Review
BibTex RIS Cite

Dokuların ve organların hücresizleştirilmesi

Year 2020, Volume: 42 Issue: 2, 192 - 197, 21.07.2020
https://doi.org/10.7197/cmj.vi.609592

Abstract

Hücresizleştirilmiş dokular ve organlar çeşitli doku mühendisliği ve rejeneratif tıp uygulamalarında başarıyla kullanılmıştır. Hücre dışı matristen elde edilen biyolojik bir iskele, tedavi edilecek dokuya ait hücreleri etkili bir şekilde uzaklaştıran çeşitli hücresizleştirme yöntemleri ile elde edilebilir. Hücresizleştirme yöntemleri, doku ve organların hedef yapısına göre değiştirilir. Bu yöntemler kimyasal, fiziksel, enzimatik ve süper kritik akışkan ekstraksiyonu (SFE) yöntemleri ile özetlenebilir. Bu yöntemlerin her biri, elde edilen hücre dışı matrisin (ESM) yapısındaki biyokimyasal bileşimini, dokunun yapısını (altyapı) ve mekanik davranışını etkiler. Bu makalede, en sık kullanılan hücresizleştirme yöntemleri üzerinde durulmuş ve bu yöntemler ile elde edilen biyolojik doku iskeleleri üzerindeki etkileri tartışılmıştır.

References

  • 4. REFERENCES
  • 1. Antons, J., Marascio, M. G. M., Aeberhard, P., Weissenberger, G., Hirt-Burri, N., Applegate, L. A., … Pioletti, D. P. (2018). Decellularised tissues obtained by a CO2-philic detergent and supercritical CO2. European Cells and Materials, 36, 81–95. https://doi.org/10.22203/eCM.v036a07
  • 2. Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annual Review of Chemical and Biomolecular Engineering. https://doi.org/10.1146/annurev-chembioeng-061010-114257
  • 3. Casali, D. M., Handleton, R. M., Shazly, T., & Matthews, M. A. (2018). A novel supercritical CO2-based decellularization method for maintaining scaffold hydration and mechanical properties. Journal of Supercritical Fluids, 131, 72–81. https://doi.org/10.1016/j.supflu.2017.07.021
  • 4. Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials. https://doi.org/10.1016/j.biomaterials.2011.01.057
  • 5. Çeviker, K., Özcan Özseven, S., Gülnihal Şeker, C., Rahim, M., Kılıçarslan, Ş., Yazkan, R., ve Damar, K. (n.d.). Biyolojik damarsal greft üretiminde hücresizleştirme metodları; güncel literatür derlemesi The decellularization methodologies for the production of biologic vascular graft; an updated literature review.
  • 6. Eckert, C. A., Knutson, B. L., & Debenedetti, P. G. (1996). Supercritical fluids as solvents for chemical and materials processing. Nature. https://doi.org/10.1038/383313a0
  • 7. Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials. https://doi.org/10.1016/j.biomaterials.2006.02.014
  • 8. Gilbert, T. W., Wognum, S., Joyce, E. M., Freytes, D. O., Sacks, M. S., & Badylak, S. F. (2008). Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials. https://doi.org/10.1016/j.biomaterials.2008.08.022
  • 9. Gilpin, A., & Yang, Y. (2017). Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Research International. https://doi.org/10.1155/2017/9831534
  • 10. Guler, S., Aslan, B., Hosseinian, P., & Aydin, H. M. (2017). Supercritical Carbon Dioxide-Assisted Decellularization of Aorta and Cornea. Tissue Engineering Part C: Methods, 23(9), 540–547. https://doi.org/10.1089/ten.tec.2017.0090
  • 11. Halfwerk, F. R., Rouwkema, J., Gossen, J. A., & Grandjean, J. G. (2018). Supercritical carbon dioxide decellularised pericardium: Mechanical and structural characterisation for applications in cardio-thoracic surgery. Journal of the Mechanical Behavior of Biomedical Materials, 77, 400–407. https://doi.org/10.1016/j.jmbbm.2017.10.002
  • 12. Hodde, J., & Hiles, M. (2002). Virus safety of a porcine-derived medical device: Evaluation of a viral inactivation method. Biotechnology and Bioengineering. https://doi.org/10.1002/bit.10281
  • 13. Hortensius, R. A., & Harley, B. A. C. (2016). Naturally derived biomaterials for addressing inflammation in tissue regeneration. Experimental Biology and Medicine. https://doi.org/10.1177/1535370216648022
  • 14. Jackson, D. W., Grood, E. S., Cohn, B. T., Arnoczky, S. P., Simon, T. M., & Cummings, J. F. (1991). The effects of in situ freezing on the anterior cruciate ligament: An experimental study in goats. Journal of Bone and Joint Surgery - Series A. https://doi.org/10.2106/00004623-199173020-00008
  • 15. Katsimpoulas, M., Morticelli, L., Michalopoulos, E., Gontika, I., Stavropoulos-Giokas, C., Kostakis, A., … Korossis, S. (2015). Investigation of the biomechanical integrity of decellularized rat abdominal aorta. Transplantation Proceedings. https://doi.org/10.1016/j.transproceed.2014.11.061
  • 16. Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., & Taylor, D. A. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine. https://doi.org/10.1038/nm1684
  • 17. Petrosyan, A., Da Sacco, S., Tripuraneni, N., Kreuser, U., Lavarreda-Pearce, M., Tamburrini, R., Perin, L. (2017). A step towards clinical application of acellular matrix: A clue from macrophage polarization. Matrix Biology. https://doi.org/10.1016/j.matbio.2016.08.009
  • 18. Sawada, K., Terada, D., Yamaoka, T., Kitamura, S., & Fujisato, T. (2008). Cell removal with supercritical carbon dioxide for acellular artificial tissue. Journal of Chemical Technology and Biotechnology. https://doi.org/10.1002/jctb.1899
  • 19. Schenke-Layland, K., Vasilevski, O., Opitz, F., König, K., Riemann, I., Halbhuber, K. J., … Stock, U. A. (2003). Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. Journal of Structural Biology. https://doi.org/10.1016/j.jsb.2003.08.002
  • 20. Seddon, A. M., Curnow, P., & Booth, P. J. (2004). Membrane proteins, lipids and detergents: Not just a soap opera. Biochimica et Biophysica Acta - Biomembranes. https://doi.org/10.1016/j.bbamem.2004.04.011
  • 21. Syazwani, N., Azhim, A., Morimoto, Y., Furukawa, K. S., & Ushida, T. (2015). Decellularization of aorta tissue using sonication treatment as potential scaffold for vascular tissue engineering. Journal of Medical and Biological Engineering. https://doi.org/10.1007/s40846-015-0028-5
  • 22. Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2015.11.001
  • 23. Üçgül, İ., & Aras, S. (2017). ANKA e-DERGİ Journal of Phoenix DESELÜLERİZASYON YÖNTEMLERİ VE DOKULARDA KULLANIMI.
  • 24. Voet, D., Voet, J. G., & Pratt, C. W. (2016). Fundamentals of biochemistry life at the molecular level. In Fundamentals of biochemistry life at the molecular level.
  • 25. Xing, Q., Yates, K., Tahtinen, M., Shearier, E., Qian, Z., & Zhao, F. (2015). Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Engineering - Part C: Methods. https://doi.org/10.1089/ten.tec.2013.0666
  • 26. Xu, H., Xu, B., Yang, Q., Li, X., Ma, X., Xia, Q., Zhang, Y. (2014). Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. PLoS ONE. https://doi.org/10.1371/journal.pone.0086723

Decellularization of tissues and organs

Year 2020, Volume: 42 Issue: 2, 192 - 197, 21.07.2020
https://doi.org/10.7197/cmj.vi.609592

Abstract









Decellularized tissues and organs have been successfully used in various tissue engineering and regenerative medicine applications. A biological scaffold obtained from the extracellular matrix can be produced by a variety of decellularization methods that effectively remove cells from the tissue to be treated. Decellularization methods is changed according to the target structure of tissues and organs. These methods can be summarized with chemically, physically, enzymatically and using Supercritical Fluid Extraction (SFE) ways. Each of these methods affects the biochemical composition in the structure of the remaining extracellular matrix (ECM), the structure of the tissue (ultrastructure), and the mechanical behavior. In this article, the most commonly used decellulization methods are introduced and their effects on biological tissue scaffold materials are discussed.

References

  • 4. REFERENCES
  • 1. Antons, J., Marascio, M. G. M., Aeberhard, P., Weissenberger, G., Hirt-Burri, N., Applegate, L. A., … Pioletti, D. P. (2018). Decellularised tissues obtained by a CO2-philic detergent and supercritical CO2. European Cells and Materials, 36, 81–95. https://doi.org/10.22203/eCM.v036a07
  • 2. Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annual Review of Chemical and Biomolecular Engineering. https://doi.org/10.1146/annurev-chembioeng-061010-114257
  • 3. Casali, D. M., Handleton, R. M., Shazly, T., & Matthews, M. A. (2018). A novel supercritical CO2-based decellularization method for maintaining scaffold hydration and mechanical properties. Journal of Supercritical Fluids, 131, 72–81. https://doi.org/10.1016/j.supflu.2017.07.021
  • 4. Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials. https://doi.org/10.1016/j.biomaterials.2011.01.057
  • 5. Çeviker, K., Özcan Özseven, S., Gülnihal Şeker, C., Rahim, M., Kılıçarslan, Ş., Yazkan, R., ve Damar, K. (n.d.). Biyolojik damarsal greft üretiminde hücresizleştirme metodları; güncel literatür derlemesi The decellularization methodologies for the production of biologic vascular graft; an updated literature review.
  • 6. Eckert, C. A., Knutson, B. L., & Debenedetti, P. G. (1996). Supercritical fluids as solvents for chemical and materials processing. Nature. https://doi.org/10.1038/383313a0
  • 7. Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials. https://doi.org/10.1016/j.biomaterials.2006.02.014
  • 8. Gilbert, T. W., Wognum, S., Joyce, E. M., Freytes, D. O., Sacks, M. S., & Badylak, S. F. (2008). Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials. https://doi.org/10.1016/j.biomaterials.2008.08.022
  • 9. Gilpin, A., & Yang, Y. (2017). Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Research International. https://doi.org/10.1155/2017/9831534
  • 10. Guler, S., Aslan, B., Hosseinian, P., & Aydin, H. M. (2017). Supercritical Carbon Dioxide-Assisted Decellularization of Aorta and Cornea. Tissue Engineering Part C: Methods, 23(9), 540–547. https://doi.org/10.1089/ten.tec.2017.0090
  • 11. Halfwerk, F. R., Rouwkema, J., Gossen, J. A., & Grandjean, J. G. (2018). Supercritical carbon dioxide decellularised pericardium: Mechanical and structural characterisation for applications in cardio-thoracic surgery. Journal of the Mechanical Behavior of Biomedical Materials, 77, 400–407. https://doi.org/10.1016/j.jmbbm.2017.10.002
  • 12. Hodde, J., & Hiles, M. (2002). Virus safety of a porcine-derived medical device: Evaluation of a viral inactivation method. Biotechnology and Bioengineering. https://doi.org/10.1002/bit.10281
  • 13. Hortensius, R. A., & Harley, B. A. C. (2016). Naturally derived biomaterials for addressing inflammation in tissue regeneration. Experimental Biology and Medicine. https://doi.org/10.1177/1535370216648022
  • 14. Jackson, D. W., Grood, E. S., Cohn, B. T., Arnoczky, S. P., Simon, T. M., & Cummings, J. F. (1991). The effects of in situ freezing on the anterior cruciate ligament: An experimental study in goats. Journal of Bone and Joint Surgery - Series A. https://doi.org/10.2106/00004623-199173020-00008
  • 15. Katsimpoulas, M., Morticelli, L., Michalopoulos, E., Gontika, I., Stavropoulos-Giokas, C., Kostakis, A., … Korossis, S. (2015). Investigation of the biomechanical integrity of decellularized rat abdominal aorta. Transplantation Proceedings. https://doi.org/10.1016/j.transproceed.2014.11.061
  • 16. Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., & Taylor, D. A. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine. https://doi.org/10.1038/nm1684
  • 17. Petrosyan, A., Da Sacco, S., Tripuraneni, N., Kreuser, U., Lavarreda-Pearce, M., Tamburrini, R., Perin, L. (2017). A step towards clinical application of acellular matrix: A clue from macrophage polarization. Matrix Biology. https://doi.org/10.1016/j.matbio.2016.08.009
  • 18. Sawada, K., Terada, D., Yamaoka, T., Kitamura, S., & Fujisato, T. (2008). Cell removal with supercritical carbon dioxide for acellular artificial tissue. Journal of Chemical Technology and Biotechnology. https://doi.org/10.1002/jctb.1899
  • 19. Schenke-Layland, K., Vasilevski, O., Opitz, F., König, K., Riemann, I., Halbhuber, K. J., … Stock, U. A. (2003). Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. Journal of Structural Biology. https://doi.org/10.1016/j.jsb.2003.08.002
  • 20. Seddon, A. M., Curnow, P., & Booth, P. J. (2004). Membrane proteins, lipids and detergents: Not just a soap opera. Biochimica et Biophysica Acta - Biomembranes. https://doi.org/10.1016/j.bbamem.2004.04.011
  • 21. Syazwani, N., Azhim, A., Morimoto, Y., Furukawa, K. S., & Ushida, T. (2015). Decellularization of aorta tissue using sonication treatment as potential scaffold for vascular tissue engineering. Journal of Medical and Biological Engineering. https://doi.org/10.1007/s40846-015-0028-5
  • 22. Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2015.11.001
  • 23. Üçgül, İ., & Aras, S. (2017). ANKA e-DERGİ Journal of Phoenix DESELÜLERİZASYON YÖNTEMLERİ VE DOKULARDA KULLANIMI.
  • 24. Voet, D., Voet, J. G., & Pratt, C. W. (2016). Fundamentals of biochemistry life at the molecular level. In Fundamentals of biochemistry life at the molecular level.
  • 25. Xing, Q., Yates, K., Tahtinen, M., Shearier, E., Qian, Z., & Zhao, F. (2015). Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Engineering - Part C: Methods. https://doi.org/10.1089/ten.tec.2013.0666
  • 26. Xu, H., Xu, B., Yang, Q., Li, X., Ma, X., Xia, Q., Zhang, Y. (2014). Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. PLoS ONE. https://doi.org/10.1371/journal.pone.0086723
There are 27 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Reviews
Authors

Nevra Pelin Cesur 0000-0003-3979-6053

Volkan Yalman 0000-0001-8267-9712

Nelisa Laçin Türkoğlu 0000-0003-3176-0902

Publication Date July 21, 2020
Acceptance Date July 6, 2020
Published in Issue Year 2020Volume: 42 Issue: 2

Cite

AMA Cesur NP, Yalman V, Laçin Türkoğlu N. Decellularization of tissues and organs. CMJ. July 2020;42(2):192-197. doi:10.7197/cmj.vi.609592