Operational Research*, 115: 507-517 (1999).
- [14] Liang, L., Wu, J., Cook, W.D., Zhu, J., "Alternative secondary goals in DEA cross efficiency evaluation", *International Journal of Production Economics*, 113: 1025-1030 (2008).
- [15] Meza, L.A., Lins, M.P.E., "Review of methods for increasing discrimination in data envelopment analysis", *Annals of Operations Research*, 116: 225–242 (2002).

- [16] Sexton, T.R., Silkman, R.H., Hogan, A.J., "Data Envelopment Analysis: critique and extension. In: Silkman R.H. (Ed.), Measuring efficiency: an assessment of Data Envelopment Analysis", vol 32. Jossey-Bass, San Fransisco, 73-105 (1986).
- [17] Wong, Y.H.B., Beasley, J.E., "Restricting weight flexibility in data envelopment analysis". *Journal of the Operational Research Society*, 41(9): 829–835 (1990).
- [18] Thanassoulis, E., "Introduction to the Theory and Applications of Data Envelopment Analysis: A Foundation Text with Integrated Software", *Kluwer Academic Publishers*, Boston, USA, 2001.
- [19] <u>http://www.dpt.gov.tr/bgyu/bgyu.html</u>. (December, 2010)

APPENDIX A: Data of 81 Turkey cities.

GU J Sci, 25(1):107-117 (2012)/ H. Hasan ÖRKÇÜ,Hasan BAL 116

								1						1						- 1		
No	Cities	y_1	y_2	<i>y</i> ₃	y_4	<i>Y</i> ₅	<i>Y</i> ₆	<i>Y</i> ₇	y_8	<i>y</i> ₉	y_{10}	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	<i>Y</i> ₁₄	<i>Y</i> ₁₅	<i>Y</i> ₁₆	<i>Y</i> ₁₇	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
1	Adana	75.58	43.09	14.41	11.9	48.53	10.16	2.71	86.88	14	24	2.38	3.05	2057	190	91.3	761	1.6	44	144	73	17
2	Adıyaman	54.33	73.64	4.8	4.25	23.17	4.31	1.07	79.83	5	11	0.77	0.39	780	22	81.51	216	0.8	42	34	93	36
3	Afyon	45.77	70.11	6.41	5.13	24.39	3.21	1.28	88.26	8	24	1.86	0.71	1081	72	95.12	368	0.8	45	69	92	17
4	Ağrı	47.72	73.44	1.46	3.48	22.75	1.47	0.7	67.95	2	5	0.88	0.22	515	18	63.11	83	0.4	58	20	55	25
5	Amasya	53.83	61.47	5.8	5.64	33	4.5	1.01	87.39	7	13	1.03	0.38	1287	31	98.26	520	0.9	47	68	96	27
6	Ankara	88.34	16.21	13.41	13.81	72.06	16.86	3.93	93.26	32	38	2.87	8.33	2588	672	98.54	1614	1.2	36	140	426	6
7	Antalya	54.45	49.66	5.5	18.05	41.37	9.67	3.17	91.86	13	16	3.05	2.5	1813	200	86.16	885	1.4	32	83	257	11
8	Artvin	43.87	60.85	5.39	4.82	34.03	4.22	1.03	86.8	1	30	0.34	0.27	1776	29	68.61	402	1	43	40	66	19
9	Aydın	51.87	61.95	7.54	9.16	38.15	10.71	2.85	87.44	12	17	2.47	1.4	1838	131	92.53	724	1	39	69	184	13
10	Balıkesir	53.66	56.75	8.63	8.93	35.82	6.63	2.19	88.34	9	24	3.77	1.52	1765	134	89.99	887	1.4	41	55	249	12
11	Bilecik	64.01	46.51	19.29	5.89	47.85	7.18	1.26	91.55	9	15	0.47	0.34	2204	29	97.14	556	0.7	42	58	475	11
12	Bingöl	48.66	69.94	1.4	2.84	26.96	1.63	0.85	73.61	5	17	0.38	0.14	673	12	74.16	96	0	60	30	1708	43
13	Bitlis	56.48	69.84	2.28	3.37	25.78	2.05	0.78	72.37	4	11	0.47	0.17	552	18	77.11	110	0	52	29	56	28
14	Bolu	52.72	56.57	11.11	7.32	37.49	6.07	1.67	89.63	11	44	1.85	0.78	3569	36	97.21	1063	2	38	47	190	10
15	Burdur	54.48	60.13	8.31	6.11	31.34	4.82	1.34	89.67	10	28	0.76	0.35	1714	37	96.56	801	1	33	58	99	18
16	Bursa	76.75	33.56	28.17	11.82	55.6	13.71	3.52	91.72	12	20	3.19	3.68	2155	238	94.4	822	3	39	125	519	7
17	Çanakkale	46.36	56.01	9.19	7.15	37.56	6.68	1.59	89.51	9	20	1.62	0.81	2172	67	95.32	643	2	34	59	322	8
18	Çankırı	52.22	66.09	5.23	4.12	28.65	3.45	1.09	88.16	7	18	0.56	0.22	1002	24	81.86	205	0	37	45	46	20
19	Corum	52.24	67.61	7.35	5.69	26.27	3.49	1.37	83.11	7	26	1.27	0.69	1431	47	98.05	418	1	51	50	388	32
20	Denizli	48.69	53.54	18.98	7.71	39.19	11.22	2.23	89.57	12	17	1.49	1.19	1743	103	66.34	855	2	39	66	178	9
21	Diyarbakır	60	63.86	3.82	5.76	32.21	4.45	1.3	69.57	7	21	1.83	1.15	1056	51	51.49	123	1	57	71	333	23
22	Edirne	57.35	49.6	9.01	8.42	43.29	7.61	1.69	88.89	19	31	1.13	0.73	2271	54	89.75	665	1	38	57	193	15
23	Elazığ	63.95	58.6	6.01	5.88	35.57	3.77	1.7	82.31	14	41	0.86	0.65	1417	33	83.27	363	2	39	41	163	17
24	Erzincan	54.35	62.03	4.17	4.79	33.06	2.91	1	87.16	7	20	0.64	0.24	956	27	93.29	326	0	37	43	447	16
25	Erzurum	59.8	62.3	3.71	6.06	31.65	3.11	1.58	83.64	12	32	1.34	0.69	914	54	93.53	231	1	65	62	83	27
26	Eskişehir	78.9	35.31	18.93	10.5	56.63	11.62	2.59	92.94	16	41	1.15	1.2	2110	75	95.28	952	1	40	90	269	10
27	Gaziantep	78.52	39.13	21.28	11.43	49.35	5.56	3.33	83.78	8	20	1.22	1.36	1318	88	76.74	455	2	44	46	159	14
28	Giresun	54.09	70.31	5.07	5.71	22.99	4.36	1.26	83.35	6	22	0.64	0.49	1176	47	80.82	266	1	38	42	174	28
29	Gümüşhane	41.49	76.54	2.6	2.91	19.35	2.14	0.59	86.4	7	17	0.3	0.14	933	15	92.53	212	0	32	38	301	30
30	Hakkari	58.95	52.44	1.35	2.51	44.39	1.6	0.56	70.69	4	6	0.23	0.13	696	8	86.76	59	0	55	26	132	31
31	Hatay	46.37	61.63	8.41	6.7	32.47	5	1.69	86.02	6	12	2.15	1.52	1509	95	91.77	516	2	38	53	73	22
32	Isparta	58.71	56.9	8.34	5.73	37.19	5.54	1.52	92.01	14	53	1.11	0.54	1318	52	94.98	550	1	32	61	243	18
33	Mersin	60.51	57.64	7.93	9.33	35.7	7.93	2.29	89.16	8	17	3.29	2.75	2074	138	77.09	532	1	45	85	276	12
34	İstanbul	90.69	8.13	32.15	18.73	75.95	19.39	5.97	93.39	21	34	0.75	22.11	2750	2214	60	1000	2	39	139	222	5
35	İzmir	81.07	28.54	20.58	14.54	61.98	16.28	3.99	91.66	23	29	4.33	7.3	2696	613	94.91	986	3	40	100	272	7
36	Kars	43.73	68.14	2.17	3.65	27.75	2.47	1.05	82.94	5	12	0.58	0.19	719	22	82.48	188	1	65	42	174	32
37	Kastamonu	46.35	71.14	6.32	4.59	23.32	3.52	1.36	80.8	9	40	0.96	0.46	1525	50	79.49	559	1	44	47	329	30
38	Kayseri	69.06	46.98	16.42	8.53	44.09	5.69	2.96	88.89	12	23	1.23	1.22	1430	93	99.57	735	1	42	74	80	19
39	Kırklareli	57.6	48.2	17.81	7.46	44.31	9.18	1.78	92.88	9	22	0.84	0.72	2740	49	100	656	3	34	57	192	9

40	Kırşehir	58.21	65.08	5.93	5.84	28.67	3.7	1.38	87.52	9	20	0.57	0.25	1212	21	99.16	482	1	35	49	262	32
41	Kocaeli	59.94	39.04	20.32	9.21	52.84	8.53	2.16	92.04	11	17	0.88	4.55	4696	129	99.31	637	5	42	157	503	7
42	Konya	59.07	62.42	9.05	6.87	29.65	3.48	2.22	90.07	8	15	4.72	2.49	1414	149	91.92	505	1	35	73	119	14
43	Kütahva	48.54	66.9	9.89	4.81	27.99	2.89	1.3	89.09	6	18	1.1	0.74	1411	55	98.49	636	1	40	50	161	16
44	Malatya	58.54	63.93	6.24	6.25	29.63	4.41	1.43	85.35	11	16	1.21	0.8	1163	46	84.85	326	1	35	45	212	12
45	Manisa	56.72	61.54	11.9	7.06	35.91	8.39	1.56	86.27	10	22	3.22	2.09	2062	138	87.18	618	1	41	50	80	13
46	K.Maraş	53.47	65.63	9.84	5.35	29.42	3.76	1.28	83.42	6	10	1.44	0.98	1215	48	82.6	303	1	37	40	398	23
47	Mardin	55.49	69.92	2.37	4.05	24.81	2.23	0.73	71.2	3	7	0.74	0.41	718	30	84.3	100	1	43	45	17	30
48	Muğla	37.51	55.02	5.95	13.73	36.67	7.35	2.82	92.72	11	19	2.03	1.53	2659	134	83.14	952	2	35	91	680	11
49	Muş	35.16	83.44	1.54	1.86	14.37	1.33	0.48	69.44	3	8	0.81	0.16	453	14	82.11	71	0	55	23	288	23
50	Nevşehir	44.05	70.25	4.97	6.77	27.6	5.6	1.6	88.41	9	18	1.07	0.45	1823	36	100	518	1	43	79	172	16
51	Niğde	36.43	73.49	5.27	4.99	23.15	4.45	1.1	86.23	8	18	1.38	0.44	1565	23	99.75	343	1	47	59	132	28
52	Ordu	46.93	73.55	4.22	5.26	20.42	3.81	1.23	83.1	6	17	1.35	0.61	862	54	76.44	286	1	37	46	112	32
53	Rize	56.09	64.34	9.44	6.03	28.9	4.07	1.66	87.66	7	21	0.53	0.45	1531	37	76.38	375	1	32	43	163	8
54	Sakarya	60.81	51.93	12.89	9.06	38.72	5.92	2.62	90.85	7	18	2.05	1.11	1825	61	97.1	618	1	42	100	134	7
55	Samsun	52.54	63.37	6.86	7.87	28.94	5.5	1.98	86.21	14	27	2.66	1.41	1452	95	78.41	527	1	48	72	305	32
56	Siirt	58.22	56.87	2.58	4.04	39.33	2.52	0.62	68.66	4	11	0.31	0.19	880	12	80.63	119	1	63	21	35	31
57	Sinop	44.9	71.05	5.33	4.58	23.59	4.37	1.16	82.72	8	24	0.45	0.22	1189	24	90.33	455	1	57	74	313	37
58	Sivas	55.86	66.46	5.43	5.09	28.46	3.31	1.31	85.4	11	30	1.42	0.67	1098	57	96.17	303	0.7	53	42	682	21
59	Tekirdağ	63.4	38.77	26.22	8.57	52.76	12.39	2.09	93.01	10	17	1.26	1.07	2134	84	97.4	457	4	39	61	184	6
60	Tokat	48.52	74.03	4.91	4.38	20.52	2.62	0.95	85.67	5	16	1.44	0.74	1107	45	99.94	329	0	45	52	40	24
61	Trabzon	49.12	64.31	5.33	7.1	27.64	4.81	1.97	88.49	11	26	0.93	0.95	1208	90	92.27	313	1	31	48	154	17
62	Tunceli	58.21	42.3	1.81	2.44	54.83	3.59	0.43	82.99	9	19	0.21	0.1	1270	16	76.89	101	1	36	74	115	31
63	Şanlıurfa	58.34	72.8	3.47	5.24	24.3	2.75	1.08	67.67	4	9	2.36	0.93	805	50	86.38	206	1	37	37	421	20
64	Uşak	56.48	60.15	14.91	6.39	31.67	5.39	2.24	87.54	9	19	0.75	0.33	1282	38	69.21	692	2	42	56	64	10
65	Van	50.94	67.17	2.46	4.34	27.85	2.14	0.89	68.05	6	14	1.17	0.49	695	29	71.32	162	0	61	24	104	29
66	Yozgat	46.15	77.31	3.7	3.81	19.75	2.54	0.81	86.17	5	13	1.29	0.43	781	47	95.69	192	1	45	36	104	27
67	Zonguldak	40.66	59.05	15.36	6.08	35.03	5.49	1.25	87.81	10	28	0.48	1.18	2380	70	55.67	878	4	45	78	175	10
68	Aksaray	50.55	69.97	5.67	6.21	23.61	2.89	1.75	86.34	9	14	0.95	0.29	900	26	94.36	392	6	48	51	74	26
<u>69</u>	Bayburt	42.48	74.68	2.27	3.37 5.39	20.7	<u>1.5</u> 5.24	1.48	86.49 89.72	7 9	<u>10</u> 12	0.17	0.06	825	9 18	98.08	259 544	0.4	44	51 53	196 195	30 22
70	Karaman	57.53	65.01	11.14	7.16	28.76	<u> </u>	1.45 1.58	<u>89.72</u> 89.12	12	12		0.54	1752		92.44	323	1	48 34	73	309	14
71 72	Kırıkkale	74.39	51.22 63.48	5.97	5.46	41.84 31.07	3.03	1.38	<u>89.12</u> 70.96	4	5	0.41	0.00	2140 949	25 14	73.8	111	0.7	50	27	65	22
72	<u>Batman</u> Sırnak	59.83	46.56	1.85	3.40	48.36	1.88	0.73	65.75	4 3	6	0.41	0.55	518	14	76.65	51	0.7	51	27	63	19
73	Bartin	26.06	71.27	7.9	4.63	23.7	3.79	1.15	84.03	9	17	0.18	0.13	855	20	77.55	465	0.8	42	45	167	19
74	Ardahan	20.00	77.79	1.06	2.48	19.4	1.93	0.66	84.6	6	12	0.22	0.13	671	12	64.97	103	0.3	77	26	77	31
76	Ardanan Iğdır	48.38	68.37	2.2	4.61	26.42	2.97	1.28	75.46	6	6	0.44	0.07	729	12	61.85	103	0.5	52	20	464	26
70	Yalova	58.52	38.5	13.71	10.81	51.27	10.28	2.73	92.93	11	12	0.32	0.39	2910	21	78.74	475	4	43	76	84	12
78	Karabük	70.08	41.85	18.71	8.03	49.98	7.32	1.95	86.92	9	26	0.17	0.25	1409	27	78.9	319	2	38	73	77	14
79	Kilis	65.36	54.72	7.49	7.07	37.54	3.71	1.55	80.41	10	17	0.10	0.23	1463	6	76.91	175	1	48	35	75	20
80	Osmanive	68	59.99	6.86	6.96	32.59	4.4	1.42	86.02	6	7	0.51	0.36	983	24	83.96	240	0	36	42	46	8
81	Düzce	41.57	57.38	12.28	7.17	35.34	6.41	1.92	89.44	6	17	0.56	0.26	1025	23	96.75	154	1	50	58	194	16
01	Dull	-T1.J/	57.50	12.20	/.1/	55.54	0.41	1.74	07.77	U	1/	0.50	0.20	1025	43	70.75	134	1	50	50	174	10

GU J Sci, 25(1):107-117 (2012)/ H. Hasan ÖRKÇÜ,Hasan BAL 117