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Abstract 

In the present paper, by defining two non-trivial automorphisms and Gray maps over 

2 4 4 4 4
,Y u v uv    where 

2 2
0, 0,u v uv vu   , the algebraic structcure of the skew  -cyclic 

codes and their  Gray images over the finite ring 
2

Y are determined, where 1 .u v uv       

Keywords: Skew codes, Gray map, Finite rings. 

 

2
Y  Halkası Üzerinde Skew  -cyclic Kodlar  

Öz 

Bu çalışmada, 
2 2

0, 0, , 1u v uv vu u v uv       , olmak üzere 
2 4 4 4 4

,Y u v uv     sonlu 

halkası üzerinde iki farklı Gray dönüşümü ve otomorfizma tanımlanarak skew  -cyclic kodların cebirsel 

yapısı ve bu kodların Gray görüntüleri belirlenmiştir. 

 

Anahtar Kelimeler:  Skew kodlar, Gray dönüşümü, Sonlu halkalar. 

 

1. Introduction 

Cyclic codes are the most studied class of 

linear codes with algebraic structure. 

Skew polynomial rings form an important 

family of non-commutative rings. There are 

many applications in the construction of 

algebraic codes. As polynomials in skew 

polynomial ring exhibit many factorizations, 

there are many more ideals in a skew 

polynomial ring than in the commutative 

case. So the researchers on codes have result 

in the discovery of many new codes with 

better Hamming distance. 

Recently, Delphine Boucher et al. gave skew 

cyclic and skew  -cyclic codes defined by 

using the skew polynomial rings with a non-

trivial automorphism, which are 

generalization of the notion cyclic and 

constacyclic codes, respectively (Boucher et 

al., 2007; Boucher et al., 2008).  

T. Abualrub, P. Seneviratre studied skew 

cyclic codes over 2 2 ,F vF  where 
2v v

(Abualrub and Seneviratne, 2012). T. 

Abualrub, A. Ghrayeb, N. Aydın, I. Siap 
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introduced skew quasi-cyclic codes. They 

obtained several new codes with Hamming 

distance exceeding the distance of the 

previously best known linear codes with 

comparable parameters (Abualrub et al., 

2010). In (Siap et al., 2011), they studied a 

special type of linear codes called skew 

cyclic codes in the most general case. M. 

Bhaintwal studied skew quasi-cyclic codes 

over Galois rings (Bhaintwal, 2012). Wu 

investigated the structures of skew cyclic and 

skew quasi-cyclic of arbitrary length over 

Galois rings. They shown that the skew 

cyclic codes are equivalent to either cyclic 

and quasi-cyclic codes over Galois rings. 

Moreover, they gave a necessary and 

sufficient condition for skew cyclic codes 

over Galois rings to be free (Wu, 2013). 

Dertli et al. studied skew codes over the 

finite ring to increase the probability of 

obtaining the large minimum distance (Dertli 

et al., 2015). 

In the present paper, the skew  -cyclic 

codes over the finite ring 2Y  are studied by 

using two different non-trivial automorphism 

over 2Y , which is motivated by the previous 

works. 

2. Material and Methods  

The ring  

2 4 4 4 4

2 2

4

{ :

, , , , 0, 0, }

Y u v uv a bu cv duv

a b c d u v uv vu

       

   
 

is commutative ring with 
44 elements and 

characteristic 4 . A linear code  over 2Y  of 

length n  is a 2Y  submodule of 2

nY . An 

element of  is called a codeword. 

We defined  two Gray maps as follows 

4

1 2 4:

( , , , )

Y

a bu cv duv a b a c a d a

 

     
 

and  

8

2 2 4:

( ,3 , ,3 , ,3 , ,3 )

Y

a bu cv duv a a b b c c d d

 

  
 

The Gray map 
t  can be extended to 2

nY , 

naturally, for 1,2t  . 

The Lee weight on 
4
, denoted 

Lw , is 

defined as  

 

0, 0

1, 1 or 3

2, 2

Lw



 






 
 

 

For any 
2Y  , the Lee weight of   is 

defined as  

 
1

( ) ( ( ))
r

L L t L i
i

w w w  


     

where    1 2, ,..., ,t r    

4 , 1,2,..., , 1,2.i i r t   
 

The Lee weight 

of a vector  1 2,..., n

ne e e Y  is defined to be 

a sum of the Lee weights of its components, 

that is    1
n
iL L iw e w e . Moreover, for 

any 1 2 2, ne e Y , the Lee distance between 1e

and
2e  is defined as    1 2 1 2,L Ld e e w e e  . 

Theorem 2.1: The Gray map t is a linear 

and distance preserving map, for 1,2t  . 

A code over 2Y is a  -cyclic code with the 

property that if  0 1 1
, ,...,

n
e e e e


  then 

   1 0 2
, ,...,

n n
e e e 

 
   where   is a 

unit element of 2.Y   A subset  of 2

nY  is a -

cyclic code of length n  if and only if it is 
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polynomial representation is an ideal of 

 2 / nY x x  . If is equal to 1( 1) , the  

is called cyclic code (negacyclic code), 

respectively. 

3. Research Findings 

3.1. Skew codes over 
2Y   

Let 
2Y be a finite ring and 

i  be a non-trivial 

automorphism over 
2Y  and 1 u v uv     , 

1, 2i  . 

Definition 3.1.1: A subset  of 2

nY  is called 

a skew  -cyclic code of length n  if  

satisfies the following conditions, for 1, 2i  , 

1)  is a submodule of 2

nY   

2) If
0 1 1

( , ,..., ) ,
n

c c c c


  then 

1 0 2
( ) ( ( ), ( ),..., ( )) ,

i i n i i n
c c c c 

  
    

where
i




is the skew  -cyclic shift 

operator. 

By defining two non-trivial automorphisms 

over 2Y  as follows, we can define the skew 

 -cyclic codes over 2Y .  

1 2 2:Y Y

a bu cv duv a cu bv duv

 

     
 

and  

2 2 2:Y Y

a bu cv duv a bu cv duv

 

     
 

The order of i  is 2 , where 1, 2.i    

 

 

The rings  

1

2 0 1 1

2

[ , ] { ... :

, , 0,1,..., 1}

n

i n

j

Y x b b x b x

b Y n N j n



    

   
 

are called skew polynomial rings with the 

usual addition of polynomials and the 

multiplication as follows  

( )( ) ( )s l s s l

iax bx a b x    

where 1, 2i  . They are non-commutative 

rings. 

In polynomial representation, a skew  -

cyclic code of length n  over 2Y  is defined as 

a left ideal of the quotient ring 

, 2[ , ] /
i

n

n iA Y x x     , if the order of i  

divides n , that is n  is even. If the order of 

i  does not divides n , a skew  -cyclic 

code of length n  over 
2Y  is defined as a left

2[ , ]iY x  -submodule of , ,
i nA  since the set  

, 2

2

[ , ] /

{ ( ) : ( ) [ , ]}

i

n

n i

n

i i i

A Y x x

f x x f x Y x





    

   
 

is a left 2[ , ]iY x  -module, for 1, 2i  . 

In both case, the following is hold. 

Theorem 3.1.2: Let  be a skew  -cyclic 

code over 2Y  and let  g x  be a polynomial 

in  of minimal degree. If the leading 

coefficient of  g x  is a unit in 2Y , then 

 g x , where  g x is a right divisor of 

nx  . 

Proof: It is proved as in the proof of Lemma 

3 and Theorem 1 in (Gao et al., 2017). 
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Proposition 3.1.3: Let  
1, and 

1 be as 

above. Then 
11 1     , where   is a 

permutation defined by 

( , , , ) ( , , , )x y k p x k y p   

 for 4, , , nx y k p . 

Proof: Let 
i i i i ie a bu c v d uv     be the 

elements of 
2Y  for 0,1,..., 1i n  . Then  

1
0 1 1 1 1 0 1 2

1 1 1 1 1

1 1 1 1 0 0 0 0

2 2 2 2

( , ..., ) ( ( ), ( ), ..., ( ))

( ) ( )

( ) , .

, ...,

n n n

n n n n n

n n n n

n n n n

e e e e e

a a c u a b v

a b c d uv a c u b v d uv

a c u b v d uv

 
   

    

   

   

   

    

      

  

 
 
 
 
 

 

By applying 
1 , we have  

1

1 2 1 2 2 1

1 0 1

2 2 1 1 1 2 2

, ... , , ..., , , ...,
( ( , ..., )) .

, , ...,,

n n n n n n

n

n n n n n n n

a a c c a b
e e

b a b c d d a


     

 

      


 

   

 
 
 

 

On the other hand  

1 2 1 2 2 1

1 0 1

2 2 1 1 1 2 2

,... , ,..., , ,...,
( ,..., ) .

, ,...,,

n n n n n n

n

n n n n n n n

a a b b a c
e e

c a b c d d a


     



      


 

   

 
 
 

 

If we apply  , we have 

1 2 1 2 2 1

1 0 1

2 2 1 1 1 2 2

, ... , , ..., , , ...,
( , ..., ) .

, , ...,,

n n n n n n

n

n n n n n n n

a a c c a b
e e

b a b c d d a
 

     



      


 

   

 
 
 

 

 We have the expected result. 

Theorem 3.1.4: The Gray image of a skew 

 -cyclic code over 2Y  of length n  is 

permutation equivalent to a  -cyclic code 

over 4  of length 4n . 

Proof: Let  be a skew  -cyclic code over 

2Y  of length n . That is 
1
( )  . If we 

apply 1,
 

we have
11 1( ( )) ( ).     

From Proposition 3.1.3, we get 

11 1 1( ( )) ( ) ( )         . So 
1( )   

is permutation equivalent to a  -cyclic code 

over 
4
 of length 4n . 

 

Proposition 3.1.5: Let 
2 ,  and 

2 be as 

above. Then 
22 2     , where   is a 

permutation defined by 

1 2 3 4 5 6 7 8

1 2 4 3 6 5 7 8

( , , , , , , , )

( , , , , , , , )

x x x x x x x x

x x x x x x x x

 

 

    for 4 , 1,2,...,8n

ix i  . 

Proof: It is proved as in the proof of the 

Proposition 3.1.3. 

Theorem 3.1.6: The Gray image of a skew 

 -cyclic code over 
2Y

 
of length n  is 

permutation equivalent to a  -cyclic code 

over 
4
 of length 8n . 

Proof: It is proved as in the proof of the 

Theorem 3.1.4. 

Example 3.1.7: Let 3n  . We have 

  3 2 (1 ) (1 ) (1 )x x u v uv x u v x u v uv            

in 2[ , ]iY x  , for 1, 2.i   

Let ( ) (1 ).g x x u v uv      Then 

( )g x generates a skew  -cyclic code of 

length 3 with the minimum distance 2d  . 

This code is permutation equivalent to a  -

cyclic code of length 12 (24 ) over 4.  

4. Conclusion 

The skew  -cyclic codes over the finite ring 

2Y are studied because of to increase the 

probability of obtaining the large minimum 
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distance. A new two Gray maps and two non-

trivial automorphisms over 
2Y  are defined 

and the Gray images of skew  -cyclic codes 

are determined. So, we can obtain many new 

codes with better Hamming distance. 
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