Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyoinformatik Yaklaşımlar Kullanılarak Glioblastoma Multiform’ da SLC2A Gen Ailesinin Prognostik Potansiyelinin Ortaya Çıkarılması

Yıl 2024, , 259 - 269, 31.12.2024
https://doi.org/10.7197/cmj.1601168

Öz

Amaç: Glioblastomalar (GBM'ler) çok düşük genel sağkalım oranlarına sahip invaziv ve metastatik kanserlerdir. Bu nedenle, GBM tanısı ve prognozu için yeni bir biyobelirteç önermek çok önemlidir. Bu amaçla, kanserde büyük öneme sahip olan SLC2A gen ailesinin GBM'deki prognostik potansiyelini araştırmayı amaçladık.
Yöntemler: Solute taşıyıcı 2A (SLC2A) gen ailesi ekspresyon düzeyleri, metilasyon ve genel sağkalım oranları TCGA, GEPIA ve UALCAN veri tabanları ile analiz edildi. Mutasyonlar Kaplan-Meier Plot ve UCSC Xena veri tabanı ile değerlendirildi. Protein-protein etkileşimleri String veri tabanı ile analiz edildi.
Bulgular: SLC2A gen ailesinde istatistiksel olarak anlamlı bir mutasyon saptanmadı. Analiz sonucunda SLC2A1 ve SLC2A5 genlerinde yüksek ekspresyon ve SLC2A6 gen ekspresyonunda azalma istatistiksel olarak anlamlı bulundu. SLC2A1, SLC2A2, SLC2A3 ve SLC2A5 genlerinin promotör bölgelerinde hipermetilasyon, SLC2A4 ve SLC2A6 genlerinde ise hipometilasyon saptandı. SLC2A3 gen ekspresyonundaki artış hastaların genel sağ kalım oranı ile ilişkili bulundu.
Sonuç: SLC2A1, SLC2A5 ve SLC2A6 geninin yukarı regülasyonu GBM tanısında bir biyobelirteç olabilir ve SLC2A3 prognozda bir belirteç olabilir.

Kaynakça

  • 1. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister S. M, Sutupp P, Reifenberger, G. Glioma. Nature reviews Disease primers. 2015; 1(1): 1-18.
  • 2. Lou J, Hao Y, Lin K, Lin K, Lyu Y, Chen M, Wang H, Zou D, Jiang X, Wang R, Jin D, Lam E, Shao S, Liu Q, Yan J, Wang X, Chen P, Zhang B, Jin B. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer; 2020;19:138.
  • 3. Qazi M.A, Vora P, Venugopal C, Sidhu S.S, Moffat J, Swanton C, & Singh S.K. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Annals of Oncology. 2017; 28(7): 1448-1456.
  • 4. Ohka F, Natsume A, Wakabayashi T. Current trends in targeted therapies for glioblastoma multiforme. Neurol Res Int. 2012; 2012: 878425.
  • 5. Network, TCGAR. Correction: Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2013; 494(7438): 506-506.
  • 6. Chai YJ, Yi JW, Oh SW, Kim YA, Yi KH, Kim JH, Lee KE. Upregulation of SLC2 (GLUT) family genes is related to poor survival outcomes in papillary thyroid carcinoma: Analysis of data from the Cancer Genome Atlas. Surgery. 2017; 161(1):188-194.
  • 7. Ancey P-B, Contat C, Meylan E. Glucose transporters in cancerdfrom tumor cells to the tumor microen vironment. FEBS J. 2018;285:2926e43.
  • 8. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–62.
  • 9. M. Mueckler, B. Thorens, The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013; 34 (2–3): 121–138.
  • 10. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, et al. Sequence and structure of a human glucose transporter. Science 1985;229:941e5.
  • 11. K. Ohtsubo, S. Takamatsu, M.T. Minowa, A. Yoshida, M. Takeuchi, J.D. Marth, Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell. 2005;123 (7): 1307–1321.
  • 12. Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010;298:E141e5.
  • 13. Chen L.Q, Cheung L.S, Feng L, Tanner W, & Frommer W.B. Transport of sugars. Annual review of biochemistry. 84(1), 865-894.
  • 14. Pereira K.M.A Chaves, F.N, Viana T.S.A, Carvalho F.S.R, Costa F.W.G, Alves A.P.N.N, Sousa F.B. Oxygen Metabolism in Oral Cancer: HIF and GLUTs (Review). Oncol. Lett. 2013; 6: 311–316.
  • 15. Avanzato D, Pupo E, Ducano N, Isella C, Bertalot G, Luise C, Pece S, Bruna A, Rueda O.M, Caldas C, Fiore D, Sapino A, Lanzetti L. High USP6NLLevels in Breast Cancer Sustain Chronic AKT Phosphorylation and GLUT1 Stability Fueling Aerobic Glycolysis. Cancer Res. 2018; 78: 3432–3444.
  • 16. Sun H.W, Yu X.J, Wu WC, Chen J, Shi M, Zheng L, Xu J. GLUT1 and ASCT2asPredictors for Prognosis of Hepatocellular Carcinoma. PLoS ONE. 2016; 11: e0168907.
  • 17. Berlth F, Mönig S, Pinther B, Grimminger P, Maus M, Schlösser H, Plum P, Warnecke-Eberz U, Harismendy O, Drebber U, Bollschweiler E, Hölscher A, Alakus H. Both GLUT-1 and GLUT-14 Are Independent Prognostic Factors in Gastric Adenocarcinoma. Ann. Surg. Oncol. 2015; 22 (Suppl. S3): 822–831.
  • 18. Goldman N.A, Katz E.B, Glenn A.S, Weldon R.H, Jones J.G, Lynch U, Fezzari M.J, Runowicz C.D, Goldberg G.L, Charron M.J. GLUT1 and GLUT8 in Endometrium and Endometrial Adenocarcinoma. Mod. Pathol. 2006; 19: 1429–1436.
  • 19. Komaki S, Sugita Y, Furuta T, Yamada K, Moritsubo M, Abe H, Akiba J, Miyagi N, Nakamura H, Miyoshi H, Ohshima K, Morioka M. Expression of GLUT1 in pseudopalisaded and perivascular tumor cells is an independent prognostic factor for patients with glioblastomas. J Neuropathol Exp Neurol. 2019; 78(5): 389-397.
  • 20. Mukhopadhyay P, Ye J, Anderson KM, Roychoudhury S, Rubin EH, Halabi S and Chappell RJ. Log‑rank test vs MaxCombo and difference in restricted mean survival time tests for comparing survival under nonproportional hazards in immuno‑oncology trials: A systematic review and meta‑analysis. JAMA Oncol. 2022; 8: 1294‑1300.
  • 21. Sperduto PW, Yang TJ, Beal K, Pan H, Brown PD, Bangdiwala A, Shanley R, Yeh N, Gaspar LE, Braunstein S, et al. Estimating survival in patients with lung cancer and brain metastases: An update of the graded prognostic assessment for lung cancer using molecular markers (lung‑molGPA). JAMA Oncol. 2017; 3: 827‑831.
  • 22. Medina A, Parween S, Ullsten S, Vishnu N, Siu YT, Quach M, et al. Early deficits in insulin secretion, beta cell mass and islet blood perfusion precede onset of autoimmune type 1 diabetes in BioBreeding rats. Diabetologia. 2018;61(4):896–905.
  • 23. Wu T. & Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017; 28: 61–68.
  • 24. Hanahan D & Weinberg R. A. Hallmarks of cancer: The next generation. Cell. 2011; 144, 646–674.
  • 25. Estilo C. L, O-charoenrat P, Talbot S, Socci N, Carlson D.L, Ghossein R, Williams T, Yonekawa Y, Ramanathan Y, Boyle J.O, Kraus D.H, Patel S, Shaha A.R, Wong RJ, Huryn J.M, Shah J.P & Singh B. Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis. BMC Cancer. 2009; 12, 9–26.
  • 26. Yao X, He Z, Qin C, Deng X, Bai L, Li G & Shi J. SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer. Cancer cell inter. 2020; 20: 1-16.
  • 27. Boado RJ, Black KL and Pardridge WM. Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Brain Res Mol Brain Res. 1994; 27: 51-57.
  • 28. Zeng K, Ju G, Wang H & Huang J. GLUT1/3/4 as novel biomarkers for the prognosis of human breast cancer. Translational cancer research. 2020; 9(4): 2363.
  • 29. Szablewski L. Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncol Rev. 2022;16:561.
  • 30. Shi Z, Liu J, Wang F, Li Y. Integrated analysis of solute carrier family-2 members reveals SLC2A4 as an independent favorable prognostic biomarker for breast cancer. Channels. 2021;15:555–68.
  • 31. Davidson N. O, Hausman A.M. L, Ifkovits C.A, Buse J.B, Gould G.W, Burant C.F, Bell G.I. Human intestinal glucose transporter expression and localization of GLUT5. Am. J. Physiol. 1992; 262: C795-C800.
  • 32. Burant C.F, Takeda J, Brot-Laroche E, Bell G.I, Davidson N.O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J. Biol. Chem. 1992; 267: 14523-14526.
  • 33. Doege H, Bocianski A, Joost H.G, Schurmann A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem. J. 2001; 350: 771-776, 2000. Note: Erratum: Biochem. J. 358: 791-792.
  • 34. Louis DN, Ohgaki H, Wiestler OD, Cavenee W.K, Burger P.C, Jouvet A, Scheithauer B.W, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007; 114: 97-109.
  • 35. Jovčevska I, Kočevar N, Komel R. Glioma and glioblastoma‑how much do we (not) know?. Mol Clin Oncol. 2013; 1: 935-41.
  • 36. Gao H, Liang J, Duan J, Chen L, Li H, Zhen T, Zhang F, Dong Y, Shi H, Han A: A prognosis marker SLC2A3 correlates with EMT and immune signature in colorectal cancer. Front Oncol. 2021; 11(11): 638099.
  • 37. Wang D, Pascual J.M, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels J.L, De Vivo D.C. A mouse model for Glut-1 haploinsufficiency. Hum. Mol. Genet. 2006; 15: 1169–1179.
  • 38. Majumdar D, Peng XH, Shin DM. The medicinal chemistry of theragnostics, multimodality imaging and applications of nanotechnology in cancer. Curr Top Med Chem. 2010;10(12):1211–26.
  • 39. Sandhu S.S, Irwin A.G, Buscombe J.R, Hilson A. J.W, Young H.E, Jarmulowicz M & Kaisary A. V. 21. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labelled deoxyglucose. Nuclear Med Commun. 1997; 18(4): 328.
  • 40. Kim Y.H, Jeong D.C, Pak K, Han M.E, Kim J.Y, Liangwen L, Kim H, Kim T.W, Kim T.H, Hyun D.W, Oh S.O. SLC2A2 (GLUT2) as a novel prognostic factor for hepatocellular carcinoma [J]. Oncotarget. 2017; 8 (40): 68381–68392.
  • 41. Boral D, Vishnoi M, Liu HN, Yin W, Sprouse M.L, Scamardo A, Hong D.S, Tan T.Z, Thiery J.P, Chang J.C, Marchetti D. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun. 2017;8(1):196.
  • 42. Cosset E, Ilmjarv S, Dutoit V, et al. Glut3 addiction is a druggable vulnerability for a molecularly defined subpopulation of glioblastoma. Cancer Cell. 2017;32 (6):856–868.e855.
  • 43. Groenendyk J, Stoletov K, Paskevicius T, Li W, Dai N, Pujol M., ... & Michalak M. Loss of the fructose transporter SLC2A5 inhibits cancer cell migration. Front in Cell and Develop Biol. 2022; 10: 896297. 44. Uldry M, and Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch. 2004; 447: 480–489. 45. Dai C, Man Y, Zhang L, Zhang X, Xie C, Wang S, ... & Shi Y. Identifying SLC2A6 as the novel protective factor in breast cancer by TP53-related genes affecting M1 macrophage infiltration. Apoptosis. 2024; 1-21.

Unveiling the Prognostic Potential of SLC2A Gene Family in Glioblastoma Multiforme Using Bioinformatics Approaches

Yıl 2024, , 259 - 269, 31.12.2024
https://doi.org/10.7197/cmj.1601168

Öz

Objective: Glioblastomas (GBMs) are invasive and metastatic cancers with very low overall survival rates. Therefore, it is very important to propose a new biomarker for GBM diagnosis and prognosis. For this purpose, we aimed to investigate the prognostic potential of the SLC2A gene family, which has great importance in cancer, in GBM.
Methods: Solute carrier 2A (SLC2A) gene family expression levels, methylation and overall survival rates were analyzed with TCGA, GEPIA and UALCAN databases. Mutations were evaluated with Kaplan-Meier Plot and UCSC Xena database. Protein-protein interactions were analyzed with String database.
Results: No statistically significant mutation was detected in the SLC2A gene family. As a result of the analysis, high expression in SLC2A1 and SLC2A5 genes and decrease in SLC2A6 gene expression were found to be statistically significant. Hypermethylation was detected in the promoter regions of SLC2A1, SLC2A2, SLC2A3 and SLC2A5 genes, while hypomethylation was detected in SLC2A4 and SLC2A6 genes. The increase in SLC2A3 gene expression was associated with the overall survival rate of the patients.
Conclusion: SLC2A1, SLC2A5 and SLC2A6 gene up-regulation may be a biomarker in the diagnosis of GBM, and SLC2A3 may be a marker in prognosis.

Kaynakça

  • 1. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister S. M, Sutupp P, Reifenberger, G. Glioma. Nature reviews Disease primers. 2015; 1(1): 1-18.
  • 2. Lou J, Hao Y, Lin K, Lin K, Lyu Y, Chen M, Wang H, Zou D, Jiang X, Wang R, Jin D, Lam E, Shao S, Liu Q, Yan J, Wang X, Chen P, Zhang B, Jin B. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer; 2020;19:138.
  • 3. Qazi M.A, Vora P, Venugopal C, Sidhu S.S, Moffat J, Swanton C, & Singh S.K. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Annals of Oncology. 2017; 28(7): 1448-1456.
  • 4. Ohka F, Natsume A, Wakabayashi T. Current trends in targeted therapies for glioblastoma multiforme. Neurol Res Int. 2012; 2012: 878425.
  • 5. Network, TCGAR. Correction: Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2013; 494(7438): 506-506.
  • 6. Chai YJ, Yi JW, Oh SW, Kim YA, Yi KH, Kim JH, Lee KE. Upregulation of SLC2 (GLUT) family genes is related to poor survival outcomes in papillary thyroid carcinoma: Analysis of data from the Cancer Genome Atlas. Surgery. 2017; 161(1):188-194.
  • 7. Ancey P-B, Contat C, Meylan E. Glucose transporters in cancerdfrom tumor cells to the tumor microen vironment. FEBS J. 2018;285:2926e43.
  • 8. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–62.
  • 9. M. Mueckler, B. Thorens, The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013; 34 (2–3): 121–138.
  • 10. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, et al. Sequence and structure of a human glucose transporter. Science 1985;229:941e5.
  • 11. K. Ohtsubo, S. Takamatsu, M.T. Minowa, A. Yoshida, M. Takeuchi, J.D. Marth, Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell. 2005;123 (7): 1307–1321.
  • 12. Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010;298:E141e5.
  • 13. Chen L.Q, Cheung L.S, Feng L, Tanner W, & Frommer W.B. Transport of sugars. Annual review of biochemistry. 84(1), 865-894.
  • 14. Pereira K.M.A Chaves, F.N, Viana T.S.A, Carvalho F.S.R, Costa F.W.G, Alves A.P.N.N, Sousa F.B. Oxygen Metabolism in Oral Cancer: HIF and GLUTs (Review). Oncol. Lett. 2013; 6: 311–316.
  • 15. Avanzato D, Pupo E, Ducano N, Isella C, Bertalot G, Luise C, Pece S, Bruna A, Rueda O.M, Caldas C, Fiore D, Sapino A, Lanzetti L. High USP6NLLevels in Breast Cancer Sustain Chronic AKT Phosphorylation and GLUT1 Stability Fueling Aerobic Glycolysis. Cancer Res. 2018; 78: 3432–3444.
  • 16. Sun H.W, Yu X.J, Wu WC, Chen J, Shi M, Zheng L, Xu J. GLUT1 and ASCT2asPredictors for Prognosis of Hepatocellular Carcinoma. PLoS ONE. 2016; 11: e0168907.
  • 17. Berlth F, Mönig S, Pinther B, Grimminger P, Maus M, Schlösser H, Plum P, Warnecke-Eberz U, Harismendy O, Drebber U, Bollschweiler E, Hölscher A, Alakus H. Both GLUT-1 and GLUT-14 Are Independent Prognostic Factors in Gastric Adenocarcinoma. Ann. Surg. Oncol. 2015; 22 (Suppl. S3): 822–831.
  • 18. Goldman N.A, Katz E.B, Glenn A.S, Weldon R.H, Jones J.G, Lynch U, Fezzari M.J, Runowicz C.D, Goldberg G.L, Charron M.J. GLUT1 and GLUT8 in Endometrium and Endometrial Adenocarcinoma. Mod. Pathol. 2006; 19: 1429–1436.
  • 19. Komaki S, Sugita Y, Furuta T, Yamada K, Moritsubo M, Abe H, Akiba J, Miyagi N, Nakamura H, Miyoshi H, Ohshima K, Morioka M. Expression of GLUT1 in pseudopalisaded and perivascular tumor cells is an independent prognostic factor for patients with glioblastomas. J Neuropathol Exp Neurol. 2019; 78(5): 389-397.
  • 20. Mukhopadhyay P, Ye J, Anderson KM, Roychoudhury S, Rubin EH, Halabi S and Chappell RJ. Log‑rank test vs MaxCombo and difference in restricted mean survival time tests for comparing survival under nonproportional hazards in immuno‑oncology trials: A systematic review and meta‑analysis. JAMA Oncol. 2022; 8: 1294‑1300.
  • 21. Sperduto PW, Yang TJ, Beal K, Pan H, Brown PD, Bangdiwala A, Shanley R, Yeh N, Gaspar LE, Braunstein S, et al. Estimating survival in patients with lung cancer and brain metastases: An update of the graded prognostic assessment for lung cancer using molecular markers (lung‑molGPA). JAMA Oncol. 2017; 3: 827‑831.
  • 22. Medina A, Parween S, Ullsten S, Vishnu N, Siu YT, Quach M, et al. Early deficits in insulin secretion, beta cell mass and islet blood perfusion precede onset of autoimmune type 1 diabetes in BioBreeding rats. Diabetologia. 2018;61(4):896–905.
  • 23. Wu T. & Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017; 28: 61–68.
  • 24. Hanahan D & Weinberg R. A. Hallmarks of cancer: The next generation. Cell. 2011; 144, 646–674.
  • 25. Estilo C. L, O-charoenrat P, Talbot S, Socci N, Carlson D.L, Ghossein R, Williams T, Yonekawa Y, Ramanathan Y, Boyle J.O, Kraus D.H, Patel S, Shaha A.R, Wong RJ, Huryn J.M, Shah J.P & Singh B. Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis. BMC Cancer. 2009; 12, 9–26.
  • 26. Yao X, He Z, Qin C, Deng X, Bai L, Li G & Shi J. SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer. Cancer cell inter. 2020; 20: 1-16.
  • 27. Boado RJ, Black KL and Pardridge WM. Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Brain Res Mol Brain Res. 1994; 27: 51-57.
  • 28. Zeng K, Ju G, Wang H & Huang J. GLUT1/3/4 as novel biomarkers for the prognosis of human breast cancer. Translational cancer research. 2020; 9(4): 2363.
  • 29. Szablewski L. Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncol Rev. 2022;16:561.
  • 30. Shi Z, Liu J, Wang F, Li Y. Integrated analysis of solute carrier family-2 members reveals SLC2A4 as an independent favorable prognostic biomarker for breast cancer. Channels. 2021;15:555–68.
  • 31. Davidson N. O, Hausman A.M. L, Ifkovits C.A, Buse J.B, Gould G.W, Burant C.F, Bell G.I. Human intestinal glucose transporter expression and localization of GLUT5. Am. J. Physiol. 1992; 262: C795-C800.
  • 32. Burant C.F, Takeda J, Brot-Laroche E, Bell G.I, Davidson N.O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J. Biol. Chem. 1992; 267: 14523-14526.
  • 33. Doege H, Bocianski A, Joost H.G, Schurmann A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem. J. 2001; 350: 771-776, 2000. Note: Erratum: Biochem. J. 358: 791-792.
  • 34. Louis DN, Ohgaki H, Wiestler OD, Cavenee W.K, Burger P.C, Jouvet A, Scheithauer B.W, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007; 114: 97-109.
  • 35. Jovčevska I, Kočevar N, Komel R. Glioma and glioblastoma‑how much do we (not) know?. Mol Clin Oncol. 2013; 1: 935-41.
  • 36. Gao H, Liang J, Duan J, Chen L, Li H, Zhen T, Zhang F, Dong Y, Shi H, Han A: A prognosis marker SLC2A3 correlates with EMT and immune signature in colorectal cancer. Front Oncol. 2021; 11(11): 638099.
  • 37. Wang D, Pascual J.M, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels J.L, De Vivo D.C. A mouse model for Glut-1 haploinsufficiency. Hum. Mol. Genet. 2006; 15: 1169–1179.
  • 38. Majumdar D, Peng XH, Shin DM. The medicinal chemistry of theragnostics, multimodality imaging and applications of nanotechnology in cancer. Curr Top Med Chem. 2010;10(12):1211–26.
  • 39. Sandhu S.S, Irwin A.G, Buscombe J.R, Hilson A. J.W, Young H.E, Jarmulowicz M & Kaisary A. V. 21. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labelled deoxyglucose. Nuclear Med Commun. 1997; 18(4): 328.
  • 40. Kim Y.H, Jeong D.C, Pak K, Han M.E, Kim J.Y, Liangwen L, Kim H, Kim T.W, Kim T.H, Hyun D.W, Oh S.O. SLC2A2 (GLUT2) as a novel prognostic factor for hepatocellular carcinoma [J]. Oncotarget. 2017; 8 (40): 68381–68392.
  • 41. Boral D, Vishnoi M, Liu HN, Yin W, Sprouse M.L, Scamardo A, Hong D.S, Tan T.Z, Thiery J.P, Chang J.C, Marchetti D. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun. 2017;8(1):196.
  • 42. Cosset E, Ilmjarv S, Dutoit V, et al. Glut3 addiction is a druggable vulnerability for a molecularly defined subpopulation of glioblastoma. Cancer Cell. 2017;32 (6):856–868.e855.
  • 43. Groenendyk J, Stoletov K, Paskevicius T, Li W, Dai N, Pujol M., ... & Michalak M. Loss of the fructose transporter SLC2A5 inhibits cancer cell migration. Front in Cell and Develop Biol. 2022; 10: 896297. 44. Uldry M, and Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch. 2004; 447: 480–489. 45. Dai C, Man Y, Zhang L, Zhang X, Xie C, Wang S, ... & Shi Y. Identifying SLC2A6 as the novel protective factor in breast cancer by TP53-related genes affecting M1 macrophage infiltration. Apoptosis. 2024; 1-21.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıp Eğitimi
Bölüm Araştırma Makalesi
Yazarlar

Ayça Taş 0000-0002-7132-1325

Yavuz Siliğ 0000-0002-0562-7457

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 13 Aralık 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

AMA Taş A, Siliğ Y. Unveiling the Prognostic Potential of SLC2A Gene Family in Glioblastoma Multiforme Using Bioinformatics Approaches. CMJ. Aralık 2024;46(4):259-269. doi:10.7197/cmj.1601168