Research Article
BibTex RIS Cite
Year 2021, Volume: 43 Issue: 1, 8 - 19, 31.03.2021
https://doi.org/10.7197/cmj.874974

Abstract

References

  • 1. Sulis G, Roggi A, Matteelli A, Raviglione MC. Tuberculosis: Epidemiology and control. Mediterr J Hematol Infect Dis 2014;6:e2014070. https://doi.org/10.4084/mjhid.2014.070.
  • 2. World Health Organization. Global tuberculosis report 2018. World Health Organization. Licens CC BY-NC-SA 30 IGO 2018. https://apps.who.int/iris/handle/10665/274453 (accessed January 20, 2020).
  • 3. Global tuberculosis report. Geneva: World Health Organization 2020:Licence: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (accessed December 20, 2020).
  • 4. T.C. Sağlık Bakanlığı. Tüberküloz Tanı ve Tedavi Rehberi. 2. Baskı. Ankara: 2019.
  • 5. Mason PH, Snow K, Asugeni R, et al. Tuberculosis and gender in the Asia-Pacific region. Aust N Z J Public Health 2017;41:227–9. https://doi.org/10.1111/1753-6405.12619.
  • 6. Holmes CB, Hausler H, Nunn P. A review of sex differences in the epidemiology of TB. Int J Tuberc Lung Dis 1998;2:96–104.
  • 7. Borgdorff MW, Nagelkerke NJ, Dye C, Nunn P. Gender and tuberculosis: a comparison of prevalence surveys with notification data to explore sex differences in case detection. Int J Tuberc Lung Dis 2000;4:123–32.
  • 8. Lienhardt C, Fielding K, Sillah J, et al. Risk Factors for Tuberculosis Infection in Sub-Saharan Africa. Am J Respir Crit Care Med 2003;168:448–55. https://doi.org/10.1164/rccm.200212-1483OC.
  • 9. Watkins RE, Plant AJ. Does smoking explain sex differences in the global tuberculosis epidemic? Epidemiol Infect 2006;134:333–9. https://doi.org/10.1017/S0950268805005042.
  • 10. Ramsay A, Bonnet M, Gagnidze L, et al. Sputum, sex and scanty smears: new case definition may reduce sex disparities in smear-positive tuberculosis. IThe Int J Tuberc Lung Dis 2009;13:613–9.
  • 11. World Health Organization. Global tuberculosis report, 2015 2015. https://apps.who.int/iris/bitstream/handle/10665/191102/9789241565059_eng.pdf?sequence=1 (accessed January 20, 2020).
  • 12. Fernandes P, Ma Y, Gaeddert M, et al. Sex and age differences in Mycobacterium tuberculosis infection in Brazil. Epidemiol Infect 2018;146:1503–10. https://doi.org/10.1017/S0950268818001450.
  • 13. Marvi A, Asadi-Aliabadi M, Darabi M, et al. Silent changes of tuberculosis in Iran (2005-2015): A joinpoint regression analysis. J Fam Med Prim Care 2017;6:760–5. https://doi.org/10.4103/jfmpc.jfmpc_190_17.
  • 14. Dogar OF, Shah SK, Chughtai AA, Qadeer E. Gender disparity in tuberculosis cases in eastern and western provinces of Pakistan. BMC Infect Dis 2012;12:244. https://doi.org/10.1186/1471-2334-12-244.
  • 15. Arab Borzou Z, Afzal Aghaei M, Esmaeli H, et al. Evaluating related factors with sputum smear negation at the end of the second month of tuberculosis treatment. Med J Mashhad Univ Med Sci 2016;10:547–54. https://doi.org/10.22038/MJMS.2016.6762.
  • 16. Safwat T, Abdel Fattah E, Soliman A. Gender differences in pulmonary tuberculosis in Abbassia Chest Hospital. Egypt J Bronchol 2019;13:408–15. https://doi.org/10.4103/ejb.ejb_97_18.
  • 17. Feng J-Y, Huang S-F, Ting W-Y, et al. Gender differences in treatment outcomes of tuberculosis patients in Taiwan: a prospective observational study. Clin Microbiol Infect 2012;18:331–7. https://doi.org/10.1111/j.1469-0691.2012.03931.x.
  • 18. Dodd PJ, Looker C, Plumb ID, et al. Age- and Sex-Specific Social Contact Patterns and Incidence of Mycobacterium tuberculosis Infection. Am J Epidemiol 2015;183:156–66. https://doi.org/10.1093/aje/kwv160.
  • 19. Narasimhan P, MacIntyre CR, Mathai D, Wood J. High rates of latent TB infection in contacts and the wider community in South India. Trans R Soc Trop Med Hyg 2017;111:55–61. https://doi.org/10.1093/trstmh/trx016.
  • 20. Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol 2008;8:737–44. https://doi.org/10.1038/nri2394.
  • 21. O’Garra A, Redford PS, McNab FW, et al. The Immune Response in Tuberculosis. Annu Rev Immunol 2013;31:475–527. https://doi.org/10.1146/annurev-immunol-032712-095939.
  • 22. Molloy EJ, O’Neill AJ, Grantham JJ, et al. Sex-specific alterations in neutrophil apoptosis: the role of estradiol and progesterone. Blood 2003;102:2653–9. https://doi.org/10.1182/blood-2003-02-0649.
  • 23. Khan AH, Sulaiman SAS, Laghari M, et al. Treatment outcomes and risk factors of extra-pulmonary tuberculosis in patients with co-morbidities. BMC Infect Dis 2019;19:691. https://doi.org/10.1186/s12879-019-4312-9.
  • 24. Ben Ayed H, Koubaa M, Gargouri L, et al. Epidemiology and disease burden of tuberculosis in south of Tunisia over a 22-year period: Current trends and future projections. PLoS One 2019;14:1–14. https://doi.org/10.1371/journal.pone.0212853.
  • 25. Prakasha Sr, Suresh G, Shetty S, et al. Mapping the pattern and trends of extrapulmonary tuberculosis. J Glob Infect Dis 2013;5:54. https://doi.org/10.4103/0974-777X.112277.
  • 26. Khazaei S, Soheilyzad M, Molaeipoor L, et al. Trend of smear-positive pulmonary tuberculosis in Iran during 1995-2012: A segmented regression model. Int J Prev Med 2016;7:86. https://doi.org/10.4103/2008-7802.184317.
  • 27. Global tuberculosis report 2019. Geneva: World Health Organization 2019. https://www.who.int/tb/publications/global_report/en/ (accessed January 2, 2021).
  • 28. Taskın Kafa AH, Hasbek M, Celik C, Bakıcı MZ. Resistance to primary anti-tuberculosis drugs between 2011-2018 in Sivas Cumhuriyet University Faculty of Medicine Hospital. ANKEM 2019;33:83–8. https://doi.org/10.5222/ankem.2019.1914.
  • 29. Senoglu S, Sahin M, Pelivanoglu F, Sengöz G. Investigation of Anti-tuberculous Drug Sensitivity Results in Sixty-one Extrapulmonary Samples Using the MGIT Method. Med Bull Haseki 2019;57:279–84. https://doi.org/10.4274/haseki.galenos.2019.4558.
  • 30. Aydın O, Comert FB, Kulah C, et al. Determination of susceptibilities of Mycobacterium tuberculosis strains isolated in Zonguldak to primary antituberculosis drugs by BACTEC MGIT 960 system. Türk Mikrobiyoloji Cemiy Derg 2008;38:61–70.
  • 31. Oz Y, Aslan M, Aksit F, et al. Mycobacterium tuberculosis kompleks izolatlarının primer antitüberküloz ilaçlara duyarlılığının değerlendirilmesi. ANKEM Derg 2012;26:20–4.
  • 32. Zumla A, George A, Sharma V, et al. The WHO 2014 Global tuberculosis report—further to go. Lancet Glob Heal 2015;3:e10–2. https://doi.org/10.1016/S2214-109X(14)70361-4.
  • 33. World Health Organization. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Heal Organ 2018. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed January 2, 2021).
  • 34. Khazaei S, Ayubi E, Mansournia MA, Rafiemanesh H. Trend of some Tuberculosis Indices in Iran during 25 yr Period (1990-2014). J Res Heal Sci 2016;16:141–6.
  • 35. Wu B, Zhang L, Liu Z, et al. Drug-resistant tuberculosis in Zhejiang Province, China: an updated analysis of time trends, 1999–2013. Glob Health Action 2017;10:1293925. https://doi.org/10.1080/16549716.2017.1293925.
  • 36. Wang X, Fu Q, Li Z, et al. Drug-Resistant Tuberculosis in Zhejiang Province, China, 1999–2008. Emerg Infect Dis 2012;18:496–8. https://doi.org/10.3201/eid1803.110760.

Evaluation of tuberculosis clinical characteristics by gender

Year 2021, Volume: 43 Issue: 1, 8 - 19, 31.03.2021
https://doi.org/10.7197/cmj.874974

Abstract

Objective: The aim of this study was to evaluate the clinical features of tuberculosis (TB) in terms of gender differences over a ten-year period.
Method: This retrospective cohort study was performed using Sivas Tuberculosis Dispensary 2010- 2019 TB patient records. TB incidence, mortality, drug sensitivity percentages and some clinical characteristics of patients were determined.
Results: The rate of female new patients was 51.4 % and the female to male ratio was 1.05. The gender difference in rates was highest in the 0-19 age group. Most of the cases (49.9 %) were extra-pulmonary tuberculosis (EPTB) and this rate in female (66.6 %) was significantly higher than in male (33.4 %). The most common extra-pulmonary involvement was the lymphatic system (39.7 %). Complete the disease as a cure (65.7 %), treatment failure (100.0 %) and deaths (66.7 %) due to TB were significantly higher in male. We recorded the drug resistance 9 % for ethambutol, 8.6 % for isoniazid, 4.5 % for streptomycin and 2.8 % for rifampicin and there was no significant difference by gender. The incidences of all TB forms, pulmonary tuberculosis (PTB) and EPTB showed a decreasing trend in both genders and age groups except for those aged 60 and over in male. TB mortality rate and drug sensitivity percentages were in an increasing trend in both genders.
Conclusions: Significant changes were found in some clinical features of TB according to gender. It is thought that situations arising from gender changes in TB control programs should be considered. 

References

  • 1. Sulis G, Roggi A, Matteelli A, Raviglione MC. Tuberculosis: Epidemiology and control. Mediterr J Hematol Infect Dis 2014;6:e2014070. https://doi.org/10.4084/mjhid.2014.070.
  • 2. World Health Organization. Global tuberculosis report 2018. World Health Organization. Licens CC BY-NC-SA 30 IGO 2018. https://apps.who.int/iris/handle/10665/274453 (accessed January 20, 2020).
  • 3. Global tuberculosis report. Geneva: World Health Organization 2020:Licence: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (accessed December 20, 2020).
  • 4. T.C. Sağlık Bakanlığı. Tüberküloz Tanı ve Tedavi Rehberi. 2. Baskı. Ankara: 2019.
  • 5. Mason PH, Snow K, Asugeni R, et al. Tuberculosis and gender in the Asia-Pacific region. Aust N Z J Public Health 2017;41:227–9. https://doi.org/10.1111/1753-6405.12619.
  • 6. Holmes CB, Hausler H, Nunn P. A review of sex differences in the epidemiology of TB. Int J Tuberc Lung Dis 1998;2:96–104.
  • 7. Borgdorff MW, Nagelkerke NJ, Dye C, Nunn P. Gender and tuberculosis: a comparison of prevalence surveys with notification data to explore sex differences in case detection. Int J Tuberc Lung Dis 2000;4:123–32.
  • 8. Lienhardt C, Fielding K, Sillah J, et al. Risk Factors for Tuberculosis Infection in Sub-Saharan Africa. Am J Respir Crit Care Med 2003;168:448–55. https://doi.org/10.1164/rccm.200212-1483OC.
  • 9. Watkins RE, Plant AJ. Does smoking explain sex differences in the global tuberculosis epidemic? Epidemiol Infect 2006;134:333–9. https://doi.org/10.1017/S0950268805005042.
  • 10. Ramsay A, Bonnet M, Gagnidze L, et al. Sputum, sex and scanty smears: new case definition may reduce sex disparities in smear-positive tuberculosis. IThe Int J Tuberc Lung Dis 2009;13:613–9.
  • 11. World Health Organization. Global tuberculosis report, 2015 2015. https://apps.who.int/iris/bitstream/handle/10665/191102/9789241565059_eng.pdf?sequence=1 (accessed January 20, 2020).
  • 12. Fernandes P, Ma Y, Gaeddert M, et al. Sex and age differences in Mycobacterium tuberculosis infection in Brazil. Epidemiol Infect 2018;146:1503–10. https://doi.org/10.1017/S0950268818001450.
  • 13. Marvi A, Asadi-Aliabadi M, Darabi M, et al. Silent changes of tuberculosis in Iran (2005-2015): A joinpoint regression analysis. J Fam Med Prim Care 2017;6:760–5. https://doi.org/10.4103/jfmpc.jfmpc_190_17.
  • 14. Dogar OF, Shah SK, Chughtai AA, Qadeer E. Gender disparity in tuberculosis cases in eastern and western provinces of Pakistan. BMC Infect Dis 2012;12:244. https://doi.org/10.1186/1471-2334-12-244.
  • 15. Arab Borzou Z, Afzal Aghaei M, Esmaeli H, et al. Evaluating related factors with sputum smear negation at the end of the second month of tuberculosis treatment. Med J Mashhad Univ Med Sci 2016;10:547–54. https://doi.org/10.22038/MJMS.2016.6762.
  • 16. Safwat T, Abdel Fattah E, Soliman A. Gender differences in pulmonary tuberculosis in Abbassia Chest Hospital. Egypt J Bronchol 2019;13:408–15. https://doi.org/10.4103/ejb.ejb_97_18.
  • 17. Feng J-Y, Huang S-F, Ting W-Y, et al. Gender differences in treatment outcomes of tuberculosis patients in Taiwan: a prospective observational study. Clin Microbiol Infect 2012;18:331–7. https://doi.org/10.1111/j.1469-0691.2012.03931.x.
  • 18. Dodd PJ, Looker C, Plumb ID, et al. Age- and Sex-Specific Social Contact Patterns and Incidence of Mycobacterium tuberculosis Infection. Am J Epidemiol 2015;183:156–66. https://doi.org/10.1093/aje/kwv160.
  • 19. Narasimhan P, MacIntyre CR, Mathai D, Wood J. High rates of latent TB infection in contacts and the wider community in South India. Trans R Soc Trop Med Hyg 2017;111:55–61. https://doi.org/10.1093/trstmh/trx016.
  • 20. Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol 2008;8:737–44. https://doi.org/10.1038/nri2394.
  • 21. O’Garra A, Redford PS, McNab FW, et al. The Immune Response in Tuberculosis. Annu Rev Immunol 2013;31:475–527. https://doi.org/10.1146/annurev-immunol-032712-095939.
  • 22. Molloy EJ, O’Neill AJ, Grantham JJ, et al. Sex-specific alterations in neutrophil apoptosis: the role of estradiol and progesterone. Blood 2003;102:2653–9. https://doi.org/10.1182/blood-2003-02-0649.
  • 23. Khan AH, Sulaiman SAS, Laghari M, et al. Treatment outcomes and risk factors of extra-pulmonary tuberculosis in patients with co-morbidities. BMC Infect Dis 2019;19:691. https://doi.org/10.1186/s12879-019-4312-9.
  • 24. Ben Ayed H, Koubaa M, Gargouri L, et al. Epidemiology and disease burden of tuberculosis in south of Tunisia over a 22-year period: Current trends and future projections. PLoS One 2019;14:1–14. https://doi.org/10.1371/journal.pone.0212853.
  • 25. Prakasha Sr, Suresh G, Shetty S, et al. Mapping the pattern and trends of extrapulmonary tuberculosis. J Glob Infect Dis 2013;5:54. https://doi.org/10.4103/0974-777X.112277.
  • 26. Khazaei S, Soheilyzad M, Molaeipoor L, et al. Trend of smear-positive pulmonary tuberculosis in Iran during 1995-2012: A segmented regression model. Int J Prev Med 2016;7:86. https://doi.org/10.4103/2008-7802.184317.
  • 27. Global tuberculosis report 2019. Geneva: World Health Organization 2019. https://www.who.int/tb/publications/global_report/en/ (accessed January 2, 2021).
  • 28. Taskın Kafa AH, Hasbek M, Celik C, Bakıcı MZ. Resistance to primary anti-tuberculosis drugs between 2011-2018 in Sivas Cumhuriyet University Faculty of Medicine Hospital. ANKEM 2019;33:83–8. https://doi.org/10.5222/ankem.2019.1914.
  • 29. Senoglu S, Sahin M, Pelivanoglu F, Sengöz G. Investigation of Anti-tuberculous Drug Sensitivity Results in Sixty-one Extrapulmonary Samples Using the MGIT Method. Med Bull Haseki 2019;57:279–84. https://doi.org/10.4274/haseki.galenos.2019.4558.
  • 30. Aydın O, Comert FB, Kulah C, et al. Determination of susceptibilities of Mycobacterium tuberculosis strains isolated in Zonguldak to primary antituberculosis drugs by BACTEC MGIT 960 system. Türk Mikrobiyoloji Cemiy Derg 2008;38:61–70.
  • 31. Oz Y, Aslan M, Aksit F, et al. Mycobacterium tuberculosis kompleks izolatlarının primer antitüberküloz ilaçlara duyarlılığının değerlendirilmesi. ANKEM Derg 2012;26:20–4.
  • 32. Zumla A, George A, Sharma V, et al. The WHO 2014 Global tuberculosis report—further to go. Lancet Glob Heal 2015;3:e10–2. https://doi.org/10.1016/S2214-109X(14)70361-4.
  • 33. World Health Organization. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Heal Organ 2018. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed January 2, 2021).
  • 34. Khazaei S, Ayubi E, Mansournia MA, Rafiemanesh H. Trend of some Tuberculosis Indices in Iran during 25 yr Period (1990-2014). J Res Heal Sci 2016;16:141–6.
  • 35. Wu B, Zhang L, Liu Z, et al. Drug-resistant tuberculosis in Zhejiang Province, China: an updated analysis of time trends, 1999–2013. Glob Health Action 2017;10:1293925. https://doi.org/10.1080/16549716.2017.1293925.
  • 36. Wang X, Fu Q, Li Z, et al. Drug-Resistant Tuberculosis in Zhejiang Province, China, 1999–2008. Emerg Infect Dis 2012;18:496–8. https://doi.org/10.3201/eid1803.110760.
There are 36 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Medical Science Research Articles
Authors

İrem Akova 0000-0002-2672-8863

Esma Kılıç 0000-0001-8503-4995

Publication Date March 31, 2021
Acceptance Date February 28, 2021
Published in Issue Year 2021Volume: 43 Issue: 1

Cite

AMA Akova İ, Kılıç E. Evaluation of tuberculosis clinical characteristics by gender. CMJ. March 2021;43(1):8-19. doi:10.7197/cmj.874974