Araştırma Makalesi
BibTex RIS Kaynak Göster

ENERGY SYSTEM CONTRIBUTION AND PHYSIOLOGICAL RESPONSES IN RAST TEST IN FOOTBALL PLAYERS: A CROSSSECTIONAL STUDY

Yıl 2023, Cilt: 17 Sayı: 3, 276 - 287, 01.01.2024

Öz

The aim of this study was to investigate the relationship between physiological responses and energy system contributions on sprint performance of football players in the run-based anaerobic sprint test (RAST). Twenty male footballers (age: 21.2 ± 3.4 yrs) playing football in different leagues participated in the study. The football players performed a 6x35m sprint protocol with 10sec recovery intervals. RAST performance (Total Time, Best Time, Average Time, Fatigue Index) and power values (Peak Power, Average Power, Minimum Power, Force Impulse) were measured during the tests. Contributions of oxidative, glycolytic and ATP-PCr systems were calculated from oxygen consumption (VO2) and lactate (LA) values and recovery VO2 was calculated using a mono-exponential model. One-way analysis of variance (ANOVA) was used to compare RAST performance outcomes, recovery oxygen consumption, heart rate and lactate responses. Bonferroni multiple comparison test was used to identify possible differences when a significant effect was found in ANOVA. Pearson correlation test was used to determine the relationships between RAST results and contributions of energy systems. Statistically significant correlations were found between the contributions of energy systems and RAST results. During RAST, ATP-PCr and glycolytic system contribution was more dominant (overall: 69%, Spritnler only: 88%). RAST time performance and force impulse data were moderately positively correlated with anaerobic-based variables. Glycolytic system contribution was significantly associated with total time and mean time, and ATP-PCr energy system contribution was significantly associated with peak power, mean power, minimum power and force impulse. Anaerobic-based energy system contribution to the time and power performance values of the RAST test is significantly related to the achievement of optimal performance data. Understanding metabolic responses in the light of the data obtained as a result of the study may be important for developing targeted energy systems in training programmes involving high-intensity exercise.

Kaynakça

  • Girard O, Mendez-Villanueva A, Bishop D. (2011). Repeated-sprint ability-part I: factors contributing to fatigue. Sports Medicine. 41, 673-694.
  • Rampinini E, Coutts AJ, Castagna C, Sassi R, Impellizzeri F. (2007). Variation in top level soccer match performance. International Journal of Sports Medicine. 10, 18-24.
  • Jones RM, Cook CC, Kilduff LP, Milanović Z, James N, Sporiš G. (2013). Relationship between repeated sprint ability and aerobic capacity in professional soccer players. The Scientific World Journal. 1-5.
  • Spencer M, Bishop D, Dawson B, Goodman C. (2005). Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Medicine. 35, 1025-1044.
  • da Silva JF, Guglielmo LG, Bishop D. (2010). Relationship between different measures of aerobic fitness and repeated-sprint ability in elite soccer players. The Journal of Strength & Conditioning Research. 24(8), 2115-2121.
  • Buchheit M, Laursen PB. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Medicine. 43(5), 313-338.
  • Bradley PS, Di Mascio M, Peart D, Olsen P, Sheldon B. (2010). High-intensity activity profiles of elite soccer players at different performance levels. The Journal of Strength & Conditioning Research. 24(9), 2343-2351.
  • Castagna C, D'Ottavio S, Vera JG, Álvarez JCB. (2009). Match demands of professional Futsal: a case study. Journal of Science and medicine in Sport. 12(4), 490-494.
  • Dawson B, Goodman C, Lawrence S, Preen D, Polglaze T, Fitzsimons M, Fournier P. (1997). Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scandinavian Journal of Medicine & Science in Sports. 7(4), 206-213.
  • Bogdanis GC, Nevill ME, Boobis LH, Lakomy H, Nevill AM. (1995). Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. The Journal of Physiology. 482(2), 467-480.
  • La Monica MB, Fukuda DH, Starling-Smith TM, Clark NW, Panissa VL. (2020). Alterations in energy system contribution following upper body sprint interval training. European Journal of Applied Physiology. 120(3), 643-651.
  • Panissa VL, Fukuda DH, Caldeira RS, Gerosa-Neto J, Lira FS, Zagatto AM, Franchini E. (2018). Is oxygen uptake measurement enough to estimate energy expenditure during high-intensity intermittent exercise? Quantification of anaerobic contribution by different methods. Frontiers in Physiology. 9, 868.
  • Zacharogiannis E, Paradisis G, Tziortzis S. (2004). An evaluation of tests of anaerobic power and capacity. Medicine & Science in Sports & Exercise. 36, 116.
  • Archiza B, Andaku DK, Beltrame T, Libardi CA, Borghi-Silva A. (2020). The relationship between repeated‐sprint ability, aerobic capacity, and oxygen uptake recovery kinetics in female soccer athletes. Journal of Human Kinetics. 75(1), 115-126.
  • Buchheit M, Mendez-Villanueva A, Delhomel G, Brughelli M, Ahmaidi S. (2010). Improving repeated sprint ability in young elite soccer players: repeated shuttle sprints vs. explosive strength training. The Journal of Strength & Conditioning Research. 24(10), 2715-2722.
  • Glaister M, Howatson G, Pattison JR, McInnes G. (2008). The reliability and validity of fatigue measures during multiple-sprint work: an issue revisited. The Journal of Strength & Conditioning Research. 22(5),1597-1601.
  • De Andrade VL, Santiago P, Kalva Filho CA, Campos EZ, Papoti M. (2014). Reproducibility of running anaerobic sprint test for soccer players. The Journal of Sports Medicine and Physical Fitness. 56(1-2), 34-38.
  • Latzel R, Hoos O, Stier S, Kaufmann S, Fresz V, Reim D, Beneke R. (2018). Energetic profile of the basketball exercise simulation test in junior elite players. International Journal of Sports Physiology and Performance. 13(6), 810-815.
  • di Prampero PE, Ferretti G. (1999). The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respiration Physiology. 118(2-3), 103-105.
  • Lopes-Silva JP, da Silva Santos JF, Abbiss CR, Franchini E. (2019). Measurement properties and feasibility of repeated sprint ability test: a systematic review. Strength & Conditioning Journal. 41(6),41-61.
  • Zagatto A, Redkva P, Loures J, Filho CK, Franco V, Kaminagakura E, Papoti M. (2011). Anaerobic contribution during maximal anaerobic running test: correlation with maximal accumulated oxygen deficit. Scandinavian Journal of Medicine & Science in Sports. 21(6), e222-e30.
  • Beneke R, Pollmann C, Bleif I, Leithäuser R, Hütler M. (2002). How anaerobic is the Wingate Anaerobic Test for humans? European Journal of Applied Physiology. 87, 388-392.
  • Tortu E, Deliceoglu G. (2024). Comparison of energy system contributions in lower body Wingate tests between sexes.
  • Mendez-Villanueva A, Edge J, Suriano R, Hamer P, Bishop D. (2012). The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PloS One. 7(12), e51977.
  • Bertuzzi R, Kiss M, Damasceno M, Oliveira R, Lima-Silva A. (2015). Association between anaerobic components of the maximal accumulated oxygen deficit and 30-second Wingate test. Brazilian Journal of Medical and Biological Research. 48, 261-266.
  • Davis P, Leithäuser RM, Beneke R. (2014). The energetics of semicontact 3× 2-min amateur boxing. International journal of Sports Physiology and Performance. 9(2), 233-239.
  • Gaitanos, Williams C, Boobis LH, Brooks S. (1993). Human muscle metabolism during intermittent maximal exercise. Journal of Applied Physiology. 75(2), 712-719.
  • Wadley G, Le Rossignol P. (1998). The relationship between repeated sprint ability and the aerobic and anaerobic energy systems. Journal of Science and Medicine in Sport. 1(2), 100-110. Deminice R, Rosa FT, Franco GS, Jordao AA, de Freitas EC. (2013). Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition. 29(9), 1127-1132.
  • Chamari K, Padulo J. (2015). Aerobic and Anaerobic terms used in exercise physiology: a critical terminology reflection. Sports Medicine-Open.1, 1-4.
  • Milioni F, Zagatto AM, Barbieri RA, Andrade VL, dos Santos JW, Gobatto CA, (2017). Energy systems contribution in the running-based anaerobic sprint test. International Journal of Sports Medicine. 38(3), 226-232.
  • Bishop D, Edge J. (2006). Determinants of repeated-sprint ability in females matched for single-sprint performance. European Journal of Applied Physiology. 97(4), 373-379.
  • Faiss R, Léger B, Vesin J-M, Fournier P-E, Eggel Y, Dériaz O, Millet GP. (2013). Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PloS One. 8(2), e56522.

FUTBOLCULARDA RAST TESTİNDE ENERJİ SİSTEM KATKISI VE FİZYOLOJİK YANITLAR: KESİTSEL BİR ÇALIŞMA

Yıl 2023, Cilt: 17 Sayı: 3, 276 - 287, 01.01.2024

Öz

Bu çalışmanın amacı futbolcuların koşu tabanlı anaerobik sprint testindeki (RAST) fizyolojik yanıtlarının ve enerji sistem katkılarının sprint performansları üzerindeki ilişkisini incelemek üzerine oluşturulmuştur. Çalışmaya farklı liglerde futbol oynayan 20 erkek futbolcu (yaş: 21.2 ± 3.4 yıl) katılmıştır. Futbolcular 6x35m sprint protokolünü 10sn toparlanma aralıkları ile gerçekleştirmişlerdir. Testler sırasında RAST performans (Toplam Süre, En iyi Süre, Ortalama Süre, Yorgunluk İndeksi) ve güç değerleri (Zirve Güç, Ortalama Güç, Minumum Güç, Kuvvet İmpulsu) ölçülmüştür. Oksidatif, glikolitik ve ATP-PCr sistemlerin katkıları oksijen tüketimi (VO2) ve laktat (LA) değerlerinden hesaplanmış ve toparlanma VO2'si mono-eksponansiyel model kullanılarak hesaplanmıştır. RAST performans çıktıları, toparlanma oksijen tüketimi, kalp atım hızı ve laktat yanıtlarını karşılaştırılması için tek yönlü varyans analizi (ANOVA) kullanılmıştır. ANOVA'da anlamlı bir etki bulunduğunda olası farklılıkları belirlemek için Bonferroni çoklu karşılaştırma testi kullanılmıştır. RAST sonuçları ve enerji sistemlerinin katkıları arasındaki ilişkileri belirlemek için Pearson korelasyon testi kullanılmıştır. Enerji sistemlerinin katkıları ile RAST sonuçları arasında da istatiksel olarak anlamlı ilişki düzeyleri bulunmuştur. RAST sırasında ATP-PCr ve glikoliktik sistem katkısının daha baskın olduğu (genel: %69, Sadece spritnler:% 88) RAST zaman performansı ve kuvvet impulsu verilerinin anaerobik tabanlı değişkenlerle orta düzey pozitif ilişkiliydi. Glikolitik sistem katkısı toplam süre ve ortalama süre ile, ATP-PCr enerji sistem katkısı ise; zirve güç, ortalama güç, minimum güç ve kuvvet impulsu ile önemli ölçüde ilişkiliydi. RAST testine ait zamansal ve güç performans değerleri üzerine anaerobik tabanlı enerji sistem katkısı optimal performans verilerine ulaşılmasında önemli derecede ilişkilidir. Çalışma sonucunda elde edilen veriler ışığında metabolik tepkilerin anlaşılması, yüksek yoğunluklu egzersiz içeren antrenman programlarında hedeflenen enerji sistemlerinin geliştirilmesi için önemli olabilir.

Kaynakça

  • Girard O, Mendez-Villanueva A, Bishop D. (2011). Repeated-sprint ability-part I: factors contributing to fatigue. Sports Medicine. 41, 673-694.
  • Rampinini E, Coutts AJ, Castagna C, Sassi R, Impellizzeri F. (2007). Variation in top level soccer match performance. International Journal of Sports Medicine. 10, 18-24.
  • Jones RM, Cook CC, Kilduff LP, Milanović Z, James N, Sporiš G. (2013). Relationship between repeated sprint ability and aerobic capacity in professional soccer players. The Scientific World Journal. 1-5.
  • Spencer M, Bishop D, Dawson B, Goodman C. (2005). Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Medicine. 35, 1025-1044.
  • da Silva JF, Guglielmo LG, Bishop D. (2010). Relationship between different measures of aerobic fitness and repeated-sprint ability in elite soccer players. The Journal of Strength & Conditioning Research. 24(8), 2115-2121.
  • Buchheit M, Laursen PB. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Medicine. 43(5), 313-338.
  • Bradley PS, Di Mascio M, Peart D, Olsen P, Sheldon B. (2010). High-intensity activity profiles of elite soccer players at different performance levels. The Journal of Strength & Conditioning Research. 24(9), 2343-2351.
  • Castagna C, D'Ottavio S, Vera JG, Álvarez JCB. (2009). Match demands of professional Futsal: a case study. Journal of Science and medicine in Sport. 12(4), 490-494.
  • Dawson B, Goodman C, Lawrence S, Preen D, Polglaze T, Fitzsimons M, Fournier P. (1997). Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scandinavian Journal of Medicine & Science in Sports. 7(4), 206-213.
  • Bogdanis GC, Nevill ME, Boobis LH, Lakomy H, Nevill AM. (1995). Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. The Journal of Physiology. 482(2), 467-480.
  • La Monica MB, Fukuda DH, Starling-Smith TM, Clark NW, Panissa VL. (2020). Alterations in energy system contribution following upper body sprint interval training. European Journal of Applied Physiology. 120(3), 643-651.
  • Panissa VL, Fukuda DH, Caldeira RS, Gerosa-Neto J, Lira FS, Zagatto AM, Franchini E. (2018). Is oxygen uptake measurement enough to estimate energy expenditure during high-intensity intermittent exercise? Quantification of anaerobic contribution by different methods. Frontiers in Physiology. 9, 868.
  • Zacharogiannis E, Paradisis G, Tziortzis S. (2004). An evaluation of tests of anaerobic power and capacity. Medicine & Science in Sports & Exercise. 36, 116.
  • Archiza B, Andaku DK, Beltrame T, Libardi CA, Borghi-Silva A. (2020). The relationship between repeated‐sprint ability, aerobic capacity, and oxygen uptake recovery kinetics in female soccer athletes. Journal of Human Kinetics. 75(1), 115-126.
  • Buchheit M, Mendez-Villanueva A, Delhomel G, Brughelli M, Ahmaidi S. (2010). Improving repeated sprint ability in young elite soccer players: repeated shuttle sprints vs. explosive strength training. The Journal of Strength & Conditioning Research. 24(10), 2715-2722.
  • Glaister M, Howatson G, Pattison JR, McInnes G. (2008). The reliability and validity of fatigue measures during multiple-sprint work: an issue revisited. The Journal of Strength & Conditioning Research. 22(5),1597-1601.
  • De Andrade VL, Santiago P, Kalva Filho CA, Campos EZ, Papoti M. (2014). Reproducibility of running anaerobic sprint test for soccer players. The Journal of Sports Medicine and Physical Fitness. 56(1-2), 34-38.
  • Latzel R, Hoos O, Stier S, Kaufmann S, Fresz V, Reim D, Beneke R. (2018). Energetic profile of the basketball exercise simulation test in junior elite players. International Journal of Sports Physiology and Performance. 13(6), 810-815.
  • di Prampero PE, Ferretti G. (1999). The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respiration Physiology. 118(2-3), 103-105.
  • Lopes-Silva JP, da Silva Santos JF, Abbiss CR, Franchini E. (2019). Measurement properties and feasibility of repeated sprint ability test: a systematic review. Strength & Conditioning Journal. 41(6),41-61.
  • Zagatto A, Redkva P, Loures J, Filho CK, Franco V, Kaminagakura E, Papoti M. (2011). Anaerobic contribution during maximal anaerobic running test: correlation with maximal accumulated oxygen deficit. Scandinavian Journal of Medicine & Science in Sports. 21(6), e222-e30.
  • Beneke R, Pollmann C, Bleif I, Leithäuser R, Hütler M. (2002). How anaerobic is the Wingate Anaerobic Test for humans? European Journal of Applied Physiology. 87, 388-392.
  • Tortu E, Deliceoglu G. (2024). Comparison of energy system contributions in lower body Wingate tests between sexes.
  • Mendez-Villanueva A, Edge J, Suriano R, Hamer P, Bishop D. (2012). The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PloS One. 7(12), e51977.
  • Bertuzzi R, Kiss M, Damasceno M, Oliveira R, Lima-Silva A. (2015). Association between anaerobic components of the maximal accumulated oxygen deficit and 30-second Wingate test. Brazilian Journal of Medical and Biological Research. 48, 261-266.
  • Davis P, Leithäuser RM, Beneke R. (2014). The energetics of semicontact 3× 2-min amateur boxing. International journal of Sports Physiology and Performance. 9(2), 233-239.
  • Gaitanos, Williams C, Boobis LH, Brooks S. (1993). Human muscle metabolism during intermittent maximal exercise. Journal of Applied Physiology. 75(2), 712-719.
  • Wadley G, Le Rossignol P. (1998). The relationship between repeated sprint ability and the aerobic and anaerobic energy systems. Journal of Science and Medicine in Sport. 1(2), 100-110. Deminice R, Rosa FT, Franco GS, Jordao AA, de Freitas EC. (2013). Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition. 29(9), 1127-1132.
  • Chamari K, Padulo J. (2015). Aerobic and Anaerobic terms used in exercise physiology: a critical terminology reflection. Sports Medicine-Open.1, 1-4.
  • Milioni F, Zagatto AM, Barbieri RA, Andrade VL, dos Santos JW, Gobatto CA, (2017). Energy systems contribution in the running-based anaerobic sprint test. International Journal of Sports Medicine. 38(3), 226-232.
  • Bishop D, Edge J. (2006). Determinants of repeated-sprint ability in females matched for single-sprint performance. European Journal of Applied Physiology. 97(4), 373-379.
  • Faiss R, Léger B, Vesin J-M, Fournier P-E, Eggel Y, Dériaz O, Millet GP. (2013). Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PloS One. 8(2), e56522.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor Hekimliği
Bölüm Araştırma Makaleleri
Yazarlar

Erkan Tortu 0000-0003-2816-9994

Yayımlanma Tarihi 1 Ocak 2024
Gönderilme Tarihi 9 Ekim 2023
Kabul Tarihi 30 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 17 Sayı: 3

Kaynak Göster

APA Tortu, E. (2024). FUTBOLCULARDA RAST TESTİNDE ENERJİ SİSTEM KATKISI VE FİZYOLOJİK YANITLAR: KESİTSEL BİR ÇALIŞMA. Beden Eğitimi Ve Spor Bilimleri Dergisi, 17(3), 276-287.

16227

16228

16229

16230