Derleme
BibTex RIS Kaynak Göster

CİNSEL GELİŞİM BOZUKLUKLARININ GENETİĞİ

Yıl 2025, Cilt: 47 Sayı: 1, 2 - 9, 29.03.2025

Öz

Cinsel gelişim embriyogenezin önemli aşamalarından biridir. Bu süreçte, genetik temelde (seks kromozomları) gerçekleşen gonadal farklılaşma bireyin cinsel kimliğini belirler. Başlangıçta gonadlar bipotansiyel olarak kabul edilir çünkü gonadal primordium sonraki dönemde belirli genetik unsurların aktivasyonu ile testis veya overe dönüşebilir. Bu dönemin herhangi bir aşamasında bir aksama olduğunda, cinsel gelişim bozuklukları (DSD) adı verilen çeşitli klinik durumlar ortaya çıkar. Genellikle çeşitli mutasyonlar veya cinsiyet kromozomu anormalliklerinin eşlik ettiği bu koşullara, gonadal disgenezi dahil olabilir ve erkek (46, XY) veya dişi (46, XX) cinsiyet dönüşümü ile sonuçlanabilir. 46,XY DSD genellikle belirsiz bir durumu veya dişi dış ve/veya Müllerian dokuların mevcut olup olmamasına bağlı olarak iç genital organların varlığını içerir. Öte yanda, yine genetik bazda farklı enzim defektleri, hem erkeklerde (örn. 5α-redüktaz) hem de dişilerde (örn. aromataz) cinsiyet gelişimi bozukluklarına yol açabilmektedir. Konjenital adrenal hiperplazi, özellikle 46,XX DSD olgularında, nispeten sık görülen, otozomal resesif bir enzim defektidir. Bir dizi sendrom, erkeklerde belirli ölçüde yetersiz cinsel gelişime veya dişilerde erkekleşmeye yol açar. Hastalar da, ayrıca mental problemlerin eşliğinde bazı karakteristik fiziksel semptomlar bulunur. Gonadal disgeneziye, başta SRY geni olmak üzere, çeşitli mutasyonlar (örneğin Swyer sendromu) veya cinsiyet kromozom bozuklukluğu (Turner sendromu) neden olabilir. Netice itibarıyla, 46,XY DSD, karma gonadal disgenezi ve diğer bazı durumlarda, malignite riski nedeniyle profilaktik gonadektomi düşünülebilir.

Kaynakça

  • 1. Lamothe S, Bernard V, Christin-Maitre S. Gonad differentiation toward ovary. Ann Endocrinol (Paris). 2020;81(2-3):83-88.
  • 2. Vivanco E, Goles E, Montalva-Medel M, Poupin MJ. Dynamical robustness of a Boolean model for the human gonadal sex determination. Comput Biol Chem. 2024;113:108225.
  • 3. Acién P, Acién M. Disorders of Sex Development: Classification, Review, and Impact on Fertility. J Clin Med. 2020;9(11):3555.
  • 4. Kim KR, Kwon Y, Joung JY, Kim KS, Ayala AG, Ro JY. True hermaphroditism and mixed gonadal dysgenesis in young children: a clinicopathologic study of 10 cases. Mod Pathol. 2002;15(10):1013-9.
  • 5. Allen L. Disorders of sexual development. Obstet Gynecol Clin North Am. 2009;36(1):25-45.
  • 6. García-Acero M, Moreno O, Suárez F, Rojas A. Disorders of Sexual Development: Current Status and Progress in the Diagnostic Approach. Curr Urol. 2020;13(4):169-178.
  • 7. Davies K. The XY Female: Exploring Care for Adolescent Girls with Complete Androgen Insensitivity Syndrome. Compr Child Adolesc Nurs. 2020;43(4):378-88.
  • 8. Massanyi EZ, Dicarlo HN, Migeon CJ, Gearhart JP. Review and management of 46,XY disorders of sex development. J Pediatr Urol. 2013;9(3):368-79.
  • 9. Basri NI, Soon CH, Ali A, Abdul Ghani NA, Zainuddin AA. Prophylactic gonadectomy in 46 XY females; why, where and when? Horm Mol Biol Clin Investig. 2021;42(3):325-8.
  • 10. Luppino G, Wasniewska M, Coco R, Pepe G, Morabito LA, Li Pomi A, et al. Role of NR5A1 Gene Mutations in Disorders of Sex Development: Molecular and Clinical Features. Curr Issues Mol Biol. 2024;46(5):4519-32.
  • 11. Alkhzouz C, Bucerzan S, Miclaus M, Mirea AM, Miclea D. 46,XX DSD: Developmental, Clinical and Genetic Aspects. Diagnostics (Basel). 2021;11(8):1379.
  • 12. Sreenivasan R, Gonen N, Sinclair A. SOX Genes and Their Role in Disorders of Sex Development. Sex Dev. 2022;16(2-3):80-91.
  • 13. Racca JD, Chen YS, Brabender AR, Battistin U, Weiss MA, Georgiadis MM. Role of nucleobase-specific interactions in binding and bending of DNA by human male sex-determination factor SRY. J Biol Chem. 2024:107683. doi: 10.1016/j.jbc.2024.107683.
  • 14. Witchel SF. Disorders of sex development. Best Pract Res Clin Obstet Gynaecol. 2018;48:90-102. 15. Harpelunde Poulsen K, Nielsen JE, Frederiksen H, Melau C, Juul Hare K, Langhoff Thuesen L, et al. Dysregulation of FGFR signalling by a selective inhibitor reduces germ cell survival in human fetal gonads of both sexes and alters the somatic niche in fetal testes. Hum Reprod. 2019;34(11):2228-43.
  • 16. Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development. 2004;131(15):3627-36.
  • 17. Alhamoudi KM, Alghamdi B, Aljomaiah A, Alswailem M, Al-Hindi H, Alzahrani AS. Case Report: Severe Gonadal Dysgenesis Causing 46,XY Disorder of Sex Development Due to a Novel NR5A1 Variant. Front Genet. 2022;13:885589.
  • 18. Tang F, Richardson N, Albina A, Chaboissier M-C, Perea-Gomez A. Mouse Gonad Development in the Absence of the Pro-Ovary Factor WNT4 and the Pro-Testis Factor SOX9 Cells. 2020;9(5):1103.
  • 19. Lundgaard Riis M, Delpouve G, Nielsen JE, Melau C, Langhoff Thuesen L, Juul Hare K, et al. Inhibition of WNT/beta-catenin signalling during sex-specific gonadal differentiation is essential for normal human fetal testis development. Cell Commun Signal. 2024;22(1):330.
  • 20. Sowińska-Przepiera E, Krzyścin M, Przepiera A, Brodowska A, Malanowska E, Kozłowski M, et al. Late Diagnosis of Swyer Syndrome in a Patient with Bilateral Germ Cell Tumor Treated with a Contraceptive Due to Primary Amenorrhea. Int J Environ Res Public Health. 2023;20(3):2139.
  • 21. Tarenia SS, Chattopadhyay S, Das N, Hathi D, Baidya A, Chakrabarty P, et al. Swyer Syndrome Presenting as Dysgerminoma: A Case Report. J ASEAN Fed Endocr Soc. 2023;38(1):108-13.
  • 22. Winkler I, Jaszczuk I, Gogacz M, Szkodziak P, Paszkowski T, Skorupska K, et al. A Successful New Case of Twin Pregnancy in a Patient with Swyer Syndrome-An Up-to-Date Review on the Incidence and Outcome of Twin/Multiple Gestations in the Pure 46,XY Gonadal Dysgenesis. Int J Environ Res Public Health. 2022;19(9):5027.
  • 23. Biason-Lauber A.WNT4, RSPO1, and FOXL2 in sex development. Semin Reprod Med. 2012;30(5):387-95.
  • 24. Ragitha TS, Sunish KS, Gilvaz S, Daniel S, Varghese PR, Raj S, et al. Mutation analysis of WNT4 gene in SRY negative 46,XX DSD patients with Mullerian agenesis and/or gonadal dysgenesis- An Indian study. Gene. 2023;861:147236.
  • 25. Chiang HS, Wu YN, Wu CC, Hwang JL. Cytogenic and molecular analyses of 46,XX male syndrome with clinical comparison to other groups with testicular azoospermia of genetic origin. J Formos Med Assoc. 2013;112(2):72-8.
  • 26. Zhou L, Charkraborty T, Zhou Q, Mohapatra S, Nagahama Y, Zhang Y. Rspo1-activated signalling molecules are sufficient to induce ovarian differentiation in XY medaka (Oryzias latipes). Sci Rep. 2016;6:19543.
  • 27. Abalı ZY, Guran T. Diagnosis and management of non-CAH 46,XX disorders/differences in sex development. Front Endocrinol (Lausanne). 2024;15:1354759.
  • 28. Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci. 2022;23(14):7500.
  • 29. Holterhus PM, Kulle A, Busch H, Spielmann M. Classic genetic and hormonal switches during fetal sex development and beyond. Med Genet. 2023;35(3):163-71.
  • 30. Huang YC, Tsai MC, Tsai CR, Fu LS. Frasier Syndrome: A Rare Cause of Refractory Steroid-Resistant Nephrotic Syndrome. Children (Basel). 2021;8(8):617.
  • 31. Gomes NL, de Paula LCP, Silva JM, Silva TE, Lerário AM, Nishi MY, et al. A 46,XX testicular disorder of sex development caused by a Wilms' tumour Factor-1 (WT1) pathogenic variant. Clin Genet. 2019;95(1):172-6.
  • 32. Lopez-Gonzalez M, Ariceta G. WT1-related disorders: more than Denys-Drash syndrome. Pediatr Nephrol. 2024;39(9):2601-9.
  • 33. Li T, Zhou J, Wu H, Gao X, Shen Q, Cheng R, et al. Single-cell transcriptomes of kidneys in a 6-month-old boy with Denys-Drash syndrome reveal stromal cell heterogeneity in the tumor microenvironment. Clin Kidney J. 2023;17(1):sfad277.
  • 34. Shao Q, Xie X, Geng J, Yang X, Li W, Zhang Y. Frasier Syndrome: A 15-Year-Old Phenotypically Female Adolescent Presenting with Delayed Puberty and Nephropathy. Children (Basel). 2023;10(3):577.
  • 35. Hart D, Rodríguez Gutiérrez D, Biason-Lauber A. CBX2 in DSD: The Quirky Kid on the Block. Sex Dev. 2022;16(2-3):162-70.
  • 36. Ohnesorg T, Vilain E, Sinclair AH. The genetics of disorders of sex development in humans. Sex Dev. 2014;8(5):262-72.
  • 37. Koster R, Mitra N, D'Andrea K, Vardhanabhuti S, Chung CC, Wang Z, et al. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors. Hum Mol Genet. 2014;23(22):6061-8.
  • 38. Zarkower D, Murphy MW. DMRT1: An Ancient Sexual Regulator Required for Human Gonadogenesis. Sex Dev. 2022;16(2-3):112-25.
  • 39. Wei J, Wu J, Ru W, Chen G, Gao L, Tang D. Novel compound heterozygous mutations in the desert hedgehog (DHH) gene in cases of siblings with 46,XY disorders of sexual development. BMC Med Genomics. 2022;15(1):178.
  • 40. Mehta P, Singh P, Gupta NJ, Sankhwar SN, Chakravarty B, Thangaraj K, et al. Mutations in the desert hedgehog (DHH) gene in the disorders of sexual differentiation and male infertility. J Assist Reprod Genet. 2021;38(7):1871-78.
  • 41. Shichiri Y, Kato Y, Inagaki H, Kato T, Ishihara N, Miyata M, et al. A case of 46,XY disorders of sex development with congenital heart disease caused by a GATA4 variant. Congenit Anom (Kyoto). 2022;62(5):203-7.
  • 42. Martinez de LaPiscina I, de Mingo C, Riedl S, Rodriguez A, Pandey AV, Fernández-Cancio M, et al. GATA4 Variants in Individuals With a 46,XY Disorder of Sex Development (DSD) May or May Not Be Associated With Cardiac Defects Depending on Second Hits in Other DSD Genes. Front Endocrinol (Lausanne). 2018;9:142.
  • 43. Granados A, Alaniz VI, Mohnach L, Barseghyan H, Vilain E, Ostrer H, et al. MAP3K1-related gonadal dysgenesis: Six new cases and review of the literature. Am J Med Genet C Semin Med Genet. 2017;175(2):253-9.
  • 44. King TFJ, Conway GS. Swyer syndrome. Curr Opin Endocrinol Diabetes Obes. 2014;21(6):504-10.
  • 45. Nagel SA, Hartmann MF, Riepe FG, Wudy SA, Wabitsch M. Gonadotropin- and Adrenocorticotropic Hormone-Independent Precocious Puberty of Gonadal Origin in a Patient with Adrenal Hypoplasia Congenita Due to DAX1 Gene Mutation - A Case Report and Review of the Literature: Implications for the Pathomechanism. Horm Res Paediatr. 2019;91(5):336-45.
  • 46. Landau Z, Hanukoglu A, Sack J, Goldstein N, Weintrob N, Eliakim A, et al. Clinical and genetic heterogeneity of congenital adrenal hypoplasia due to NR0B1 gene mutations. Clin Endocrinol (Oxf). 2010;72(4):448-54.
  • 47. Ludbrook LM, Harley VR. Sex determination: a 'window' of DAX1 activity. Trends Endocrinol Metab. 2004;15(3):116-21.
  • 48. Vasta V, Shimizu-Albergine M, Beavo JA. Modulation of Leydig cell function by cyclic nucleotide phosphodiesterase 8A. PNAS U S A. 2006;103(52):19925-30.
  • 49. Habert R, Lejeune H, Saez JM. Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol. 2001;179(1-2):47-74.
  • 50. Hassan HA, Essawi ML, Mekkawy MK, Mazen I. Novel mutations of the LHCGR gene in two families with 46,XY DSD causing Leydig cell hypoplasia I. Hormones (Athens). 2020;19(4):573-9.
  • 51. Çömlek FÖ, Yıldız R, Seyrek F, Tütüncüler F. Leydig cell hypoplasia type 1 diagnosed in early childhood with inactivating mutation in LHCGR gene. Oxf Med Case Reports. 2021;4,153–5
  • 52. Benderradji H, Prasivoravong J, Marcelli F, Leroy C. Role of Anti-Mullerian Hormone in Male Reproduction and Sperm Motility. Semin Reprod Med. 2024;42(1):5-14.
  • 53. Alshwayyat S, Hanifa H, M Amro A, Shlool N, Alfaqeh Q, Alloush A. Persistent Mullerian duct syndrome in a male child: A rare case report on the intersection of surgical importance and economic barriers in Syria. Int J Surg Case Rep. 2024;123:110315.
  • 54. Delli Paoli E, Di Chiano S, Paoli D, Lenzi A, Lombardo F, Pallotti F. Androgen insensitivity syndrome: a review. J Endocrinol Invest. 2023;46(11):2237-45.
  • 55. Hughes IA, Davies JD, Bunch TI, Pasterski V, Mastroyannopoulou K, MacDougall J. Androgen insensitivity syndrome. Lancet. 2012;380(9851):1419-28.
  • 56. Gulía C, Baldassarra S, Zangari A, Briganti V, Gigli S, Gaffi M, et al. Androgen insensitivity syndrome. Eur Rev Med Pharmacol Sci. 2018;22(12):3873-87.
  • 57. Batista RL, Costa EMF, Rodrigues AS, Gomes NL, Faria JA Jr, Nishi MY, et al. Androgen insensitivity syndrome: a review. Arch Endocrinol Metab. 2018;62(2):227-35.
  • 58. Ibarra-Ramírez M, Campos-Acevedo LD, Martínez de Villarreal LE. Chromosomal Abnormalities of Interest in Turner Syndrome: An Update. J Pediatr Genet. 2023;12(4):263-72.
  • 59. Hosseini J, Zamani Hajiabadi A, Mirjalili AM. Ventral-Onlay Buccal Mucosal Graft Urethroplasty of a Perineal Fistula in a 26-Year-Old Patient With 46 XX Male Syndrome: A Case Report. Am J Mens Health. 2023;17(2):1-4.
  • 60. Wang T, Liu JH, Yang J, Chen J, Ye ZQ. 46, XX male sex reversal syndrome: a case report and review of the genetic basis. Andrologia. 2009;41(1):59-62.
  • 61. Javaid MK, Boyce A, Appelman-Dijkstra N, Ong J, Defabianis P, Offiah A, et al. Best practice management guidelines for fibrous dysplasia/McCune-Albright syndrome: a consensus statement from the FD/MAS international consortium. Orphanet J Rare Dis. 2019;14(1):139.
  • 62. Auer MK, Nordenström A, Lajic S, Reisch N. Congenital adrenal hyperplasia. Lancet. 2023;401(10372):227-44.
  • 63. Witchel SF. Congenital Adrenal Hyperplasia. J Pediatr Adolesc Gynecol. 2017;30(5):520-34.
  • 64. Chen L, Huang H, Zhang H, Zhu G, Zhu M. Three cases of 3beta-hydroxysteroid dehydrogenase deficiency: Clinical analysis. Adv Clin Exp Med. 2021;30(3):289-99.
  • 65. Bulsari K, Falhammar H. Clinical perspectives in congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency. Endocrine. 2017;55(1):19-36.
  • 66. Gardner M, Khorashad BS, Lee PA, Kogan BA, Sandberg DE. Recommendations for 46,XX Congenital Adrenal Hyperplasia Across Two Decades: Insights from the North American Differences of Sex Development Clinician Survey. Arch Sex Behav. 2024;53(5):1695-711.
  • 67. Asirvatham AR, Balachandran K, Jerome P, Venkatesan V, Koshy T, Mahadevan S. Clinical, biochemical and genetic characteristics of children with congenital adrenal hyperplasia due to 17α-hydroxylase deficiency. J Pediatr Endocrinol Metab 2020; 33(8): 1051–56.
  • 68. Siklar Z, Camtosun E, Bolu S, Yildiz M, Akinci A, Bas F et al. 17α Hydroxylase/17,20 lyase deficiency: clinical features and genetic insights from a large Turkey cohort. Endocrine (2024) 85:1407–16.
  • 69. Flück CE, Miller WL. P450 oxidoreductase deficiency: a new form of congenital adrenal hyperplasia. Curr Opin Pediatr. 2006;18(4):435-41.
  • 70. Idkowiak J, Cragun D, Hopkin RJ, Arlt W. Cytochrome P450 Oxidoreductase Deficiency. GeneReviews® [Internet]. Free Books & Documents. 2005 [updated 2017].
  • 71. Li H, Fu S, Dai R, Sheng Z, Liu W. Aromatase deficiency caused by mutation of CYP19A1 gene: A case report. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022;47(6):794-800.
  • 72. Belgorosky A, Guercio G, Pepe C, Saraco N, Rivarola MA. Genetic and clinical spectrum of aromatase deficiency in infancy, childhood and adolescence. Horm Res. 2009;72(6):321-30.
  • 73. Zhang W, Yu B, Luo W, Sun B, Zhang X, Wang X, et al. In vitro functional study of fifteen SRD5A2 variants found in Chinese patients and the relation between the SRD5A2 genotypes and phenotypes. J Steroid Biochem Mol Biol. 2023;235:106421.
  • 74. Cheon CK. Practical approach to steroid 5alpha-reductase type 2 deficiency. Eur J Pediatr. 2011;170(1):1-8.
  • 75. Gui T, Yao F, Yang X, Wang X, Nie M, Wu X, Tian Q. Genotype-Phenotype Correlation Analysis and Identification of a Novel SRD5A2 Mutation in Four Unrelated Chinese Patients with 5alpha-Reductase Deficiency. Int J Gen Med. 2022;15:6633-43.

THE GENETICS OF SEXUAL DEVELOPMENT DISORDERS

Yıl 2025, Cilt: 47 Sayı: 1, 2 - 9, 29.03.2025

Öz

Sexual development is one of the significant stages of the embryogenesis. In this process, the gonadal differentiation taking place on a genetic basis (sex chromosomes) determines the sexual identity of the individual. Initially, the gonads are considered bipotential because the gonadal primordium can turn into a testicle or ovary through the activation of certain genetic elements in the subsequent period. When there is a disruption at any phase of this period, various clinical conditions called disorders of sexual development (DSD) arise. These conditions, often accompanied by various mutations or sex chromosome abnormalities, may include gonadal dysgenesis and result in a male (46, XY) or female (46, XX) sex reversal. DSD with 46,XY usually contains ambiguous condition, or the presence of female external and/or internal genitalia depending on whether Müllerian tissues are present. On the other hand, different enzyme defects, again, on a genetic basis can lead to disorders of sex development in both males (e.g. 5α-reductase) and females (e.g. aromatase). Congenital adrenal hyperplasia is a relatively common, autosomal recessive enzyme defect, especially in 46,XX DSD cases. A number of syndromes lead to a certain degree of inadequate sexual development in males or masculinization in females. Patients also have some characteristic physical symptoms accompanied by mental problems. Gonadal dysgenesis can be caused by various mutations, mainly in the SRY gene (e.g. Swyer syndrome) or sex chromosome disorder (Turner syndrome). In cases of 46,XY DSD, mixed gonadal dysgenesis, and some other conditions, prophylactic gonadectomy may be considered because of the malignancy risk.

Kaynakça

  • 1. Lamothe S, Bernard V, Christin-Maitre S. Gonad differentiation toward ovary. Ann Endocrinol (Paris). 2020;81(2-3):83-88.
  • 2. Vivanco E, Goles E, Montalva-Medel M, Poupin MJ. Dynamical robustness of a Boolean model for the human gonadal sex determination. Comput Biol Chem. 2024;113:108225.
  • 3. Acién P, Acién M. Disorders of Sex Development: Classification, Review, and Impact on Fertility. J Clin Med. 2020;9(11):3555.
  • 4. Kim KR, Kwon Y, Joung JY, Kim KS, Ayala AG, Ro JY. True hermaphroditism and mixed gonadal dysgenesis in young children: a clinicopathologic study of 10 cases. Mod Pathol. 2002;15(10):1013-9.
  • 5. Allen L. Disorders of sexual development. Obstet Gynecol Clin North Am. 2009;36(1):25-45.
  • 6. García-Acero M, Moreno O, Suárez F, Rojas A. Disorders of Sexual Development: Current Status and Progress in the Diagnostic Approach. Curr Urol. 2020;13(4):169-178.
  • 7. Davies K. The XY Female: Exploring Care for Adolescent Girls with Complete Androgen Insensitivity Syndrome. Compr Child Adolesc Nurs. 2020;43(4):378-88.
  • 8. Massanyi EZ, Dicarlo HN, Migeon CJ, Gearhart JP. Review and management of 46,XY disorders of sex development. J Pediatr Urol. 2013;9(3):368-79.
  • 9. Basri NI, Soon CH, Ali A, Abdul Ghani NA, Zainuddin AA. Prophylactic gonadectomy in 46 XY females; why, where and when? Horm Mol Biol Clin Investig. 2021;42(3):325-8.
  • 10. Luppino G, Wasniewska M, Coco R, Pepe G, Morabito LA, Li Pomi A, et al. Role of NR5A1 Gene Mutations in Disorders of Sex Development: Molecular and Clinical Features. Curr Issues Mol Biol. 2024;46(5):4519-32.
  • 11. Alkhzouz C, Bucerzan S, Miclaus M, Mirea AM, Miclea D. 46,XX DSD: Developmental, Clinical and Genetic Aspects. Diagnostics (Basel). 2021;11(8):1379.
  • 12. Sreenivasan R, Gonen N, Sinclair A. SOX Genes and Their Role in Disorders of Sex Development. Sex Dev. 2022;16(2-3):80-91.
  • 13. Racca JD, Chen YS, Brabender AR, Battistin U, Weiss MA, Georgiadis MM. Role of nucleobase-specific interactions in binding and bending of DNA by human male sex-determination factor SRY. J Biol Chem. 2024:107683. doi: 10.1016/j.jbc.2024.107683.
  • 14. Witchel SF. Disorders of sex development. Best Pract Res Clin Obstet Gynaecol. 2018;48:90-102. 15. Harpelunde Poulsen K, Nielsen JE, Frederiksen H, Melau C, Juul Hare K, Langhoff Thuesen L, et al. Dysregulation of FGFR signalling by a selective inhibitor reduces germ cell survival in human fetal gonads of both sexes and alters the somatic niche in fetal testes. Hum Reprod. 2019;34(11):2228-43.
  • 16. Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development. 2004;131(15):3627-36.
  • 17. Alhamoudi KM, Alghamdi B, Aljomaiah A, Alswailem M, Al-Hindi H, Alzahrani AS. Case Report: Severe Gonadal Dysgenesis Causing 46,XY Disorder of Sex Development Due to a Novel NR5A1 Variant. Front Genet. 2022;13:885589.
  • 18. Tang F, Richardson N, Albina A, Chaboissier M-C, Perea-Gomez A. Mouse Gonad Development in the Absence of the Pro-Ovary Factor WNT4 and the Pro-Testis Factor SOX9 Cells. 2020;9(5):1103.
  • 19. Lundgaard Riis M, Delpouve G, Nielsen JE, Melau C, Langhoff Thuesen L, Juul Hare K, et al. Inhibition of WNT/beta-catenin signalling during sex-specific gonadal differentiation is essential for normal human fetal testis development. Cell Commun Signal. 2024;22(1):330.
  • 20. Sowińska-Przepiera E, Krzyścin M, Przepiera A, Brodowska A, Malanowska E, Kozłowski M, et al. Late Diagnosis of Swyer Syndrome in a Patient with Bilateral Germ Cell Tumor Treated with a Contraceptive Due to Primary Amenorrhea. Int J Environ Res Public Health. 2023;20(3):2139.
  • 21. Tarenia SS, Chattopadhyay S, Das N, Hathi D, Baidya A, Chakrabarty P, et al. Swyer Syndrome Presenting as Dysgerminoma: A Case Report. J ASEAN Fed Endocr Soc. 2023;38(1):108-13.
  • 22. Winkler I, Jaszczuk I, Gogacz M, Szkodziak P, Paszkowski T, Skorupska K, et al. A Successful New Case of Twin Pregnancy in a Patient with Swyer Syndrome-An Up-to-Date Review on the Incidence and Outcome of Twin/Multiple Gestations in the Pure 46,XY Gonadal Dysgenesis. Int J Environ Res Public Health. 2022;19(9):5027.
  • 23. Biason-Lauber A.WNT4, RSPO1, and FOXL2 in sex development. Semin Reprod Med. 2012;30(5):387-95.
  • 24. Ragitha TS, Sunish KS, Gilvaz S, Daniel S, Varghese PR, Raj S, et al. Mutation analysis of WNT4 gene in SRY negative 46,XX DSD patients with Mullerian agenesis and/or gonadal dysgenesis- An Indian study. Gene. 2023;861:147236.
  • 25. Chiang HS, Wu YN, Wu CC, Hwang JL. Cytogenic and molecular analyses of 46,XX male syndrome with clinical comparison to other groups with testicular azoospermia of genetic origin. J Formos Med Assoc. 2013;112(2):72-8.
  • 26. Zhou L, Charkraborty T, Zhou Q, Mohapatra S, Nagahama Y, Zhang Y. Rspo1-activated signalling molecules are sufficient to induce ovarian differentiation in XY medaka (Oryzias latipes). Sci Rep. 2016;6:19543.
  • 27. Abalı ZY, Guran T. Diagnosis and management of non-CAH 46,XX disorders/differences in sex development. Front Endocrinol (Lausanne). 2024;15:1354759.
  • 28. Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci. 2022;23(14):7500.
  • 29. Holterhus PM, Kulle A, Busch H, Spielmann M. Classic genetic and hormonal switches during fetal sex development and beyond. Med Genet. 2023;35(3):163-71.
  • 30. Huang YC, Tsai MC, Tsai CR, Fu LS. Frasier Syndrome: A Rare Cause of Refractory Steroid-Resistant Nephrotic Syndrome. Children (Basel). 2021;8(8):617.
  • 31. Gomes NL, de Paula LCP, Silva JM, Silva TE, Lerário AM, Nishi MY, et al. A 46,XX testicular disorder of sex development caused by a Wilms' tumour Factor-1 (WT1) pathogenic variant. Clin Genet. 2019;95(1):172-6.
  • 32. Lopez-Gonzalez M, Ariceta G. WT1-related disorders: more than Denys-Drash syndrome. Pediatr Nephrol. 2024;39(9):2601-9.
  • 33. Li T, Zhou J, Wu H, Gao X, Shen Q, Cheng R, et al. Single-cell transcriptomes of kidneys in a 6-month-old boy with Denys-Drash syndrome reveal stromal cell heterogeneity in the tumor microenvironment. Clin Kidney J. 2023;17(1):sfad277.
  • 34. Shao Q, Xie X, Geng J, Yang X, Li W, Zhang Y. Frasier Syndrome: A 15-Year-Old Phenotypically Female Adolescent Presenting with Delayed Puberty and Nephropathy. Children (Basel). 2023;10(3):577.
  • 35. Hart D, Rodríguez Gutiérrez D, Biason-Lauber A. CBX2 in DSD: The Quirky Kid on the Block. Sex Dev. 2022;16(2-3):162-70.
  • 36. Ohnesorg T, Vilain E, Sinclair AH. The genetics of disorders of sex development in humans. Sex Dev. 2014;8(5):262-72.
  • 37. Koster R, Mitra N, D'Andrea K, Vardhanabhuti S, Chung CC, Wang Z, et al. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors. Hum Mol Genet. 2014;23(22):6061-8.
  • 38. Zarkower D, Murphy MW. DMRT1: An Ancient Sexual Regulator Required for Human Gonadogenesis. Sex Dev. 2022;16(2-3):112-25.
  • 39. Wei J, Wu J, Ru W, Chen G, Gao L, Tang D. Novel compound heterozygous mutations in the desert hedgehog (DHH) gene in cases of siblings with 46,XY disorders of sexual development. BMC Med Genomics. 2022;15(1):178.
  • 40. Mehta P, Singh P, Gupta NJ, Sankhwar SN, Chakravarty B, Thangaraj K, et al. Mutations in the desert hedgehog (DHH) gene in the disorders of sexual differentiation and male infertility. J Assist Reprod Genet. 2021;38(7):1871-78.
  • 41. Shichiri Y, Kato Y, Inagaki H, Kato T, Ishihara N, Miyata M, et al. A case of 46,XY disorders of sex development with congenital heart disease caused by a GATA4 variant. Congenit Anom (Kyoto). 2022;62(5):203-7.
  • 42. Martinez de LaPiscina I, de Mingo C, Riedl S, Rodriguez A, Pandey AV, Fernández-Cancio M, et al. GATA4 Variants in Individuals With a 46,XY Disorder of Sex Development (DSD) May or May Not Be Associated With Cardiac Defects Depending on Second Hits in Other DSD Genes. Front Endocrinol (Lausanne). 2018;9:142.
  • 43. Granados A, Alaniz VI, Mohnach L, Barseghyan H, Vilain E, Ostrer H, et al. MAP3K1-related gonadal dysgenesis: Six new cases and review of the literature. Am J Med Genet C Semin Med Genet. 2017;175(2):253-9.
  • 44. King TFJ, Conway GS. Swyer syndrome. Curr Opin Endocrinol Diabetes Obes. 2014;21(6):504-10.
  • 45. Nagel SA, Hartmann MF, Riepe FG, Wudy SA, Wabitsch M. Gonadotropin- and Adrenocorticotropic Hormone-Independent Precocious Puberty of Gonadal Origin in a Patient with Adrenal Hypoplasia Congenita Due to DAX1 Gene Mutation - A Case Report and Review of the Literature: Implications for the Pathomechanism. Horm Res Paediatr. 2019;91(5):336-45.
  • 46. Landau Z, Hanukoglu A, Sack J, Goldstein N, Weintrob N, Eliakim A, et al. Clinical and genetic heterogeneity of congenital adrenal hypoplasia due to NR0B1 gene mutations. Clin Endocrinol (Oxf). 2010;72(4):448-54.
  • 47. Ludbrook LM, Harley VR. Sex determination: a 'window' of DAX1 activity. Trends Endocrinol Metab. 2004;15(3):116-21.
  • 48. Vasta V, Shimizu-Albergine M, Beavo JA. Modulation of Leydig cell function by cyclic nucleotide phosphodiesterase 8A. PNAS U S A. 2006;103(52):19925-30.
  • 49. Habert R, Lejeune H, Saez JM. Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol. 2001;179(1-2):47-74.
  • 50. Hassan HA, Essawi ML, Mekkawy MK, Mazen I. Novel mutations of the LHCGR gene in two families with 46,XY DSD causing Leydig cell hypoplasia I. Hormones (Athens). 2020;19(4):573-9.
  • 51. Çömlek FÖ, Yıldız R, Seyrek F, Tütüncüler F. Leydig cell hypoplasia type 1 diagnosed in early childhood with inactivating mutation in LHCGR gene. Oxf Med Case Reports. 2021;4,153–5
  • 52. Benderradji H, Prasivoravong J, Marcelli F, Leroy C. Role of Anti-Mullerian Hormone in Male Reproduction and Sperm Motility. Semin Reprod Med. 2024;42(1):5-14.
  • 53. Alshwayyat S, Hanifa H, M Amro A, Shlool N, Alfaqeh Q, Alloush A. Persistent Mullerian duct syndrome in a male child: A rare case report on the intersection of surgical importance and economic barriers in Syria. Int J Surg Case Rep. 2024;123:110315.
  • 54. Delli Paoli E, Di Chiano S, Paoli D, Lenzi A, Lombardo F, Pallotti F. Androgen insensitivity syndrome: a review. J Endocrinol Invest. 2023;46(11):2237-45.
  • 55. Hughes IA, Davies JD, Bunch TI, Pasterski V, Mastroyannopoulou K, MacDougall J. Androgen insensitivity syndrome. Lancet. 2012;380(9851):1419-28.
  • 56. Gulía C, Baldassarra S, Zangari A, Briganti V, Gigli S, Gaffi M, et al. Androgen insensitivity syndrome. Eur Rev Med Pharmacol Sci. 2018;22(12):3873-87.
  • 57. Batista RL, Costa EMF, Rodrigues AS, Gomes NL, Faria JA Jr, Nishi MY, et al. Androgen insensitivity syndrome: a review. Arch Endocrinol Metab. 2018;62(2):227-35.
  • 58. Ibarra-Ramírez M, Campos-Acevedo LD, Martínez de Villarreal LE. Chromosomal Abnormalities of Interest in Turner Syndrome: An Update. J Pediatr Genet. 2023;12(4):263-72.
  • 59. Hosseini J, Zamani Hajiabadi A, Mirjalili AM. Ventral-Onlay Buccal Mucosal Graft Urethroplasty of a Perineal Fistula in a 26-Year-Old Patient With 46 XX Male Syndrome: A Case Report. Am J Mens Health. 2023;17(2):1-4.
  • 60. Wang T, Liu JH, Yang J, Chen J, Ye ZQ. 46, XX male sex reversal syndrome: a case report and review of the genetic basis. Andrologia. 2009;41(1):59-62.
  • 61. Javaid MK, Boyce A, Appelman-Dijkstra N, Ong J, Defabianis P, Offiah A, et al. Best practice management guidelines for fibrous dysplasia/McCune-Albright syndrome: a consensus statement from the FD/MAS international consortium. Orphanet J Rare Dis. 2019;14(1):139.
  • 62. Auer MK, Nordenström A, Lajic S, Reisch N. Congenital adrenal hyperplasia. Lancet. 2023;401(10372):227-44.
  • 63. Witchel SF. Congenital Adrenal Hyperplasia. J Pediatr Adolesc Gynecol. 2017;30(5):520-34.
  • 64. Chen L, Huang H, Zhang H, Zhu G, Zhu M. Three cases of 3beta-hydroxysteroid dehydrogenase deficiency: Clinical analysis. Adv Clin Exp Med. 2021;30(3):289-99.
  • 65. Bulsari K, Falhammar H. Clinical perspectives in congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency. Endocrine. 2017;55(1):19-36.
  • 66. Gardner M, Khorashad BS, Lee PA, Kogan BA, Sandberg DE. Recommendations for 46,XX Congenital Adrenal Hyperplasia Across Two Decades: Insights from the North American Differences of Sex Development Clinician Survey. Arch Sex Behav. 2024;53(5):1695-711.
  • 67. Asirvatham AR, Balachandran K, Jerome P, Venkatesan V, Koshy T, Mahadevan S. Clinical, biochemical and genetic characteristics of children with congenital adrenal hyperplasia due to 17α-hydroxylase deficiency. J Pediatr Endocrinol Metab 2020; 33(8): 1051–56.
  • 68. Siklar Z, Camtosun E, Bolu S, Yildiz M, Akinci A, Bas F et al. 17α Hydroxylase/17,20 lyase deficiency: clinical features and genetic insights from a large Turkey cohort. Endocrine (2024) 85:1407–16.
  • 69. Flück CE, Miller WL. P450 oxidoreductase deficiency: a new form of congenital adrenal hyperplasia. Curr Opin Pediatr. 2006;18(4):435-41.
  • 70. Idkowiak J, Cragun D, Hopkin RJ, Arlt W. Cytochrome P450 Oxidoreductase Deficiency. GeneReviews® [Internet]. Free Books & Documents. 2005 [updated 2017].
  • 71. Li H, Fu S, Dai R, Sheng Z, Liu W. Aromatase deficiency caused by mutation of CYP19A1 gene: A case report. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022;47(6):794-800.
  • 72. Belgorosky A, Guercio G, Pepe C, Saraco N, Rivarola MA. Genetic and clinical spectrum of aromatase deficiency in infancy, childhood and adolescence. Horm Res. 2009;72(6):321-30.
  • 73. Zhang W, Yu B, Luo W, Sun B, Zhang X, Wang X, et al. In vitro functional study of fifteen SRD5A2 variants found in Chinese patients and the relation between the SRD5A2 genotypes and phenotypes. J Steroid Biochem Mol Biol. 2023;235:106421.
  • 74. Cheon CK. Practical approach to steroid 5alpha-reductase type 2 deficiency. Eur J Pediatr. 2011;170(1):1-8.
  • 75. Gui T, Yao F, Yang X, Wang X, Nie M, Wu X, Tian Q. Genotype-Phenotype Correlation Analysis and Identification of a Novel SRD5A2 Mutation in Four Unrelated Chinese Patients with 5alpha-Reductase Deficiency. Int J Gen Med. 2022;15:6633-43.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Multimorbidite
Bölüm Derlemeler
Yazarlar

Malik Ejder Yıldırım 0000-0003-4386-1583

Erken Görünüm Tarihi 29 Mart 2025
Yayımlanma Tarihi 29 Mart 2025
Gönderilme Tarihi 21 Aralık 2024
Kabul Tarihi 8 Mart 2025
Yayımlandığı Sayı Yıl 2025Cilt: 47 Sayı: 1

Kaynak Göster

AMA Yıldırım ME. THE GENETICS OF SEXUAL DEVELOPMENT DISORDERS. CMJ. Mart 2025;47(1):2-9. doi:10.7197/cmj.1605185