Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 2 Sayı: 4, 84 - 89, 30.12.2019

Öz

Kaynakça

  • Angelidaki, I., Ellegaard, L., Ahring, B.K., (2003). Codigestion of manure and organic wastes in centralized biogas plants. Appl. Biochem. Biotechnol, 109, 95-105, DOI: doi.org/10.1385/ABAB:109:1-3:95.
  • Dai, X., Duan, N., Dong, B., Dai, L., (2013). High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Management 33 (2013) 308–316, DOI: doi.org/10.1016/j.wasman.2012.10.018.
  • Mata-Alvarez, J., Llabres, S.M.P., (2000). Anaerobic co-digestion of solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74, 3-16, DOI: doi.org/10.1016/S0960-8524(00)00023-7.
  • Braun, R., Wellinger, A., (2005). Potential of Co-Digestion. Task 37-Energy from biogas and landfill gas, IEA Task Group, T.37.
  • Speece, R. (1996). Anaerobic Biotechnology for Industrial Wastewater, Nashville, Tennesse.
  • APHA-AWWA. (1989). Standard methods for water and wastewater. 17th ed. Amer. Publ. HlthAssoc/American Water Works Assoc, Washington, DC, USA.
  • Oda, V., Korkmaz, M., Özkurt, E. (2016). Some sigmoidal models used in estimating the growth curve and biological parameters obtained: Von Bertalanffy pattern sample. Ordu Univ. J. Sci. Tech., 6 (1), https://dergipark.org.tr/tr/download/article-file/227497
  • Zwietering, M., Jongenburger, I., Rombouts, F. (1990). Van'tRiet K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 56, 1875–1881.
  • Sperandei, S. (2014). Understanding logistic regression analysis. Biochem Med. 24(1), 12-18, DOI: 10.11613/BM.2014.003.
  • Kim, H.W., Han, S.K., Shin, H.S. (2003). The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manage. Res, 21, 515-526, DOI: 10.1177/0734242X0302100604.
  • Syaichurrozi I., Rusdi R., Dwicahyanto S., Toron YS. (2016). Biogas production from co-digestion vinasse waste and tofu-processing wastewater and kinetics. Int J Renew Energy Res., 6(3), 1057-1070.
  • Andriamanohiarisoamanana, F.J., Saikawa, A., Tarukawa, K., Qi, G., Pan, Z., Yamashiro, T., Iwasaki, M., Ihara, I., Nishida, T., Umetsu, K. (2017). Anaerobic co-digestion of dairy manure, meat, and bone meal, and crude glycerol under mesophilic conditions: Synergistic effect and kinetic studies. Energy Sustain. Dev., 40, 11-18, DOI: doi.org/10.1016/j.esd.2017.05.008.
  • Sahu, N., Sharma, A., Mishra, P., Chandrashekhar, B., Sharma, G., Kapley, A., Pandey, R. (2017). Evaluation of biogas production potential of kitchen waste in the presence of spices. Waste Manage. 70, 236-246, DOI: 10.1016/j.wasman.2017.08.045.
  • Zaidi, A.A., RuiZhe, F., Shi, Y., Khan, S.Z., Mushtaq, K. (2018). Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. Int. J. Hydrog. Energy, 43(31), 14202-14213, DOI: doi.org/10.1016/j.ijhydene.2018.05.132.

Anaerobic Co-digestion of Sewage Sludge with Food Waste: Kinetic Models

Yıl 2019, Cilt: 2 Sayı: 4, 84 - 89, 30.12.2019

Öz

Large quantities of waste activated sludge can be produced with the growth of wastewater treatment plants. Anaerobic technology allows to co-digestion of nutrient-rich and high COD-containing wastes. The aim of this study was to investigate the effects of anaerobic disintegration of wastewater treatment plant sludge (WS) and vegetable wastes (VW). Batch experiments were performed under mesophilic conditions (37 ± 1°C) and eleven different VW / WS ratios and methane production potentials were evaluated by standard BMP test. The logistic model and modified Gompertz model were used to estimate methane yield and evaluate kinetic parameters. It was shown that the systems more stabled where VW and WS are fragmented together Modified Gompertz model (R2: 0.884-0.999) showed a better fit to the test results. As a result, according to the characterization of the sludge from the wastewater treatment plant, it is recommended that the sludge be dried and evaluated as well as the integrated management of the sewage sludge with organic wastes (vegetable waste).

Kaynakça

  • Angelidaki, I., Ellegaard, L., Ahring, B.K., (2003). Codigestion of manure and organic wastes in centralized biogas plants. Appl. Biochem. Biotechnol, 109, 95-105, DOI: doi.org/10.1385/ABAB:109:1-3:95.
  • Dai, X., Duan, N., Dong, B., Dai, L., (2013). High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Management 33 (2013) 308–316, DOI: doi.org/10.1016/j.wasman.2012.10.018.
  • Mata-Alvarez, J., Llabres, S.M.P., (2000). Anaerobic co-digestion of solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74, 3-16, DOI: doi.org/10.1016/S0960-8524(00)00023-7.
  • Braun, R., Wellinger, A., (2005). Potential of Co-Digestion. Task 37-Energy from biogas and landfill gas, IEA Task Group, T.37.
  • Speece, R. (1996). Anaerobic Biotechnology for Industrial Wastewater, Nashville, Tennesse.
  • APHA-AWWA. (1989). Standard methods for water and wastewater. 17th ed. Amer. Publ. HlthAssoc/American Water Works Assoc, Washington, DC, USA.
  • Oda, V., Korkmaz, M., Özkurt, E. (2016). Some sigmoidal models used in estimating the growth curve and biological parameters obtained: Von Bertalanffy pattern sample. Ordu Univ. J. Sci. Tech., 6 (1), https://dergipark.org.tr/tr/download/article-file/227497
  • Zwietering, M., Jongenburger, I., Rombouts, F. (1990). Van'tRiet K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 56, 1875–1881.
  • Sperandei, S. (2014). Understanding logistic regression analysis. Biochem Med. 24(1), 12-18, DOI: 10.11613/BM.2014.003.
  • Kim, H.W., Han, S.K., Shin, H.S. (2003). The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manage. Res, 21, 515-526, DOI: 10.1177/0734242X0302100604.
  • Syaichurrozi I., Rusdi R., Dwicahyanto S., Toron YS. (2016). Biogas production from co-digestion vinasse waste and tofu-processing wastewater and kinetics. Int J Renew Energy Res., 6(3), 1057-1070.
  • Andriamanohiarisoamanana, F.J., Saikawa, A., Tarukawa, K., Qi, G., Pan, Z., Yamashiro, T., Iwasaki, M., Ihara, I., Nishida, T., Umetsu, K. (2017). Anaerobic co-digestion of dairy manure, meat, and bone meal, and crude glycerol under mesophilic conditions: Synergistic effect and kinetic studies. Energy Sustain. Dev., 40, 11-18, DOI: doi.org/10.1016/j.esd.2017.05.008.
  • Sahu, N., Sharma, A., Mishra, P., Chandrashekhar, B., Sharma, G., Kapley, A., Pandey, R. (2017). Evaluation of biogas production potential of kitchen waste in the presence of spices. Waste Manage. 70, 236-246, DOI: 10.1016/j.wasman.2017.08.045.
  • Zaidi, A.A., RuiZhe, F., Shi, Y., Khan, S.Z., Mushtaq, K. (2018). Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. Int. J. Hydrog. Energy, 43(31), 14202-14213, DOI: doi.org/10.1016/j.ijhydene.2018.05.132.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Original Research Articles
Yazarlar

Meltem Cebeci 0000-0002-3636-0388

Turgay Bişgin 0000-0003-2426-0053

Halil Şenol 0000-0003-3056-5013

İlknur Şentürk 0000-0002-8217-2281

Yayımlanma Tarihi 30 Aralık 2019
Kabul Tarihi 30 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 4

Kaynak Göster

APA Cebeci, M., Bişgin, T., Şenol, H., Şentürk, İ. (2019). Anaerobic Co-digestion of Sewage Sludge with Food Waste: Kinetic Models. Scientific Journal of Mehmet Akif Ersoy University, 2(4), 84-89.