Araştırma Makalesi
BibTex RIS Kaynak Göster

MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH

Yıl 2021, Cilt: 45 Sayı: 2, 212 - 226, 31.05.2021
https://doi.org/10.33483/jfpau.866876

Öz

Objective: Tuberculosis as a global epidemic since years due to vigorously changing dynamics of its causal pathogen, Mycobacterium tuberculosis H37Rv (M. tuberculosis). This pathogen has worsened the situation therefore making it so challenging and hard to overcome. In this manuscript, we have used the computational approaches for ATP-binding protein of Mycobacterium tuberculosis H37Rv (M. tuberculosis) that helps in transportation of metal ion across the plasma membranes and resultant generating an electrochemical gradient. Rv1463 a hypothetical protein possessing ATP binding motif (WalkerA) (GXXXXGKS/T), and (Walker B) (DEXXXXXD) and significance of these motifs in ATP binding and hydrolyzing activities. It shows the ATP-binding property by interacting with transcriptional regulatory protein and showing the interacted compounds as magnesium (Mg) and Adenosine di phosphate (ADP).
Material and Method: The structure of Rv1463 has been build by the Swiss Model webserver and molecular docking was done using AutoDock.
Result and Discussion: In the mutational analysis which confirms that D175 residues was common in all interactions which may change the protein conformation. These computational approaches can be helpful in developing new strategies in treatment of this disease.

Teşekkür

The author Md. Amjad Beg also acknowledges University Grants Commission Maulana Azad National Fellowship for the support and Jamia Millia Islamia University.

Kaynakça

  • 1. Simmons, J.D., Stein, C.M., Seshadri, C., Campo, M., Alter, G., Fortune, S., Schurr, E., Wallis, R.S., Churchyard, G., Mayanja-Kizza, H., Boom, W.H., Hawn, T.R. (2018). Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol, 18(9), 575-589.
  • 2. Brennan, P.J. (2003). Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb), 83(1‒3), 91‒97.
  • 3. Beg, M.A., Shivangi Thakur S.C., Meena, L.S. (2018). Structural Prediction and Mutational Analysis of Rv3906c Gene of Mycobacterium tuberculosis H37Rv to Determine Its Essentiality in Survival. Adv Bioinformatics, 6152014.
  • 4. Glaziou, P., Floyd, K., Raviglione, M.C. (2018). Global Epidemiology of Tuberculosis. Semin Respir Crit Care Med, 39(3), 271-285.
  • 5. Ndlovu, H., Marakalala, M.J. (2016). Granulomas and Inflammation: Host-Directed Therapies for Tuberculosis. Front Immunol. 7, 434.
  • 6. Silva Miranda, M., Breiman, A., Allain, S., Deknuydt, F., Altare, F. (2012). The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol, 139127.
  • 7. Russell, D.G., Cardona, P.J., Kim, M.J., Allain, S., Altare, F. (2009). Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol, 10(9), 943‒948.
  • 8. Gandhi, N.R., Nunn, P., Dheda, K., Schaaf, H.S., Zignol, M., van Soolingen, D., Jensen, P., Bayona, J. (2010). Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet, 375(9728),1830-1843.
  • 9. Shivangi, Beg, A., Meena, S., Meena, L.S. (2017). To Find out the Essentiality of Rv0526 Gene in Virulence of Mycobacterium Tuberculosis by using in silico Approaches. Open J Bac, 1(1),013‒015.
  • 10. Qiu, W., Liesa, M., Carpenter, E.P., Shirihai, O.S. (2015). ATP Binding and Hydrolysis Properties of ABCB10 and Their Regulation by Glutathione. PLoS One, 10(6),e0129772.
  • 11. Braibant, M., Gilot, P., Content, J. (2000). The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev, 24(4),449-467.
  • 12. Cassio Barreto de Oliveira, M., Balan, A. (2020). The ATP-Binding Cassette (ABC) Transport Systems in Mycobacterium tuberculosis: Structure, Function, and Possible Targets for Therapeutics. Biology (Basel), 9(12),E443.
  • 13. Soni, D.K., Dubey, S.K., Bhatnagar, R. (2020). ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: target for drug and vaccine development. Emerg Microbes Infect, 27;9(1),207-220.
  • 14. Balakrishnan, L., Venter, H., Shilling, R.A., van Veen, H.W. (2004). Reversible transport by the ATP-binding cassette multidrug export pump LmrA: ATP synthesis at the expense of downhill ethidium uptake. J Biol Chem, 279(12),11273-11280.
  • 15. Ambudkar, S.V., Kim, I.W., Xia, D., Sauna, Z.E. (2006). The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett, 580(4),1049-1055.
  • 16. Orelle, C., Dalmas, O., Gros, P., Di Pietro, A., Jault, J.M. (2003). The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATP-binding cassette transporter BmrA. J Biol Chem, 278(47),47002-47008.
  • 17. Chen, M., Abele, R., Tampé, R. (2004). Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP). J Biol Chem, 279(44),46073-46081.
  • 18. Vinothkumar, K.R., Henderson, R. (2010). Structures of membrane proteins. Q Rev Biophys, 43(1),65-158.
  • 19. Marinko, J.T., Huang, H., Penn, W.D., Capra, J.A., Schlebach, J.P., Sanders, C.R. (2019). Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev, 119(9),5537-5606.
  • 20. Hung, L.W., Wang, I.X., Nikaido, K., Liu, P.Q., Ames, G.F., Kim, S.H. (1998). Crystal structure of the ATP-binding subunit of an ABC transporter. Nature, 396(6712),703-707.
  • 21. Kapopoulou, A., Lew, J.M., Cole, S.T. (2011). The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis (Edinb), 91(1),8-13.
  • 22. Shivangi, Beg, M.A., Meena, L.S. (2018). Insights of Rv2921c (Ftsy) Gene of Mycobacterium tuberculosis H37Rv To Prove Its Significance by Computational Approach. Biomed J Sci & Tech Res, 12(2),9147‒9157.
  • 23. Beg, M.A., Shivangi, Thakur, S.C., Meena, L.S. (2019). Systematical analysis to assist the significance of Rv1907c gene with the pathogenic potentials of Mycobacterium tuberculosis H37Rv. J Biotechnol Biomat, 8(4),286.
  • 24. Sievers, F., Higgins, D.G. (2014). Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol, 1079,105-116.
  • 25. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucleic Acids Res, 31(1),258-261.
  • 26. Beg, M.A., Athar, F., Meena, L.S. (2019). Significant Aspect of Rv0378 Gene of Mycobacterium tuberculosis H37Rv Reveals the PE_PGRS like Properties by Computational Approaches. J Biotechnol Biomed, 2(1),024‒039.
  • 27. Rashid, M., Saha, S., Raghava, G.P. (2007). Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics, 8,337.
  • 28. Yu, C.S., Cheng, C.W., Su, W.C., Chang, K.C., Huang, S.W., Hwang, J.K., Lu, C.H. (2014). CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One, 9(6),e99368.
  • 29. Beg, M.A., Shivangi, Athar, F., Meena, L.S. (2018). Structural and Functional Annotation of Rv1514c Gene of Mycobacterium tuberculosis H37Rv As Glycosyl Transferases. J Adv Res Biotech, 3(2),1‒9.
  • 30. Bowie, J.U., Lüthy, R., Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016),164–170.
  • 31. Buchan, D.W.A., Jones, D.T. (2019). The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res, 47(W1),W402-W407.
  • 32. Beg, M.A., Thakur, S.C., Athar, F. (2020). Computational annotations of mycobacterial Rv3632 that confers its efficient function in cell wall biogenesis. J Bacteriol Mycol Open Access, 8(2),46‒53.
  • 33. Ma J, Wang S, Zhao F, Xu J. Protein threading using context-specific alignment potential. Bioinformatics, 2013;29(13), 257-265.
  • 34. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L., Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res, 42(Web Server issue),W252-8.
  • 35. Beg, M.A., Thakur, S.C., Athar, F. (2020). Molecular modeling and in silico characterization of mycobacterial Rv3101c and Rv3102c proteins: prerequisite molecular target in cell division. Pharm Pharmacol Int J, 8(4),234‒243.
  • 36. Ho, B.K., Brasseur, R. (2005). The Ramachandran plots of glycine and pre-proline. BMC Struct Biol, 5,14.
  • 37. Cristobal, S., Zemla, A., Fischer, D., Rychlewski, L., Elofsson, A. (2001). A study of quality measures for protein threading models. BMC Bioinformatics, 2,5.
  • 38. Wallner, B., Elofsson, A. (2003). Can correct protein models be identified? Protein Sci, 12(5),1073‒1086.
  • 39. Beg, M.A., Athar, F. (2020). Anti-HIV and Anti-HCV drugs are the putative inhibitors of RNA-dependent-RNA polymerase activity of NSP12 of the SARS CoV- 2 (COVID-19). Pharm Pharmacol Int J, 8(3), 163‒172.
  • 40. Trott, O., Olson, A.J. (2010). Auto Dock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31(2), 455–461.
  • 41. Beg, M.A., Athar, F. (2020). Pharmacokinetic and molecular docking studies of Achyranthes aspera phytocompounds to exploring potential anti-tuberculosis activity. J Bacteriol Mycol Open Access, 8(1), 18‒27.
  • 42. Biovia, D.S. (2015). Discovery studio modelling environment. San Diego. Dassault Systems.
  • 43. Beg, M.A., Athar, F. (2020). Computational method in COVID-19: Revelation of Preliminary mutations of RdRp of SARS CoV-2 that build new horizons for therapeutic development. J Hum Virol Retrovirolog, 8(3), 62‒72.
  • 44. Rodrigues, C.H., Pires, D.E., Ascher, D.B. (2018). DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res, 46(W1), W350–W355.
  • 45. Shivangi, Beg, M.A., Meena, L.S. (2019). Mutational effects on structural stability of SRP pathway dependent cotranslational protein ftsY of Mycobacterium tuberculosis H37Rv. Gene Reports, 15, 100395.

RV1463 OLASI KORUNMUŞ ATP BAĞLAYICI PROTEİNİN HESAPLAMALI YAKLAŞIMLA MOLEKÜLER TEMEL BÜTÜNLEŞTİRİCİ ANALİZİ

Yıl 2021, Cilt: 45 Sayı: 2, 212 - 226, 31.05.2021
https://doi.org/10.33483/jfpau.866876

Öz

Amaç: Tüberküloz, patojeni olan Mycobacterium tuberculosis H37Rv'nin (M. tuberculosis) şiddetle değişen dinamiği nedeniyle yıllardan beri küresel bir salgın olmuştur. Bu patojenin durumu daha da kötüleşmektedir ve üstesinden gelmek zorlaşmaktadır. Bu yazıda, metal iyonunun plazma membranları boyunca taşınmasına yardımcı olan ve sonuçta bir elektrokimyasal gradyan oluşturan Mycobacterium tuberculosis H37Rv'nin (M. tuberculosis) ATP bağlayıcı proteini için hesaplama yaklaşımlarını kullandı. Rv1463, ATP bağlama motifi (WalkerA) (GXXXXGKS / T) ve (Walkera) (DEXXXXXD) içeren varsayımsal bir protein ve bu motiflerin ATP bağlama ve hidrolizleme aktivitelerindeki önemi üzerinde duruldu. ATP bağlanma özelliğini, transkripsiyonel düzenleyici protein ile etkileşime girerek ve etkileşimli bileşikler magnezyum (Mg) ve Adenosin di fosfat (ADP) ile gösterir.
Gereç ve Yöntem: Rv1463'ün yapısı SwissModel web sunucusu tarafından oluşturuldu ve AutoDock kullanılarak moleküler yerleştirme yapıldı.
Sonuç ve Tartışma: Mutasyonel analizde, D175 kalıntılarının protein yapısını değiştirebilecek tüm etkileşimlerde ortak olduğunu doğrulandı. Bu hesaplama yaklaşımları, bu hastalığın tedavisinde yeni stratejiler geliştirmede yardımcı olabilir.

Kaynakça

  • 1. Simmons, J.D., Stein, C.M., Seshadri, C., Campo, M., Alter, G., Fortune, S., Schurr, E., Wallis, R.S., Churchyard, G., Mayanja-Kizza, H., Boom, W.H., Hawn, T.R. (2018). Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol, 18(9), 575-589.
  • 2. Brennan, P.J. (2003). Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb), 83(1‒3), 91‒97.
  • 3. Beg, M.A., Shivangi Thakur S.C., Meena, L.S. (2018). Structural Prediction and Mutational Analysis of Rv3906c Gene of Mycobacterium tuberculosis H37Rv to Determine Its Essentiality in Survival. Adv Bioinformatics, 6152014.
  • 4. Glaziou, P., Floyd, K., Raviglione, M.C. (2018). Global Epidemiology of Tuberculosis. Semin Respir Crit Care Med, 39(3), 271-285.
  • 5. Ndlovu, H., Marakalala, M.J. (2016). Granulomas and Inflammation: Host-Directed Therapies for Tuberculosis. Front Immunol. 7, 434.
  • 6. Silva Miranda, M., Breiman, A., Allain, S., Deknuydt, F., Altare, F. (2012). The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol, 139127.
  • 7. Russell, D.G., Cardona, P.J., Kim, M.J., Allain, S., Altare, F. (2009). Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol, 10(9), 943‒948.
  • 8. Gandhi, N.R., Nunn, P., Dheda, K., Schaaf, H.S., Zignol, M., van Soolingen, D., Jensen, P., Bayona, J. (2010). Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet, 375(9728),1830-1843.
  • 9. Shivangi, Beg, A., Meena, S., Meena, L.S. (2017). To Find out the Essentiality of Rv0526 Gene in Virulence of Mycobacterium Tuberculosis by using in silico Approaches. Open J Bac, 1(1),013‒015.
  • 10. Qiu, W., Liesa, M., Carpenter, E.P., Shirihai, O.S. (2015). ATP Binding and Hydrolysis Properties of ABCB10 and Their Regulation by Glutathione. PLoS One, 10(6),e0129772.
  • 11. Braibant, M., Gilot, P., Content, J. (2000). The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev, 24(4),449-467.
  • 12. Cassio Barreto de Oliveira, M., Balan, A. (2020). The ATP-Binding Cassette (ABC) Transport Systems in Mycobacterium tuberculosis: Structure, Function, and Possible Targets for Therapeutics. Biology (Basel), 9(12),E443.
  • 13. Soni, D.K., Dubey, S.K., Bhatnagar, R. (2020). ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: target for drug and vaccine development. Emerg Microbes Infect, 27;9(1),207-220.
  • 14. Balakrishnan, L., Venter, H., Shilling, R.A., van Veen, H.W. (2004). Reversible transport by the ATP-binding cassette multidrug export pump LmrA: ATP synthesis at the expense of downhill ethidium uptake. J Biol Chem, 279(12),11273-11280.
  • 15. Ambudkar, S.V., Kim, I.W., Xia, D., Sauna, Z.E. (2006). The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett, 580(4),1049-1055.
  • 16. Orelle, C., Dalmas, O., Gros, P., Di Pietro, A., Jault, J.M. (2003). The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATP-binding cassette transporter BmrA. J Biol Chem, 278(47),47002-47008.
  • 17. Chen, M., Abele, R., Tampé, R. (2004). Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP). J Biol Chem, 279(44),46073-46081.
  • 18. Vinothkumar, K.R., Henderson, R. (2010). Structures of membrane proteins. Q Rev Biophys, 43(1),65-158.
  • 19. Marinko, J.T., Huang, H., Penn, W.D., Capra, J.A., Schlebach, J.P., Sanders, C.R. (2019). Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev, 119(9),5537-5606.
  • 20. Hung, L.W., Wang, I.X., Nikaido, K., Liu, P.Q., Ames, G.F., Kim, S.H. (1998). Crystal structure of the ATP-binding subunit of an ABC transporter. Nature, 396(6712),703-707.
  • 21. Kapopoulou, A., Lew, J.M., Cole, S.T. (2011). The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis (Edinb), 91(1),8-13.
  • 22. Shivangi, Beg, M.A., Meena, L.S. (2018). Insights of Rv2921c (Ftsy) Gene of Mycobacterium tuberculosis H37Rv To Prove Its Significance by Computational Approach. Biomed J Sci & Tech Res, 12(2),9147‒9157.
  • 23. Beg, M.A., Shivangi, Thakur, S.C., Meena, L.S. (2019). Systematical analysis to assist the significance of Rv1907c gene with the pathogenic potentials of Mycobacterium tuberculosis H37Rv. J Biotechnol Biomat, 8(4),286.
  • 24. Sievers, F., Higgins, D.G. (2014). Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol, 1079,105-116.
  • 25. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucleic Acids Res, 31(1),258-261.
  • 26. Beg, M.A., Athar, F., Meena, L.S. (2019). Significant Aspect of Rv0378 Gene of Mycobacterium tuberculosis H37Rv Reveals the PE_PGRS like Properties by Computational Approaches. J Biotechnol Biomed, 2(1),024‒039.
  • 27. Rashid, M., Saha, S., Raghava, G.P. (2007). Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics, 8,337.
  • 28. Yu, C.S., Cheng, C.W., Su, W.C., Chang, K.C., Huang, S.W., Hwang, J.K., Lu, C.H. (2014). CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One, 9(6),e99368.
  • 29. Beg, M.A., Shivangi, Athar, F., Meena, L.S. (2018). Structural and Functional Annotation of Rv1514c Gene of Mycobacterium tuberculosis H37Rv As Glycosyl Transferases. J Adv Res Biotech, 3(2),1‒9.
  • 30. Bowie, J.U., Lüthy, R., Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016),164–170.
  • 31. Buchan, D.W.A., Jones, D.T. (2019). The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res, 47(W1),W402-W407.
  • 32. Beg, M.A., Thakur, S.C., Athar, F. (2020). Computational annotations of mycobacterial Rv3632 that confers its efficient function in cell wall biogenesis. J Bacteriol Mycol Open Access, 8(2),46‒53.
  • 33. Ma J, Wang S, Zhao F, Xu J. Protein threading using context-specific alignment potential. Bioinformatics, 2013;29(13), 257-265.
  • 34. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L., Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res, 42(Web Server issue),W252-8.
  • 35. Beg, M.A., Thakur, S.C., Athar, F. (2020). Molecular modeling and in silico characterization of mycobacterial Rv3101c and Rv3102c proteins: prerequisite molecular target in cell division. Pharm Pharmacol Int J, 8(4),234‒243.
  • 36. Ho, B.K., Brasseur, R. (2005). The Ramachandran plots of glycine and pre-proline. BMC Struct Biol, 5,14.
  • 37. Cristobal, S., Zemla, A., Fischer, D., Rychlewski, L., Elofsson, A. (2001). A study of quality measures for protein threading models. BMC Bioinformatics, 2,5.
  • 38. Wallner, B., Elofsson, A. (2003). Can correct protein models be identified? Protein Sci, 12(5),1073‒1086.
  • 39. Beg, M.A., Athar, F. (2020). Anti-HIV and Anti-HCV drugs are the putative inhibitors of RNA-dependent-RNA polymerase activity of NSP12 of the SARS CoV- 2 (COVID-19). Pharm Pharmacol Int J, 8(3), 163‒172.
  • 40. Trott, O., Olson, A.J. (2010). Auto Dock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31(2), 455–461.
  • 41. Beg, M.A., Athar, F. (2020). Pharmacokinetic and molecular docking studies of Achyranthes aspera phytocompounds to exploring potential anti-tuberculosis activity. J Bacteriol Mycol Open Access, 8(1), 18‒27.
  • 42. Biovia, D.S. (2015). Discovery studio modelling environment. San Diego. Dassault Systems.
  • 43. Beg, M.A., Athar, F. (2020). Computational method in COVID-19: Revelation of Preliminary mutations of RdRp of SARS CoV-2 that build new horizons for therapeutic development. J Hum Virol Retrovirolog, 8(3), 62‒72.
  • 44. Rodrigues, C.H., Pires, D.E., Ascher, D.B. (2018). DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res, 46(W1), W350–W355.
  • 45. Shivangi, Beg, M.A., Meena, L.S. (2019). Mutational effects on structural stability of SRP pathway dependent cotranslational protein ftsY of Mycobacterium tuberculosis H37Rv. Gene Reports, 15, 100395.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Md Amjad Beg Bu kişi benim 0000-0002-7555-1822

Mustafa Sevindik 0000-0001-7223-2220

Shahid Haider Bu kişi benim 0000-0003-2661-4169

Preeti Soni Bu kişi benim 0000-0002-0256-4040

Priya Bhatia Bu kişi benim 0000-0002-7038-5562

Shahzul Hasan Bu kişi benim 0000-0001-8677-1057

Richa Yadav Bu kişi benim 0000-0002-7479-0629

Fareeda Athar Bu kişi benim 0000-0001-8097-7206

Yayımlanma Tarihi 31 Mayıs 2021
Gönderilme Tarihi 23 Ocak 2021
Kabul Tarihi 1 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 45 Sayı: 2

Kaynak Göster

APA Beg, M. A., Sevindik, M., Haider, S., Soni, P., vd. (2021). MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH. Journal of Faculty of Pharmacy of Ankara University, 45(2), 212-226. https://doi.org/10.33483/jfpau.866876
AMA Beg MA, Sevindik M, Haider S, Soni P, Bhatia P, Hasan S, Yadav R, Athar F. MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH. Ankara Ecz. Fak. Derg. Mayıs 2021;45(2):212-226. doi:10.33483/jfpau.866876
Chicago Beg, Md Amjad, Mustafa Sevindik, Shahid Haider, Preeti Soni, Priya Bhatia, Shahzul Hasan, Richa Yadav, ve Fareeda Athar. “MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH”. Journal of Faculty of Pharmacy of Ankara University 45, sy. 2 (Mayıs 2021): 212-26. https://doi.org/10.33483/jfpau.866876.
EndNote Beg MA, Sevindik M, Haider S, Soni P, Bhatia P, Hasan S, Yadav R, Athar F (01 Mayıs 2021) MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH. Journal of Faculty of Pharmacy of Ankara University 45 2 212–226.
IEEE M. A. Beg, “MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH”, Ankara Ecz. Fak. Derg., c. 45, sy. 2, ss. 212–226, 2021, doi: 10.33483/jfpau.866876.
ISNAD Beg, Md Amjad vd. “MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH”. Journal of Faculty of Pharmacy of Ankara University 45/2 (Mayıs 2021), 212-226. https://doi.org/10.33483/jfpau.866876.
JAMA Beg MA, Sevindik M, Haider S, Soni P, Bhatia P, Hasan S, Yadav R, Athar F. MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH. Ankara Ecz. Fak. Derg. 2021;45:212–226.
MLA Beg, Md Amjad vd. “MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH”. Journal of Faculty of Pharmacy of Ankara University, c. 45, sy. 2, 2021, ss. 212-26, doi:10.33483/jfpau.866876.
Vancouver Beg MA, Sevindik M, Haider S, Soni P, Bhatia P, Hasan S, Yadav R, Athar F. MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH. Ankara Ecz. Fak. Derg. 2021;45(2):212-26.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.