Araştırma Makalesi
BibTex RIS Kaynak Göster

A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid

Yıl 2020, Cilt: 4 Sayı: 1, 22 - 37, 30.06.2020
https://doi.org/10.32571/ijct.697728

Öz

This study aims a numerical investigation of steady, laminar mixed convection heat transfer in a two-dimensional cavity by employing a finite volume method with a fourth-order approximation of convective terms, when nanoparticles are present. With the aim of solving two-dimensional momentum and energy conservation equations, a finite volume method on a non-uniform staggered grid is utilized. Second-order central differences are utilized to approximate diffusion terms in momentum and energy equations, while the development of a non-uniform four-point fourth-order interpolation (FPFOI) scheme is performed for the convective terms. Continuity and momentum equations are solved using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. In order to evaluate heat transfer enhancement, various viscosity and thermal conductivity models were employed. Numerical solution results were obtained in different models in cases where Gr number is between 103 and 105, Re number is 10-100-1000 and nanoparticle volumetric fraction is 0-5%.

Destekleyen Kurum

The Scientific Research Project Fund of Sivas Cumhuriyet University

Proje Numarası

M-489

Teşekkür

The Scientific Research Project Fund of Sivas Cumhuriyet University provided its support for the present research under the project number M-489.

Kaynakça

  • 1. Esfe, M. H.; Saedodin, S.; Malekshah, E. H.; Babaie, A.; Rostamian, H. J. Therm. Anal. and Calorim. 2019, 135 (1), 813-859.
  • 2. Tiwari, R. K.; Das, M. K. Int. J. Heat Mass Transf. 2007, 50, 2002-2018.
  • 3. Talebi, F.; Mahmoudi, A. H.; Shahi, M. Int. Commun. Heat Mass Tran. 2010, 37 (1), 79-90.
  • 4. Arefmanesh, A.; Mahmoodi, M. Int. J. Therm. Sci. 2011, 50 (9), 1706-1719.
  • 5. Brinkman, H. C. J. Chem. Phys. 1952, 20 (4), 571-582.
  • 6. Maiga, S. E. B.; Nguyen, C. T.; Galanis, N.; Roy, G. Heat transfer enhancement in forced convection laminar tube flow by using nanofluids, Proceedings of the International Symposium on Advances in Computational Heat Transfer III, Paper CHT-040101, p. 24, Begell House Publishers, 2004.
  • 7. Chamkha, A. J.; Rashad, A. M.; Armaghani, T.; Mansour, M. A. J. Therm. Anal. Calorim. 2018, 132 (2), 1291-1306.
  • 8. Kapil, M.; Roy, D., Sharma, B., Rana, S. C., Pramanik, S., Barman, R. N. Mater. Today-Proc. 2019, 11, 700-707.
  • 9. Abu-Nada, E.; Masoud, Z.; Hijazi, A. Int. Commun. Heat Mass Tran. 2008, 35 (5), 657-665.
  • 10. Kim, C. S.; Okuyama, K.; Fernández de la Mora, J. Aerosol Sci. Tech. 2003, 37 (10), 791-803.
  • 11. Yapici, K.; Obut, S. Int. J. Numer. Method H. 2015, 25 (5), 998-1029.
  • 12. Einstein, A. Investigations on the theory of the Brownian movement, Dover Books, 1956.
  • 13. Maxwell, J.C. A Treatise on Electricity and Magnetism. Third ed Clarendon Press, Oxford, 1904.
  • 14. Chandrasekar, M.; Suresh, S.; Chandra Bose, A. Exp. Therm. Fluid Sci. 2010, 34 (2), 210-216.
  • 15. Öğüt, E. B.; Kahveci, K. J. Mol. Liq. 2016, 224, 338-345.
  • 16. Yapici, K.; Obut, S. Heat Transfer Eng. 2015, 36 (3), 303-314.
  • 17. Heydari, M. R.; Esfe, M. H.; Hajmohammad, M. H.; Akbari, M.; Esforjani, S. S. M. Heat Transf. Res. 2014, 45 (1), 75-95.
  • 18. Taamneh, Y.; Bataineh, K., Stroj. Vestn-J. Mech. E. 2017, 63 (6), 383-393.
  • 19. Lauriat, G. Appl. Therm. Eng. 2018, 129, 1039-1057.
Yıl 2020, Cilt: 4 Sayı: 1, 22 - 37, 30.06.2020
https://doi.org/10.32571/ijct.697728

Öz

Proje Numarası

M-489

Kaynakça

  • 1. Esfe, M. H.; Saedodin, S.; Malekshah, E. H.; Babaie, A.; Rostamian, H. J. Therm. Anal. and Calorim. 2019, 135 (1), 813-859.
  • 2. Tiwari, R. K.; Das, M. K. Int. J. Heat Mass Transf. 2007, 50, 2002-2018.
  • 3. Talebi, F.; Mahmoudi, A. H.; Shahi, M. Int. Commun. Heat Mass Tran. 2010, 37 (1), 79-90.
  • 4. Arefmanesh, A.; Mahmoodi, M. Int. J. Therm. Sci. 2011, 50 (9), 1706-1719.
  • 5. Brinkman, H. C. J. Chem. Phys. 1952, 20 (4), 571-582.
  • 6. Maiga, S. E. B.; Nguyen, C. T.; Galanis, N.; Roy, G. Heat transfer enhancement in forced convection laminar tube flow by using nanofluids, Proceedings of the International Symposium on Advances in Computational Heat Transfer III, Paper CHT-040101, p. 24, Begell House Publishers, 2004.
  • 7. Chamkha, A. J.; Rashad, A. M.; Armaghani, T.; Mansour, M. A. J. Therm. Anal. Calorim. 2018, 132 (2), 1291-1306.
  • 8. Kapil, M.; Roy, D., Sharma, B., Rana, S. C., Pramanik, S., Barman, R. N. Mater. Today-Proc. 2019, 11, 700-707.
  • 9. Abu-Nada, E.; Masoud, Z.; Hijazi, A. Int. Commun. Heat Mass Tran. 2008, 35 (5), 657-665.
  • 10. Kim, C. S.; Okuyama, K.; Fernández de la Mora, J. Aerosol Sci. Tech. 2003, 37 (10), 791-803.
  • 11. Yapici, K.; Obut, S. Int. J. Numer. Method H. 2015, 25 (5), 998-1029.
  • 12. Einstein, A. Investigations on the theory of the Brownian movement, Dover Books, 1956.
  • 13. Maxwell, J.C. A Treatise on Electricity and Magnetism. Third ed Clarendon Press, Oxford, 1904.
  • 14. Chandrasekar, M.; Suresh, S.; Chandra Bose, A. Exp. Therm. Fluid Sci. 2010, 34 (2), 210-216.
  • 15. Öğüt, E. B.; Kahveci, K. J. Mol. Liq. 2016, 224, 338-345.
  • 16. Yapici, K.; Obut, S. Heat Transfer Eng. 2015, 36 (3), 303-314.
  • 17. Heydari, M. R.; Esfe, M. H.; Hajmohammad, M. H.; Akbari, M.; Esforjani, S. S. M. Heat Transf. Res. 2014, 45 (1), 75-95.
  • 18. Taamneh, Y.; Bataineh, K., Stroj. Vestn-J. Mech. E. 2017, 63 (6), 383-393.
  • 19. Lauriat, G. Appl. Therm. Eng. 2018, 129, 1039-1057.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makale
Yazarlar

Neşe Keklikcioğlu Çakmak 0000-0002-8634-9232

Hasan Hüseyin Durmazuçar Bu kişi benim 0000-0003-2454-7003

Kerim Yapıcı Bu kişi benim 0000-0002-3902-9375

Proje Numarası M-489
Yayımlanma Tarihi 30 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 1

Kaynak Göster

APA Keklikcioğlu Çakmak, N., Durmazuçar, H. H., & Yapıcı, K. (2020). A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid. International Journal of Chemistry and Technology, 4(1), 22-37. https://doi.org/10.32571/ijct.697728
AMA Keklikcioğlu Çakmak N, Durmazuçar HH, Yapıcı K. A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid. Int. J. Chem. Technol. Haziran 2020;4(1):22-37. doi:10.32571/ijct.697728
Chicago Keklikcioğlu Çakmak, Neşe, Hasan Hüseyin Durmazuçar, ve Kerim Yapıcı. “A Numerical Study of Mixed Convection Heat Transfer in a Lid-Driven Cavity Using Al2O3-Water Nanofluid”. International Journal of Chemistry and Technology 4, sy. 1 (Haziran 2020): 22-37. https://doi.org/10.32571/ijct.697728.
EndNote Keklikcioğlu Çakmak N, Durmazuçar HH, Yapıcı K (01 Haziran 2020) A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid. International Journal of Chemistry and Technology 4 1 22–37.
IEEE N. Keklikcioğlu Çakmak, H. H. Durmazuçar, ve K. Yapıcı, “A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid”, Int. J. Chem. Technol., c. 4, sy. 1, ss. 22–37, 2020, doi: 10.32571/ijct.697728.
ISNAD Keklikcioğlu Çakmak, Neşe vd. “A Numerical Study of Mixed Convection Heat Transfer in a Lid-Driven Cavity Using Al2O3-Water Nanofluid”. International Journal of Chemistry and Technology 4/1 (Haziran 2020), 22-37. https://doi.org/10.32571/ijct.697728.
JAMA Keklikcioğlu Çakmak N, Durmazuçar HH, Yapıcı K. A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid. Int. J. Chem. Technol. 2020;4:22–37.
MLA Keklikcioğlu Çakmak, Neşe vd. “A Numerical Study of Mixed Convection Heat Transfer in a Lid-Driven Cavity Using Al2O3-Water Nanofluid”. International Journal of Chemistry and Technology, c. 4, sy. 1, 2020, ss. 22-37, doi:10.32571/ijct.697728.
Vancouver Keklikcioğlu Çakmak N, Durmazuçar HH, Yapıcı K. A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid. Int. J. Chem. Technol. 2020;4(1):22-37.