Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of in vitro antidiabetic and antioxidant activity of hawthorn vinegar obtained from Endemic Crataegus tanacetifolia (Poir.) Pers.

Yıl 2023, Cilt: 6 Sayı: 2, 104 - 108, 30.12.2023
https://doi.org/10.46239/ejbcs.1228402

Öz

In this study, the in vitro antidiabetic, antioxidant activity and total flavonoid content (TFC) and total phenolic content (TPC) of vinegar obtained from endemic Crataegus tanacetifolia (Lam.) Pers. (Rosaceae), (hawthorn) were examined. The hawthorn vinegar obtained from Malatya province (MS) and the vinegar (TS) obtained from Konya were used as study material. Their antidiabetic activity was determined by α-amylase and α-glucosidase inhibitory methods. Antioxidant activities were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferrous iron chelating (FCA) assays. The absorbance were read in the Elisa reader and evaluated with Excel and GraphPad programs. The MS has been found to have higher α- amylase (95.12± 3.71%) and α-glucosidase inhibitory (81.62 ± 0.33%) effects. The TS demonstrated (94.13 ± 3.85%) α-amylase and (75.35 ± 2.19%) α-glucosidase inhibitory activity, respectively. The TPC was found to be in TS (467.59 ± 6.73) mg GAE/mL MS (328.46 ± 5.50) mg GAE/mL. The TFC was found as (1.94 ± 10.36) mg CE/mL and (1.32 ± 10.96) mg CE/mL in TS and MS vinegar, respectively. The FCA was found to be in TS (33.37 ± 0.53%) MS (31.08 ± 10.87%). The DPPH radical scavenging activity was found as (73.82 ± 2.12%) in TS and (80.12 ± 4.45%) in MS. ABTS radical scavenging activity was found to be the highest in TS with (82.51± 0.78%) and in MS found as (78.65 ± 0.55%). The antidiabetic, antioxidant activity, TPC and TFC determinations of these vinegars were performed for the first time with these methods.

Destekleyen Kurum

TUBITAK 2209/A Undergraduate Student Project

Proje Numarası

1919B012102103

Teşekkür

We would like to thank the TUBITAK 2209/A Undergraduate Student Project for the financial support (NO: 1919B012102103).

Kaynakça

  • Alirezalu, A. Ahmadi N, Salehi P, Sonboli A, Alirezalu K, Mousavi Khaneghah A, Barba FJ, Münekata P, Lorenzo JM. 2020. Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications. Foods. 9(4): 436.
  • Asgari M, Salehi I, Ranjbar K, Khosravi M, Zarrinkalam E, 2022. Interval training and Crataegus persica ameliorate diabetic nephropathy via miR-126/Nrf-2 mediated inhibition of stress oxidative in rats with diabetes after myocardial ischemia-reperfusion injury. Biomed. Pharmacother. 153: 113411.
  • Bakir S, Devecioglu D, Kayacan S, Toydemir G, Karbancioglu-Guler F, Capanoglu E. 2017. Investigating the antioxidant and antimicrobial activities of different vinegars. Eur Food Res Technol. 243(12): 2083-2094.
  • Berghe WV. 2012. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol. Res. 65(6): 565-576.
  • Bruneton J. 1999. Pharmacognosy, Phytochemistry, Medicinal Plants (2rd edition). Lavoisier, Paris. Budak NH. Kumbul Doguc D. Savas CM. Seydim AC. Kok Tas T. Ciris, MI. Guzel Seydim ZB. 2011. Effects of apple cider vinegars produced with different techniques on blood lipids in high-cholesterol-fed rats. J Agric Food Chem. 59(12): 6638-6644.
  • Butnariu M. 2014. Detection of the polyphenolic components in Ribes nigrum L. Ann Agric Environ Med. 21(1).
  • Cheplick S, Kwon YI, Bhowmik P, Shetty K. 2010. Phenolic-linked variation in strawberry cultivars for potential dietary management of hyperglycemia and related complications of hypertension. Bioresour Technol. 101(1): 404-413.
  • Chowdhury SS, Islam MN, Jung HA, Choi JS. 2014. In vitro antidiabetic potential of the fruits of Crataegus pinnatifida. Res Pharm Sci. 9(1): 11-22.
  • Deveci E. Tel Çayan G, Karakurt S, Duru ME. 2020. Antioxidant, Cytotoxic, and Enzyme Inhibitory Activities of Agropyron repens and Crataegus monogyna Species. Eur J Biol. 79(2): 98-105.
  • Dönmez AA. 2004. The genus Crataegus L.(Rosaceae) with special reference to hybridisation and biodiversity in Turkey. Turk J Botany. 28(1): 29-37.
  • Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A, Muscogiur G. 2011. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev. 7(5): 313-324.
  • Forbes JM, Cooper ME. 2013. Mechanisms of diabetic complications. Physiol Rev. 93(1): 137-188.
  • Forman HJ, Zhang H. 2021. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 20(9): 689-709.
  • Haidara MA, Mikhailidis DP, Rateb MA, Ahmed ZA, Yassin HZ, Ibrahim IM, Rashed LA. 2009. Evaluation of the effect of oxidative stress and vitamin E supplementation on renal function in rats with streptozotocin-induced Type 1 diabetes. J Diabetes Complications. 23(2): 130-136.
  • Halliwell B. 2020. Reflections of an aging free radical. Free Radic Biol Med. 161: 234-245.
  • Hoogeveen EK, Kostense PJ, Beks PJ, Mackaay AJ, Jakobs C. Bouter LM, Stehouwer CD. 1998. Hyperhomocysteinemia is associated with an increased risk of cardiovascular disease, especially in non–insulin-dependent diabetes mellitus: a population-based study. Arterioscler Thromb Vasc Biol. 18(1): 133-138.
  • Kołodziej B, Sęczyk Ł, Sugier D, Kędzia B, Chernetskyy M, Gevrenova R, Henry M. 2019. Determination of the yield, saponin content and profile, antimicrobial and antioxidant activities of three Gypsophila species. Ind Crops Prod. 138: 111422.
  • Kucukatay V, Agar A, Gumuslu S, Yargicoglu P. 2007. Effect of sulfur dioxide on active and passive avoidance in experimental diabetes mellitus: relation to oxidant stress and antioxidant enzymes. Int J Neurosci. 117(8): 1091-1107.
  • Li T, Fu S, Huang X, Zhang X, Cui Y, Zhang Z, Li S. 2022. Biological properties and potential application of hawthorn and its major functional components: A review. J Funct Foods. 90: 104988.
  • Li T, Zhu J, Guo L, Shi X, Liu Y, Yang X. 2013. Differential effects of polyphenols-enriched extracts from hawthorn fruit peels and fleshes on cell cycle and apoptosis in human MCF-7 breast carcinoma cells. Food Chem. 141(2): 1008-1018.
  • Mecheri A, Amrani A, Benabderrahmane W, Bensouici C, Boubekri N, Benaissa O, Zama D, Benayache F, Benayache S. 2021. In Vitro pharmacological screening of antioxidant, photoprotective, cholinesterase, and α-glucosidase inhibitory activities of Algerian Crataegus oxyacantha Fruits and leaves extracts. Pharm Chem J. 54 (11): 1150-1156.
  • Miguez B, Gómez B, Gullón P, Gullón B, Alonso JL. 2016. Pectic oligosaccharides and other emerging prebiotics. Probiotics and prebiotics in human nutrition and health. 301-330.
  • Murathan ZT, Erbil N, Arslan M. 2016. Elazığ’da yetişen farklı Crataegus türlerinin biyoaktif bileşen, antioksidan, antibakteriyel ve mutajenik özelliklerinin karşılaştırılması. Bitlis Eren Univ Fen Bilim Derg. 11(1): 218-226.
  • OKeefe JH, Gheewala NM, O’Keef JO. 2008. Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol. 51(3): 249-255.
  • Özdemir N, Pashazadeh H, Zannou O, Koca I. 2022. Phytochemical content, and antioxidant activity, and volatile compounds associated with the aromatic property, of the vinegar produced from rosehip fruit (Rosa canina L.). Lwt Food Sci Technol. 154: 112716.
  • Özek G, 2018. Chemical diversity and biological potential of Tanacetum praeteritum subsp. praeteritum essential oils. J. Turk Chem Soc. A: Chem. 5(2): 493-510.
  • Palanisamy UD, Ling LT, Manaharan T, Appleton D. 2011. Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity. Food Chem. 127(1): 21-27.
  • Qiao A, Wang Y, Xiang L, Zhang Z, He X. 2015. Novel triterpenoids isolated from hawthorn berries functioned as antioxidant and antiproliferative activities. J Funct Foods. 13: 308-313.
  • Rashed K, Butnariu M. 2014. Antimicrobial and antioxidant activities of Bauhinia racemosa Lam. and chemical content. Iran J Pharm Res. 13(3): 1073.
  • Samad A, Azlan A, Ismail A. 2016. Therapeutic effects of vinegar: a review. Curr Opin Food Sci. 8: 56-61.
  • Sammari H, Jedidi S, Selmi H, Rtibi K. Jabri MA, Jridi M, Sebai H. 2021. Protective effects of Crataegus azarolus L. berries aqueous extract against castor oil induced diarrhea, oxidative stress, and inflammation in rat. Neurogastroenterol Motil. 33(6): e14065.
  • Xu W, Caracciolo B, Wang HX, Winblad Bäckman L, Qiu C, Fratiglioni L. 2010. Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes. 59(11): 2928-2935.
  • Yılmaz B, Karabudak E. 2018. Diyet Kaynaklı İleri Glikasyon Son Ürünleri ve Sağlık Üzerine Etkileri. Acıbadem Univ Sağlık Bilim Derg. (4): 349-356.
Yıl 2023, Cilt: 6 Sayı: 2, 104 - 108, 30.12.2023
https://doi.org/10.46239/ejbcs.1228402

Öz

Proje Numarası

1919B012102103

Kaynakça

  • Alirezalu, A. Ahmadi N, Salehi P, Sonboli A, Alirezalu K, Mousavi Khaneghah A, Barba FJ, Münekata P, Lorenzo JM. 2020. Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications. Foods. 9(4): 436.
  • Asgari M, Salehi I, Ranjbar K, Khosravi M, Zarrinkalam E, 2022. Interval training and Crataegus persica ameliorate diabetic nephropathy via miR-126/Nrf-2 mediated inhibition of stress oxidative in rats with diabetes after myocardial ischemia-reperfusion injury. Biomed. Pharmacother. 153: 113411.
  • Bakir S, Devecioglu D, Kayacan S, Toydemir G, Karbancioglu-Guler F, Capanoglu E. 2017. Investigating the antioxidant and antimicrobial activities of different vinegars. Eur Food Res Technol. 243(12): 2083-2094.
  • Berghe WV. 2012. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol. Res. 65(6): 565-576.
  • Bruneton J. 1999. Pharmacognosy, Phytochemistry, Medicinal Plants (2rd edition). Lavoisier, Paris. Budak NH. Kumbul Doguc D. Savas CM. Seydim AC. Kok Tas T. Ciris, MI. Guzel Seydim ZB. 2011. Effects of apple cider vinegars produced with different techniques on blood lipids in high-cholesterol-fed rats. J Agric Food Chem. 59(12): 6638-6644.
  • Butnariu M. 2014. Detection of the polyphenolic components in Ribes nigrum L. Ann Agric Environ Med. 21(1).
  • Cheplick S, Kwon YI, Bhowmik P, Shetty K. 2010. Phenolic-linked variation in strawberry cultivars for potential dietary management of hyperglycemia and related complications of hypertension. Bioresour Technol. 101(1): 404-413.
  • Chowdhury SS, Islam MN, Jung HA, Choi JS. 2014. In vitro antidiabetic potential of the fruits of Crataegus pinnatifida. Res Pharm Sci. 9(1): 11-22.
  • Deveci E. Tel Çayan G, Karakurt S, Duru ME. 2020. Antioxidant, Cytotoxic, and Enzyme Inhibitory Activities of Agropyron repens and Crataegus monogyna Species. Eur J Biol. 79(2): 98-105.
  • Dönmez AA. 2004. The genus Crataegus L.(Rosaceae) with special reference to hybridisation and biodiversity in Turkey. Turk J Botany. 28(1): 29-37.
  • Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A, Muscogiur G. 2011. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev. 7(5): 313-324.
  • Forbes JM, Cooper ME. 2013. Mechanisms of diabetic complications. Physiol Rev. 93(1): 137-188.
  • Forman HJ, Zhang H. 2021. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 20(9): 689-709.
  • Haidara MA, Mikhailidis DP, Rateb MA, Ahmed ZA, Yassin HZ, Ibrahim IM, Rashed LA. 2009. Evaluation of the effect of oxidative stress and vitamin E supplementation on renal function in rats with streptozotocin-induced Type 1 diabetes. J Diabetes Complications. 23(2): 130-136.
  • Halliwell B. 2020. Reflections of an aging free radical. Free Radic Biol Med. 161: 234-245.
  • Hoogeveen EK, Kostense PJ, Beks PJ, Mackaay AJ, Jakobs C. Bouter LM, Stehouwer CD. 1998. Hyperhomocysteinemia is associated with an increased risk of cardiovascular disease, especially in non–insulin-dependent diabetes mellitus: a population-based study. Arterioscler Thromb Vasc Biol. 18(1): 133-138.
  • Kołodziej B, Sęczyk Ł, Sugier D, Kędzia B, Chernetskyy M, Gevrenova R, Henry M. 2019. Determination of the yield, saponin content and profile, antimicrobial and antioxidant activities of three Gypsophila species. Ind Crops Prod. 138: 111422.
  • Kucukatay V, Agar A, Gumuslu S, Yargicoglu P. 2007. Effect of sulfur dioxide on active and passive avoidance in experimental diabetes mellitus: relation to oxidant stress and antioxidant enzymes. Int J Neurosci. 117(8): 1091-1107.
  • Li T, Fu S, Huang X, Zhang X, Cui Y, Zhang Z, Li S. 2022. Biological properties and potential application of hawthorn and its major functional components: A review. J Funct Foods. 90: 104988.
  • Li T, Zhu J, Guo L, Shi X, Liu Y, Yang X. 2013. Differential effects of polyphenols-enriched extracts from hawthorn fruit peels and fleshes on cell cycle and apoptosis in human MCF-7 breast carcinoma cells. Food Chem. 141(2): 1008-1018.
  • Mecheri A, Amrani A, Benabderrahmane W, Bensouici C, Boubekri N, Benaissa O, Zama D, Benayache F, Benayache S. 2021. In Vitro pharmacological screening of antioxidant, photoprotective, cholinesterase, and α-glucosidase inhibitory activities of Algerian Crataegus oxyacantha Fruits and leaves extracts. Pharm Chem J. 54 (11): 1150-1156.
  • Miguez B, Gómez B, Gullón P, Gullón B, Alonso JL. 2016. Pectic oligosaccharides and other emerging prebiotics. Probiotics and prebiotics in human nutrition and health. 301-330.
  • Murathan ZT, Erbil N, Arslan M. 2016. Elazığ’da yetişen farklı Crataegus türlerinin biyoaktif bileşen, antioksidan, antibakteriyel ve mutajenik özelliklerinin karşılaştırılması. Bitlis Eren Univ Fen Bilim Derg. 11(1): 218-226.
  • OKeefe JH, Gheewala NM, O’Keef JO. 2008. Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol. 51(3): 249-255.
  • Özdemir N, Pashazadeh H, Zannou O, Koca I. 2022. Phytochemical content, and antioxidant activity, and volatile compounds associated with the aromatic property, of the vinegar produced from rosehip fruit (Rosa canina L.). Lwt Food Sci Technol. 154: 112716.
  • Özek G, 2018. Chemical diversity and biological potential of Tanacetum praeteritum subsp. praeteritum essential oils. J. Turk Chem Soc. A: Chem. 5(2): 493-510.
  • Palanisamy UD, Ling LT, Manaharan T, Appleton D. 2011. Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity. Food Chem. 127(1): 21-27.
  • Qiao A, Wang Y, Xiang L, Zhang Z, He X. 2015. Novel triterpenoids isolated from hawthorn berries functioned as antioxidant and antiproliferative activities. J Funct Foods. 13: 308-313.
  • Rashed K, Butnariu M. 2014. Antimicrobial and antioxidant activities of Bauhinia racemosa Lam. and chemical content. Iran J Pharm Res. 13(3): 1073.
  • Samad A, Azlan A, Ismail A. 2016. Therapeutic effects of vinegar: a review. Curr Opin Food Sci. 8: 56-61.
  • Sammari H, Jedidi S, Selmi H, Rtibi K. Jabri MA, Jridi M, Sebai H. 2021. Protective effects of Crataegus azarolus L. berries aqueous extract against castor oil induced diarrhea, oxidative stress, and inflammation in rat. Neurogastroenterol Motil. 33(6): e14065.
  • Xu W, Caracciolo B, Wang HX, Winblad Bäckman L, Qiu C, Fratiglioni L. 2010. Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes. 59(11): 2928-2935.
  • Yılmaz B, Karabudak E. 2018. Diyet Kaynaklı İleri Glikasyon Son Ürünleri ve Sağlık Üzerine Etkileri. Acıbadem Univ Sağlık Bilim Derg. (4): 349-356.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makaleleri
Yazarlar

Feyza Akgün 0000-0001-7111-4003

Nigar Sıla Tuğlu 0000-0001-6770-7244

Yasemin Gülbahar Açıl 0000-0001-8525-3610

Nuraniye Eruygur 0000-0002-4674-7009

Proje Numarası 1919B012102103
Yayımlanma Tarihi 30 Aralık 2023
Kabul Tarihi 16 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 2

Kaynak Göster

APA Akgün, F., Tuğlu, N. S., Açıl, Y. G., Eruygur, N. (2023). Investigation of in vitro antidiabetic and antioxidant activity of hawthorn vinegar obtained from Endemic Crataegus tanacetifolia (Poir.) Pers. Eurasian Journal of Biological and Chemical Sciences, 6(2), 104-108. https://doi.org/10.46239/ejbcs.1228402
AMA Akgün F, Tuğlu NS, Açıl YG, Eruygur N. Investigation of in vitro antidiabetic and antioxidant activity of hawthorn vinegar obtained from Endemic Crataegus tanacetifolia (Poir.) Pers. Eurasian J. Bio. Chem. Sci. Aralık 2023;6(2):104-108. doi:10.46239/ejbcs.1228402
Chicago Akgün, Feyza, Nigar Sıla Tuğlu, Yasemin Gülbahar Açıl, ve Nuraniye Eruygur. “) Pers”. Eurasian Journal of Biological and Chemical Sciences 6, sy. 2 (Aralık 2023): 104-8. https://doi.org/10.46239/ejbcs.1228402.
EndNote Akgün F, Tuğlu NS, Açıl YG, Eruygur N (01 Aralık 2023) Investigation of in vitro antidiabetic and antioxidant activity of hawthorn vinegar obtained from Endemic Crataegus tanacetifolia (Poir.) Pers. Eurasian Journal of Biological and Chemical Sciences 6 2 104–108.
IEEE F. Akgün, N. S. Tuğlu, Y. G. Açıl, ve N. Eruygur, “) Pers”., Eurasian J. Bio. Chem. Sci., c. 6, sy. 2, ss. 104–108, 2023, doi: 10.46239/ejbcs.1228402.
ISNAD Akgün, Feyza vd. “) Pers”. Eurasian Journal of Biological and Chemical Sciences 6/2 (Aralık 2023), 104-108. https://doi.org/10.46239/ejbcs.1228402.
JAMA Akgün F, Tuğlu NS, Açıl YG, Eruygur N. Investigation of in vitro antidiabetic and antioxidant activity of hawthorn vinegar obtained from Endemic Crataegus tanacetifolia (Poir.) Pers. Eurasian J. Bio. Chem. Sci. 2023;6:104–108.
MLA Akgün, Feyza vd. “) Pers”. Eurasian Journal of Biological and Chemical Sciences, c. 6, sy. 2, 2023, ss. 104-8, doi:10.46239/ejbcs.1228402.
Vancouver Akgün F, Tuğlu NS, Açıl YG, Eruygur N. Investigation of in vitro antidiabetic and antioxidant activity of hawthorn vinegar obtained from Endemic Crataegus tanacetifolia (Poir.) Pers. Eurasian J. Bio. Chem. Sci. 2023;6(2):104-8.