Araştırma Makalesi
BibTex RIS Kaynak Göster

Sezaryen Gerekli Post-Covid Sağlıklı Gebelerde İntraoperatif Akciğer Mekanikleri: Randomize Kontrollü Çalışma

Yıl 2024, Cilt: 46 Sayı: 3, 164 - 168, 30.09.2024
https://doi.org/10.7197/cmj.1511986

Öz

Amaç:Bu çalışmanın amacı aktif enfeksiyon süresi boyunca akciğer görüntüleme yapılmamış ve ARDS olmadan Covid-19’dan iyileşen hastalarda akciğer mekaniklerinin etkilenip etkilenmediğini göstermektir.
Yöntem:Hastalardan gebelerden oluşuyordu. Çalışma sezaryen ameliyatı sırasında yapılmıştır. Son 1 yıl içinde Covid-19 enfeksiyonu geçirip iyileşmiş gebeler ile Covid-19 enfeksiyonu geçirmemiş gebeler dahil edildi. Çalışmaya alınan 100 hasta iki gruba ayrıldı: Son 1 yıl içinde Covid-19 enfeksiyonu geçirip iyileşmiş hastalar(grup 1, n:50) ve kontrol grubu olarak hiç Covid-19 enfeksiyonu geçirmemiş hastalar(grup 2 n:50). Genel anestezi altında opere olan hastalarda MAP, HR ve SpO2 değerleri hasta takip formunda belirli zamanlarda ölçüldü ve kaydedildi. Entübasyon sonrası 1.dakikadan itibaren belirtilen zaman aralıklarında anestezi makinesi tarafından ölçülen tepe basıncı (Ppeak), plato basıncı(Pplato), dynamic compliance(Cdyn) ve positive end-expiratory pressure(PEEP) değerleri kaydedildi.
Bulgular:Her iki gruptaki bireylerden belirli zamanlarda elde edilen Ppeak, Pplato, ΔP, Cdyn ve R verileri karşılaştırıldığında gruplar arası anlamlı fark bulunmamıştır. Grup 1 ve Grup 2’ye ait farklı zamanlarda elde edilen Pplato, ΔP ve R ölçümleri istatistiksel olarak anlamsız bulunmuştur.
Sonuç:Covid-19 enfeksiyonu geçirmiş hasta grubu ile kontrol grubu bireylerinin akciğer mekanikleri arasında anlamlı fark yoktu. Her iki hasta grubunda SpO2, MAP, Cdyn değerlerdeki farklılıklar ; laringoskopi, endotrakeal entübasyon ve PEEP uygulama gibi genel anesteziye ait rutin uygulamalarla birlikte beklenen değişiklikler olarak düşünülmektedir.

Kaynakça

  • 1. Hess DR, Faarc R. Respiratory Mechanics in Mechanically Ventilated Patients. Respir Care. 2014;59(11):1773-1794. doi:10.4187/RESPCARE.03410
  • 2. Dikmen Y. Mekanik Ventilasyon-Klinik Uygulama Temelleri. (Dikmen Y, ed.). Güneş Tıp Kitabevleri; 2012.
  • 3. Robb J. Physiological changes occurring with positive pressure ventilation: part one. Intensive Crit Care Nurs. 1997;13(5):293-307. doi:10.1016/S0964-3397(97)80493-4
  • 4. Baldomero AK, Skarda PK, Marini JJ. Driving Pressure: Defining the Range. Respir Care. 2019;64(8):883-889. doi:10.4187/RESPCARE.06599
  • 5. Bugedo G, Retamal J, Bruhn A. Driving pressure: A marker of severity, a safety limit, or a goal for mechanical ventilation? Crit Care. 2017;21(1):1-7. doi:10.1186/s13054-017-1779-x
  • 6. Morgan G, Mikhail M, Butterworth JF, Mackey DC, Wasnick JD. Morgan&Mikhail Klinik Anesteziyoloji. 5.th. (Cuhruk FH, ed.). McGraw-Hill; 2015.
  • 7. Yarkın T. Mekanik Ventilasyon Sırasında Solunum Monitörizasyonu. Yoğun Bakım Derg. 2007;7(7):322-327.
  • 8. Jensen D, Webb KA, Davies GAL, O’donnell DE. Mechanical ventilatory constraints during incremental cycle exercise in human pregnancy: implications for respiratory sensation. J Physiol. 2008;586:4735-4750. doi:10.1113/jphysiol.2008. 158154
  • 9. McAuliffe F, Kametas N, Costello J, Rafferty GF, Greenough A, Nicolaides K. Respiratory function in singleton and twin pregnancy. BJOG An Int J Obstet Gynaecol. 2002;109(7):765-769. doi:10.1111/J.1471-0528.2002.01515.X
  • 10. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;46(12):2200-2211. doi:10.1007/s00134-020-06192-2
  • 11. Baedorf Kassis E, Schaefer MS, Maley JH, et al. Transpulmonary pressure measurements and lung mechanics in patients with early ARDS and SARS-CoV-2. J Crit Care. 2021;63:106-112. doi:10.1016/J.JCRC.2021.02.005
  • 12. Puah SH, Cove ME, Phua J, et al. Association between lung compliance phenotypes and mortality in covid-19 patients with acute respiratory distress syndrome. Ann Acad Med Singapore. 2021;50(9):686-694. doi:10.47102/ANNALS-ACADMEDSG.202112 9
  • 13. Swenson KE, Swenson ER. Pathophysiology of Acute Respiratory Distress Syndrome and COVID-19 Lung Injury. Crit Care Clin. 2021;37(4):749-776. doi:10.1016/J.CCC.2021 .05.003
  • 14. Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46(6):1099-1102. doi:10.1007/S00134-020-06033-2/FIGURES/1
  • 15. Yildirim S, Cinleti BA, Saygili SM, Senel E, Ediboglu O, Kirakli C. The effect of driving pressures in COVID-19 ARDS: Lower may still be better as in classic ARDS. Respir Investig. 2021;59(5):628-634. doi:10.1016/j.resinv.2021.06.002
  • 16. Laffey JG, Bellani G, Pham T, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42(12):1865-1876. doi:10.1007/S00134-016-4571-5/TABLES/3
  • 17. Boscolo A, Sella N, Lorenzoni G, et al. Static compliance and driving pressure are associated with ICU mortality in intubated COVID-19 ARDS. Crit Care. 2021;25(1):1-8. doi:10.1186/S13054-021-03667-6/TABLES/2
  • 18. Ladha K, Melo MFV, McLean DJ, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ. 2015;351. doi:10.1136/BMJ.H3646
  • 19. Öz H, Köksal GM. Mekanik Venti̇lasyon. 2006;8(1):37-46.

Intraoperative Lung Mechanics In Post-Covid Healthy Pregnants Who Required Cesarean Section: A Randomized Controlled Trial

Yıl 2024, Cilt: 46 Sayı: 3, 164 - 168, 30.09.2024
https://doi.org/10.7197/cmj.1511986

Öz

Objective: This study aimed to investigate whether lung mechanics were affected in patients recovering from Covid-19 without ARDS who did not undergo lung imaging during the active infection period.
Methods: The study included pregnant patients undergoing cesarean section operations. Participants were divided into two groups: those who had recovered from Covid-19 within the past year (group 1, n=50) and those who had never been infected with Covid-19 (group 2, n=50). The study included 100 patients divided into two groups: those who had recovered from Covid-19 within the last year (group 1, n=50) and those who had never experienced Covid-19 infection (group 2, n=50). Peak pressure (Ppeak), plateau pressure (Pplato), dynamic compliance (Cdyn), and positive end-expiratory pressure (PEEP) values, measured by the anesthesia machine, were recorded at specified time intervals following intubation.
Results: Comparisons of Ppeak, Pplato, ΔP, Cdyn, and R data at specified times (1 min, 5 min, 10 min, 20 min, 30 min, and 40 min) showed no significant differences between the groups (p>0.05).
Conclusion: No significant differences in lung mechanics were found between the Covid-19-recovered patient group and the control group. Differences observed in SpO2, MAP, and Cdyn values in both groups are considered to be expected changes associated with routine procedures of general anesthesia

Kaynakça

  • 1. Hess DR, Faarc R. Respiratory Mechanics in Mechanically Ventilated Patients. Respir Care. 2014;59(11):1773-1794. doi:10.4187/RESPCARE.03410
  • 2. Dikmen Y. Mekanik Ventilasyon-Klinik Uygulama Temelleri. (Dikmen Y, ed.). Güneş Tıp Kitabevleri; 2012.
  • 3. Robb J. Physiological changes occurring with positive pressure ventilation: part one. Intensive Crit Care Nurs. 1997;13(5):293-307. doi:10.1016/S0964-3397(97)80493-4
  • 4. Baldomero AK, Skarda PK, Marini JJ. Driving Pressure: Defining the Range. Respir Care. 2019;64(8):883-889. doi:10.4187/RESPCARE.06599
  • 5. Bugedo G, Retamal J, Bruhn A. Driving pressure: A marker of severity, a safety limit, or a goal for mechanical ventilation? Crit Care. 2017;21(1):1-7. doi:10.1186/s13054-017-1779-x
  • 6. Morgan G, Mikhail M, Butterworth JF, Mackey DC, Wasnick JD. Morgan&Mikhail Klinik Anesteziyoloji. 5.th. (Cuhruk FH, ed.). McGraw-Hill; 2015.
  • 7. Yarkın T. Mekanik Ventilasyon Sırasında Solunum Monitörizasyonu. Yoğun Bakım Derg. 2007;7(7):322-327.
  • 8. Jensen D, Webb KA, Davies GAL, O’donnell DE. Mechanical ventilatory constraints during incremental cycle exercise in human pregnancy: implications for respiratory sensation. J Physiol. 2008;586:4735-4750. doi:10.1113/jphysiol.2008. 158154
  • 9. McAuliffe F, Kametas N, Costello J, Rafferty GF, Greenough A, Nicolaides K. Respiratory function in singleton and twin pregnancy. BJOG An Int J Obstet Gynaecol. 2002;109(7):765-769. doi:10.1111/J.1471-0528.2002.01515.X
  • 10. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;46(12):2200-2211. doi:10.1007/s00134-020-06192-2
  • 11. Baedorf Kassis E, Schaefer MS, Maley JH, et al. Transpulmonary pressure measurements and lung mechanics in patients with early ARDS and SARS-CoV-2. J Crit Care. 2021;63:106-112. doi:10.1016/J.JCRC.2021.02.005
  • 12. Puah SH, Cove ME, Phua J, et al. Association between lung compliance phenotypes and mortality in covid-19 patients with acute respiratory distress syndrome. Ann Acad Med Singapore. 2021;50(9):686-694. doi:10.47102/ANNALS-ACADMEDSG.202112 9
  • 13. Swenson KE, Swenson ER. Pathophysiology of Acute Respiratory Distress Syndrome and COVID-19 Lung Injury. Crit Care Clin. 2021;37(4):749-776. doi:10.1016/J.CCC.2021 .05.003
  • 14. Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46(6):1099-1102. doi:10.1007/S00134-020-06033-2/FIGURES/1
  • 15. Yildirim S, Cinleti BA, Saygili SM, Senel E, Ediboglu O, Kirakli C. The effect of driving pressures in COVID-19 ARDS: Lower may still be better as in classic ARDS. Respir Investig. 2021;59(5):628-634. doi:10.1016/j.resinv.2021.06.002
  • 16. Laffey JG, Bellani G, Pham T, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42(12):1865-1876. doi:10.1007/S00134-016-4571-5/TABLES/3
  • 17. Boscolo A, Sella N, Lorenzoni G, et al. Static compliance and driving pressure are associated with ICU mortality in intubated COVID-19 ARDS. Crit Care. 2021;25(1):1-8. doi:10.1186/S13054-021-03667-6/TABLES/2
  • 18. Ladha K, Melo MFV, McLean DJ, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ. 2015;351. doi:10.1136/BMJ.H3646
  • 19. Öz H, Köksal GM. Mekanik Venti̇lasyon. 2006;8(1):37-46.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık ve Toplum Hizmetleri
Bölüm Araştırma Makalesi
Yazarlar

Fatih Balcı 0000-0002-9005-6758

Cemil İsbir 0000-0003-4094-7584

Oğuz Gündoğdu 0000-0002-8864-0015

Onur Avcı 0000-0003-0743-754X

Sinan Gürsoy 0000-0003-0259-9750

İclal Özdemir Kol 0000-0001-8247-440X

Kenan Kaygusuz 0000-0002-0745-4633

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 7 Temmuz 2024
Kabul Tarihi 6 Ağustos 2024
Yayımlandığı Sayı Yıl 2024Cilt: 46 Sayı: 3

Kaynak Göster

AMA Balcı F, İsbir C, Gündoğdu O, Avcı O, Gürsoy S, Özdemir Kol İ, Kaygusuz K. Intraoperative Lung Mechanics In Post-Covid Healthy Pregnants Who Required Cesarean Section: A Randomized Controlled Trial. CMJ. Eylül 2024;46(3):164-168. doi:10.7197/cmj.1511986