BibTex RIS Cite

Tiroid kanserinde moleküler etyolojik faktörler

Year 2014, , 128 - 146, 28.03.2014
https://doi.org/10.7197/cmj.v36i1.1008002565

Abstract

Özet

Tiroid kanseri en sık görülen endokrin kanserdir ve dünya çapında sıklığı giderek artmaktadır. Son zamanlardaki moleküler teknolojik çalışmalar, tiroid kanser tanı ve tedavisinin doğru yapılabilmesi için etyolojik parameterlere yoğunlaşmış durumdadır. Şimdiye kadar bu konuda üzerinde çalışılmış birçok moleküler ve immünohistokimyasal parametre bildirilmiştir. Son literatür bilgileri, tiroid kanseri ile genetik parametreler arasında güçlü bir ilişkinin olduğunu ortaya koymuştur. Normal tiroid dokusunda kanser tetiklenmesi ve ilerlemesi, nokta mutasyonlar, translokasyonlar, kromozomlararası yeniden düzenlemeler (rearrangements), aktif proto-onkogen ve inaktif tümör baskılayıcı gen şeklinde meydana gelen epigenetik alterasyonlar gibi çoklu genetik ve epigenetik değişikliklerle gerçekleşmektedir. Yine son rapor edilen literatür bilgileri, proto-onkogenlerin fonksiyon kazanarak ve tümör süpresör genlerin ise fonsiyon kaybederek tiroid kanserlerinin tetiklenmesinde ve/veya ilerlemesinde görev yapmaları bu gen ailelerinin karsinogenezisde antagonistik bir etkiye sahip olduklarını göstermektedir. Tiroid doku tümörleri ve nodüllerinin, moleküler genetik belirteçler açısından (somatik, germ-line) kimliklendirilmesinin malign-benign doku ayırt edilmesinde, kesin tanı ve etkin tedaviçin hayati öneme sahiptir. Her bir kanser olgusunda özgün moleküler genetik değişikliklerin neler olduğu öncelikle tespit edilmelidir. Ancak bu durumda kanser subtiplemesi doğru yapılabilir ve bu doğrultuda hastanın doğru ve etkin tedavi alması sağlanabilir. İlgili nodül ve tümör dokusunun neden kanserleştiğinin ipuçlarını yine içinde barındırmaktadır, bu moleküler etyolojik sebeplerin doğru tespiti tiroid kanserlerinin tedavisi için yeni ve etkin tedavi stratejilerinin geliştirilmesine olanak sağlar. Bu derleme makalesinde son literatür bilgileri ışığında tiroid kanserlerinde doğrudan ve/veya aracılık eden moleküler genetik paremetreler ve etki mekanizmaları olabildiğince geniş bir spektrumda ele alınmıştır.

Anahtar sözcükler: Tiroid kanseri, tanı, prognoz, moleküler belirteçler

 

Abstract

Thyroid cancer is a common endocrine malignancy its prevelance is increasing worldwide. Currently, the application of molecular technologies has focused on etiological parameters for the accurate diagnosis and therapy of thyroid cancer. Until now in this issue many molecular and immunohistochemical parameters have been reported. Recent literature show that strong association between genetic parameters and thyroid cancer. Initiation and progression of thyroid cancers arise as the consequence of multiple genetic and epigenetic alterations such as; structural point mutations, chromosomal rearrangements and epigenetic events that activate proto-oncogenes and inactivate tumor suppressor genes. There are lots of various tumor-suppressor genes are epigenetically silenced in thyroid cancers. Gain-of-function for proto-oncogenes and loss-of-function for tumour supressor genes have a crucial role in the initiation and/or progression of the thyroid carcinogenesis. The determining of somatic and/or germline molecular alterations have been recognized as helpful diagnostic and prognostic markers and valuable tools for the management of tumoural/nontumuoral nodules in thyroid cancer patients. Known details about those molecular etiological parameters provide further research and clinical development targets, novel diagnostic and therapeutic strategies for thyroid cancers treatment. Current article reviews the molecular etiological alterations in thyroid cancer that help identify relevant biologic pathways to drive cancer development. Direct and undirect moleculer ethiological parametes and action mechanisims that play crucial role in the thyroid cancers widely reviewed in the currenr report.

Keywords: Thyroid cancer, diagnosis, prognosis, molecular markers

References

  • Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013; 2013: 965212.
  • Morris LG, Sikora AG, Tosteson TD, Davies L. The increasing incidence of thyroid cancer: the influence of access to care. Thyroid 2013; 23: 885-91.
  • Boufraqech M, Patel D, Xiong Y, Kebebew E. Diagnosis of thyroid cancer: state of art. Expert Opin Med Diagn 2013; 7: 331-42.
  • Zimmerman D. Thyroid carcinoma in children and adolescents: diagnostic implications of analysis of the tumor genome. Curr Opin Pediatr 2013; 25: 528
  • Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34: 691-7
  • Fay DS. Cancer metabolism: feeding a worm to starve a tumor. Curr Biol 2013; 23: R557-9.
  • Nagayama Y. Thyroid cancer. Nihon Rinsho 2012; 70: 436-40.
  • Dvorkin S, Robenshtok E, Hirsch D, Strenov Y, Shimon I, Benbassat CA. Differentiated thyroid cancer is associated with less aggressive disease and better outcome in patients with coexisting hashimotos thyroiditis. J Clin Endocrinol Metab 2013; 98: 2409-14.
  • Nagarkatti SS, Faquin WC, Lubitz CC, Garcia DM, Barbesino G, Ross DS, Hodin RA, Daniels GH, Parangi S. Management of thyroid nodules with atypical cytology on fine-needle aspiration biopsy. Ann Surg Oncol 2013; 20: 60-5.
  • Figlioli G, Landi S, Romei C, Elisei R, Gemignani F. Medullary thyroid carcinoma (MTC) and RET proto-oncogene: mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res 2013; 752: 36Makki FM, Taylor SM, Shahnavaz A, Leslie A, Gallant J, Douglas S, Teh E, Trites J, Bullock M, Inglis K, Pinto DM, Hart RD. Serum biomarkers of papillary thyroid cancer. J Otolaryngol Head Neck Surg 2013; 42: 16.
  • Papale F, Cafiero G, Grimaldi A, Marino G, Rosso F, Mian C, Barollo S, Pennelli G, Sorrenti S, De Antoni E, Barbarisi A. Galectin-3 expression in thyroid fine needle cytology (t-FNAC) uncertain cases: Validation of molecular markers and technology innovation. J Cell Physiol 2013; 228: 968-74.
  • Cui W, Sang W, Zheng S, Ma Y, Liu X, Zhang W. Usefulness of cytokeratin-19, galectin-3, and Hector Battifora mesothelial-1 in the diagnosis of benign and malignant thyroid nodules. Clin Lab 2012; 58: 673-80.
  • Rossi ED, Straccia P, Palumbo M, Stigliano E, Revelli L, Lombardi CP, Santeusanio G, Pontecorvi A, Fadda G. Diagnostic and prognostic role of HBME-1, galectin-3, and β-catenin in poorly differentiated and anaplastic thyroid carcinomas. Appl Immunohistochem Mol Morphol 2013; 21: 237-41.
  • Griffith OL, Chiu CG, Gown AM, Jones SJ, Wiseman SM.Biomarker panel diagnosis of thyroid cancer: a critical review. Expert Rev Anticancer Ther 2008; 8: 1399-413.
  • Cochand-Priollet B, Dahan H, Laloi-Michelin M, Polivka M, Saada M, Herman P, Guillausseau PJ, Hamzi L, Poté N, Sarfati E, Wassef M, Combe H, RaulicRaimond D, Chedin P, Medeau V, Casanova D, Kania R. Immunocytochemistry with cytokeratin 19 and anti-human mesothelial cell antibody (HBME1) increases the diagnostic accuracy of thyroid fine-needle aspirations: preliminary report of 150 liquid-based fine-needle aspirations with histological control. Thyroid 2011; 21: 1067-73.
  • Rosário PW, Penna GC, Brandão K, Souza BÉ. Usefulness of preoperative serum calcitonin in patients with nodular thyroid disease without suspicious history or cytology for medullary thyroid carcinoma. Arq Bras Endocrinol Metabol 2013; 57: 312-6.
  • Duntas LH. Clinical comments related to medullary thyroid cancer diagnosis and management. Thyroid Res 2013; 6 Suppl 1:S6.
  • Taccaliti A, Boscaro M. Genetic mutations in thyroid carcinoma. Minerva Endocrinol 2009; 34: 11-28.
  • Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA, Della Porta G, Vecchio G. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 1987; 328: 170-2.
  • Vander Poorten V, Hens G, Delaere P. Thyroid cancer in children and adolescents. Curr Opin Otolaryngol Head Neck Surg 2013; 21: 135-42.
  • Li C, Lee KC, Schneider EB, Zeiger MA. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a metaanalysis. J Clin Endocrinol Metab 2012; 97: 4559-70.
  • Fernandez IJ, Piccin O, Sciascia S, Cavicchi O, Repaci A, Vicennati V, Fiorentino M. Clinical significance of BRAF mutation in thyroid papillary cancer. Otolaryngol Head Neck Surg 2013; 148: 919-25.
  • Ward LS, Kloos RT. Molecular markers in the diagnosis of thyroid nodules. Arq Bras Endocrinol Metabol 2013; 57: 89-97.
  • Cappola AR, Mandel SJ. Molecular testing in thyroid cancer: BRAF mutation status and mortality. JAMA 2013; 309: 1529-30.
  • Rosove MH, Peddi PF, Glaspy JA. BRAF V600E inhibition in anaplastic thyroid cancer. N Engl J Med 2013; 368: 684-5.
  • Park SJ, Sun JY, Hong K, Kwak JY, Kim EK, Chung WY, Choi JR. Application of BRAF, NRAS, KRAS mutations as markers for the detection of papillary thyroid cancer from FNAB specimens by pyrosequencing analysis. Clin Chem Lab Med 2013; 51: 1673-80.
  • Grande E, Díez JJ, Zafon C, Capdevila J. Thyroid cancer: molecular aspects and new therapeutic strategies. J Thyroid Res 2012; 2012: 847108.
  • Patel KN, Singh B. Genetic considerations in thyroid cancer. Cancer Control 2006; 13: 111-8.
  • Fagin JA, Mitsiades N. Molecular pathology of thyroid cancer: diagnostic and clinical implications. Best Pract Res Clin Endocrinol Metab 2008; 22: 955-69. Ferreira CV, Siqueira DR, Ceolin L, Maia AL. Advanced medullary thyroid cancer: pathophysiology and management. Cancer Manag Res 2013; 5: 57-66. Wagner SM, Zhu S, Nicolescu AC, Mulligan LM. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2. Clinics (Sao Paulo) 2012; 67: 77-84.
  • Weier HU, Ito Y, Kwan J, Smida J, Weier JF, Hieber L, Lu CM, Lehmann L, Wang M, Kassabian HJ, Zeng H, O'Brien B. Delineating Chromosomal Breakpoints in Radiation-Induced Papillary Thyroid Cancer. Genes (Basel) 2011; 2: 397-419.
  • Hamatani K, Eguchi H, Ito R, Mukai M, Takahashi K, Taga M, Imai K, Cologne J, Soda M, Arihiro K, Fujihara M, Abe K, Hayashi T, Nakashima M, Sekine I, Yasui W, Hayashi Y, Nakachi K. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res 2008; 68: 7176-82. de Vries MM, Celestino R, Castro P, Eloy C, Máximo V, van der Wal JE, Plukker JT, Links TP, Hofstra RM, Sobrinho-Simões M, Soares P. RET/PTC rearrangement is prevalent in follicular Hürthle cell carcinomas. Histopathology 2012; 61: 833-43.
  • Mathur A, Weng J, Moses W, Steinberg SM, Rahbari R, Kitano M, Khanafshar E, Ljung BM, Duh QY, Clark OH, Kebebew E. A prospective study evaluating the accuracy of using combined clinical factors and candidate diagnostic markers to refine the accuracy of thyroid fine needle aspiration biopsy. Surgery 2010; 148: 1170-6.
  • Soares P, Lima J, Preto A, Castro P, Vinagre J, Celestino R, Couto JP, Prazeres H, Eloy C, Máximo V, Sobrinho-Simões M. Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas. Curr Genomics 2011; 12: 609Bu R, Uddin S, Ahmed M, Hussain AR, Alsobhi S, Amin T, Al-Nuaim A, AlDayel F, Abubaker J, Bavi P, Al-Kuraya KS. c-Met inhibitor synergizes with tumor necrosis factor-related apoptosis-induced ligand to induce papillary thyroid carcinoma cell death. Mol Med 2012; 18: 167-77.
  • Miyake Y, Aratake Y, Sakaguchi T, Kiyoya K, Kuribayashi T, Marutsuka K, Ohno E. Examination of CD26/DPPIV, p53, and PTEN expression in thyroid follicular adenoma. Diagn Cytopathol 2012; 40: 1047-53.
  • Santoro A, Pannone G, Carosi MA, Francesconi A, Pescarmona E, Russo GM, Feola A, Losito S, Franco R, Nappi L, Aquino G, De Rosa G, Di Domenico M, Bufo P. BRAF mutation and RASSF1A expression in thyroid carcinoma of southern Italy. J Cell Biochem 2013; 114: 1174-82.
  • Kajabova V, Smolkova B, Zmetakova I, Sebova K, Krivulcik T, Bella V, Kajo K, Machalekova K, Fridrichova I. RASSF1A Promoter Methylation Levels Positively Correlate with Estrogen Receptor Expression in Breast Cancer Patients. Transl Oncol 2013; 6: 297-304.
  • Brait M, Loyo M, Rosenbaum E, Ostrow KL, Markova A, Papagerakis S, Zahurak M, Goodman SM, Zeiger M, Sidransky D, Umbricht CB, Hoque MO. Correlation between BRAF mutation and promoter methylation of TIMP3, RARβ2 and RASSF1A in thyroid cancer. Epigenetics 2012; 7: 710-9.
  • Koenig RJ. Detection of the PAX8-PPARgamma fusion protein in thyroid tumors. Clin Chem 2010; 56: 331-3.
  • Eberhardt NL, Grebe SK, McIver B, Reddi HV. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol 2010; 321: 50-6.
  • Lee YM, Lee JB. Prognostic value of epidermal growth factor receptor, p53 and galectin-3 expression in papillary thyroid carcinoma. Int Med Res 2013; 41: 825
  • Yilike X, Kuerban G, Yang X, Wu S, Abudula A. Expression of MGMT and its clinopathological significance in thyroid carcinoma. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2010; 35: 1219-24.
  • Liotti F, Visciano C, Melillo RM. Inflammation in thyroid oncogenesis. Am J Cancer Res 2012; 2: 286-97.
  • Kim WG, Zhu X, Kim DW, Zhang L, Kebebew E, Cheng SY. Reactivation of the silenced thyroid hormone receptor β gene expression delays thyroid tumor progression. Endocrinology 2013; 154: 25-35.
  • Lavarone E, Puppin C, Passon N, Filetti S, Russo D, Damante G. The PARP inhibitor PJ34 modifies proliferation, NIS expression and epigenetic marks in thyroid cancer cell lines. Mol Cell Endocrinol 2013; 365: 1-10.
  • Kouniavsky G, Zeiger MA. Thyroid tumorigenesis and molecular markers in thyroid cancer. Curr Opin Oncol 2010; 22: 23-9.
  • Wang S, Liang J, Lin Y, Yao R. Differential expression of the Na(+)/I(-) symporter protein in thyroid cancer and adjacent normal and nodular goiter tissues. Oncol Lett 2013; 5: 368-72.
  • Kondo T, Nakazawa T, Ma D, Niu D, Mochizuki K, Kawasaki T, Nakamura N, Yamane T, Kobayashi M, Katoh R. Epigenetic silencing of TTF-1/NKX2-1 through DNA hypermethylation and histone H3 modulation in thyroid carcinomas. Lab Invest 2009; 89: 791-9.
  • Montanelli L, Tonacchera M. Genetics and phenomics of hypothyroidism and thyroid dys- and agenesis due to PAX8 and TTF1 mutations. Mol Cell Endocrinol 2010; 322: 64-71.
  • Fard-Esfahani P, Fard-Esfahani A, Saidi P, Fayaz S, Mohabati R, Majdi M. An increased risk of differentiated thyroid carcinoma in Iran with the 677C→T homozygous polymorphism in the MTHFR Gene. Cancer Epidemiol 2011; 35: 56Prasad VV, Wilkhoo H. Association of the functional polymorphism C677T in the methylenetetrahydrofolate reductase gene with colorectal, thyroid, breast, ovarian, and cervical cancers. Onkologie 2011; 34: 422-6.
  • Özdemir S, Silan F, Hasbek Z, Uludağ A, Atik S, Erselcan T, Özdemir Ö. Increased T-allele frequency of 677 C>T polymorphism in the methylenetetrahydrofolate reductase gene in differentiated thyroid carcinoma. Genet Test Mol Biomarkers 2012; 16: 780-4.
  • Huang L, Perrault C, Coelho-Martins J, Hu C, Dulong C, Varna M, Liu J, Jin J, Soria C, Cazin L, Janin A, Li H, Varin R, Lu H. Induction of acquired drug resistance in endothelial cells and its involvement in anticancer therapy. J Hematol Oncol 2013; 6: 49.
  • Özdemir S, Uludağ A, Silan F, Atik SY, Turgut B, Özdemir Ö. Possible Roles of the Xenobiotic Transporter P-glycoproteins Encoded by the MDR1 3435 C>T Gene Polymorphism in Differentiated Thyroid Cancers. Asian Pac J Cancer Prev 2013; 14: 3213-7.
  • Pasca di Magliano M, Di Lauro R, Zannini M. Pax8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci U S A 2000; 97: 13144-9.
  • Ruiz-Llorente S, Carrillo Santa de Pau E, Sastre-Perona A, Montero-Conde C, Gómez-López G, Fagin JA, Valencia A, Pisano DG, Santisteban P. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions. BMC Genomics 2012; 13: 147.
  • Fan Y, Ding Z, Yang Z, Deng X, Kang J, Wu B, Zheng Q. Expression and clinical significance of FOXE1 in papillary thyroid carcinoma. Mol Med Rep 2013; 8: 123-7.
  • Bychkov A, Saenko V, Nakashima M, Mitsutake N, Rogounovitch T, Nikitski A, Orim F, Yamashita S. Patterns of FOXE1 Expression in Papillary Thyroid Carcinoma by Immunohistochemistry. Thyroid 2013; 23: 817-28. de la Chapelle A, Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab 2011; 96: 3326-36.
  • Sun Y, Yu S, Liu Y, Wang F, Liu Y, Xiao H. Expression of miRNAs in Papillary Thyroid Carcinomas Is Associated with BRAF Mutation and Clinicopathological Features in Chinese Patients. Int J Endocrinol 2013; 2013: 128735.
  • Zhang X, Li M, Zuo K, Li D, Ye M, Ding L, Cai H, Fu D, Fan Y, Lv Z. Upregulated miR-155 in papillary thyroid carcinoma promotes tumor growth by targeting APC and activating Wnt/β-catenin signaling. J Clin Endocrinol Metab. 2013; 98: E1305-13.
  • Zhang J, Liu Y, Liu Z, Wang XM, Yin DT, Zheng LL, Zhang DY, Lu XB. Differential expression profiling and functional analysis of microRNAs through stage I-III papillary thyroid carcinoma. Int J Med Sci 2013; 10: 585-92.
  • Li X, Abdel-Mageed AB, Mondal D, Kandil E. MicroRNA expression profiles in differentiated thyroid cancer, a review. Int J Clin Exp Med 2013; 6: 74-80.
  • Mincione G, Di Marcantonio MC, Tarantelli C, D'Inzeo S, Nicolussi A, Nardi F, Donini CF, Coppa A. EGF and TGF-β1 Effects on Thyroid Function. J Thyroid Res 2011; 2011: 431718.
  • Hoffmann S, Burchert A, Wunderlich A, Wang Y, Lingelbach S, Hofbauer LC, Rothmund M, Zielke A. Differential effects of cetuximab and AEE 788 on epidermal growth factor receptor (EGF-R) and vascular endothelial growth factor receptor (VEGF-R) in thyroid cancer cell lines. Endocrine 2007; 31: 105-13.
  • Lam AK, Lau KK, Gopalan V, Luk J, Lo CY. Quantitative analysis of the expression of TGF-alpha and EGFR in papillary thyroid carcinoma: clinicopathological relevance. Pathology 2011; 43: 40-7.
  • Karaca Z, Tanrıverdi F, Unluhızarcı K, Öztürk F, Gökahmetoğlu S, Elbüken G, Çakır I, Bayram F, Kelestimur F. VEGFR1 expression is related to lymph node metastasis and serum VEGF may be a marker of progression in the follow-up of patients with differentiated thyroid carcinoma. Eur J Endocrinol 2011; 164: 277
  • Haisa M. The type 1 insulin-like growth factor receptor signalling system and targeted tyrosine kinase inhibition in cancer. J Int Med Res 2013; 41: 253-64.
  • Eloy C, Santos J, Cameselle-Teijeiro J, Soares P, Sobrinho-Simões M. TGFbeta/Smad pathway and BRAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch 2012; 460: 587-600.
  • Pazaitou-Panayiotou K, Tiensuu Janson E, Koletsa T, Kotoula V, Stridsberg M, Karkavelas G, Karayannopoulou G. Somatostatin receptor expression in nonmedullary thyroid carcinomas. Hormones (Athens) 2012; 11: 290-6.
  • Treglia G, Rindi G, Rufini V. Expression of somatostatin receptors may guide the use of somatostatin receptor imaging and therapy in differentiated thyroid cancer. Hormones (Athens) 2012; 11: 230-2.

-

Year 2014, , 128 - 146, 28.03.2014
https://doi.org/10.7197/cmj.v36i1.1008002565

Abstract

Thyroid cancer is a common endocrine malignancy its prevelance is increasing worldwide. Currently, the application of molecular technologies has focused on etiological parameters for the accurate diagnosis and therapy of thyroid cancer. Until now in this issue many molecular and immunohistochemical parameters have been reported. Recent literature show that strong association between genetic parameters and thyroid cancer. Initiation and progression of thyroid cancers arise as the consequence of multiple genetic and epigenetic alterations such as; structural point mutations, chromosomal rearrangements and epigenetic events that activate proto-oncogenes and inactivate tumor suppressor genes. There are lots of various tumor-suppressor genes are epigenetically silenced in thyroid cancers. Gain-of-function for proto-oncogenes and loss-offunction for tumour supressor genes have a crucial role in the initiation and/or progression of the thyroid carcinogenesis. The determining of somatic and/or germline molecular alterations have been recognized as helpful diagnostic and prognostic markers and valuable tools for the management of tumoural/nontumuoral nodules in thyroid cancer patients. Known details about those molecular etiological parameters provide further research and clinical development targets, novel diagnostic and therapeutic strategies for thyroid cancers treatment. Current article reviews the molecular etiological alterations in thyroid cancer that help identify relevant biologic pathways to drive cancer development. Direct and undirect moleculer ethiological parametes and action mechanisims that play crucial role in the thyroid cancers widely reviewed in the currenr report.

References

  • Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013; 2013: 965212.
  • Morris LG, Sikora AG, Tosteson TD, Davies L. The increasing incidence of thyroid cancer: the influence of access to care. Thyroid 2013; 23: 885-91.
  • Boufraqech M, Patel D, Xiong Y, Kebebew E. Diagnosis of thyroid cancer: state of art. Expert Opin Med Diagn 2013; 7: 331-42.
  • Zimmerman D. Thyroid carcinoma in children and adolescents: diagnostic implications of analysis of the tumor genome. Curr Opin Pediatr 2013; 25: 528
  • Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34: 691-7
  • Fay DS. Cancer metabolism: feeding a worm to starve a tumor. Curr Biol 2013; 23: R557-9.
  • Nagayama Y. Thyroid cancer. Nihon Rinsho 2012; 70: 436-40.
  • Dvorkin S, Robenshtok E, Hirsch D, Strenov Y, Shimon I, Benbassat CA. Differentiated thyroid cancer is associated with less aggressive disease and better outcome in patients with coexisting hashimotos thyroiditis. J Clin Endocrinol Metab 2013; 98: 2409-14.
  • Nagarkatti SS, Faquin WC, Lubitz CC, Garcia DM, Barbesino G, Ross DS, Hodin RA, Daniels GH, Parangi S. Management of thyroid nodules with atypical cytology on fine-needle aspiration biopsy. Ann Surg Oncol 2013; 20: 60-5.
  • Figlioli G, Landi S, Romei C, Elisei R, Gemignani F. Medullary thyroid carcinoma (MTC) and RET proto-oncogene: mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res 2013; 752: 36Makki FM, Taylor SM, Shahnavaz A, Leslie A, Gallant J, Douglas S, Teh E, Trites J, Bullock M, Inglis K, Pinto DM, Hart RD. Serum biomarkers of papillary thyroid cancer. J Otolaryngol Head Neck Surg 2013; 42: 16.
  • Papale F, Cafiero G, Grimaldi A, Marino G, Rosso F, Mian C, Barollo S, Pennelli G, Sorrenti S, De Antoni E, Barbarisi A. Galectin-3 expression in thyroid fine needle cytology (t-FNAC) uncertain cases: Validation of molecular markers and technology innovation. J Cell Physiol 2013; 228: 968-74.
  • Cui W, Sang W, Zheng S, Ma Y, Liu X, Zhang W. Usefulness of cytokeratin-19, galectin-3, and Hector Battifora mesothelial-1 in the diagnosis of benign and malignant thyroid nodules. Clin Lab 2012; 58: 673-80.
  • Rossi ED, Straccia P, Palumbo M, Stigliano E, Revelli L, Lombardi CP, Santeusanio G, Pontecorvi A, Fadda G. Diagnostic and prognostic role of HBME-1, galectin-3, and β-catenin in poorly differentiated and anaplastic thyroid carcinomas. Appl Immunohistochem Mol Morphol 2013; 21: 237-41.
  • Griffith OL, Chiu CG, Gown AM, Jones SJ, Wiseman SM.Biomarker panel diagnosis of thyroid cancer: a critical review. Expert Rev Anticancer Ther 2008; 8: 1399-413.
  • Cochand-Priollet B, Dahan H, Laloi-Michelin M, Polivka M, Saada M, Herman P, Guillausseau PJ, Hamzi L, Poté N, Sarfati E, Wassef M, Combe H, RaulicRaimond D, Chedin P, Medeau V, Casanova D, Kania R. Immunocytochemistry with cytokeratin 19 and anti-human mesothelial cell antibody (HBME1) increases the diagnostic accuracy of thyroid fine-needle aspirations: preliminary report of 150 liquid-based fine-needle aspirations with histological control. Thyroid 2011; 21: 1067-73.
  • Rosário PW, Penna GC, Brandão K, Souza BÉ. Usefulness of preoperative serum calcitonin in patients with nodular thyroid disease without suspicious history or cytology for medullary thyroid carcinoma. Arq Bras Endocrinol Metabol 2013; 57: 312-6.
  • Duntas LH. Clinical comments related to medullary thyroid cancer diagnosis and management. Thyroid Res 2013; 6 Suppl 1:S6.
  • Taccaliti A, Boscaro M. Genetic mutations in thyroid carcinoma. Minerva Endocrinol 2009; 34: 11-28.
  • Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA, Della Porta G, Vecchio G. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 1987; 328: 170-2.
  • Vander Poorten V, Hens G, Delaere P. Thyroid cancer in children and adolescents. Curr Opin Otolaryngol Head Neck Surg 2013; 21: 135-42.
  • Li C, Lee KC, Schneider EB, Zeiger MA. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a metaanalysis. J Clin Endocrinol Metab 2012; 97: 4559-70.
  • Fernandez IJ, Piccin O, Sciascia S, Cavicchi O, Repaci A, Vicennati V, Fiorentino M. Clinical significance of BRAF mutation in thyroid papillary cancer. Otolaryngol Head Neck Surg 2013; 148: 919-25.
  • Ward LS, Kloos RT. Molecular markers in the diagnosis of thyroid nodules. Arq Bras Endocrinol Metabol 2013; 57: 89-97.
  • Cappola AR, Mandel SJ. Molecular testing in thyroid cancer: BRAF mutation status and mortality. JAMA 2013; 309: 1529-30.
  • Rosove MH, Peddi PF, Glaspy JA. BRAF V600E inhibition in anaplastic thyroid cancer. N Engl J Med 2013; 368: 684-5.
  • Park SJ, Sun JY, Hong K, Kwak JY, Kim EK, Chung WY, Choi JR. Application of BRAF, NRAS, KRAS mutations as markers for the detection of papillary thyroid cancer from FNAB specimens by pyrosequencing analysis. Clin Chem Lab Med 2013; 51: 1673-80.
  • Grande E, Díez JJ, Zafon C, Capdevila J. Thyroid cancer: molecular aspects and new therapeutic strategies. J Thyroid Res 2012; 2012: 847108.
  • Patel KN, Singh B. Genetic considerations in thyroid cancer. Cancer Control 2006; 13: 111-8.
  • Fagin JA, Mitsiades N. Molecular pathology of thyroid cancer: diagnostic and clinical implications. Best Pract Res Clin Endocrinol Metab 2008; 22: 955-69. Ferreira CV, Siqueira DR, Ceolin L, Maia AL. Advanced medullary thyroid cancer: pathophysiology and management. Cancer Manag Res 2013; 5: 57-66. Wagner SM, Zhu S, Nicolescu AC, Mulligan LM. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2. Clinics (Sao Paulo) 2012; 67: 77-84.
  • Weier HU, Ito Y, Kwan J, Smida J, Weier JF, Hieber L, Lu CM, Lehmann L, Wang M, Kassabian HJ, Zeng H, O'Brien B. Delineating Chromosomal Breakpoints in Radiation-Induced Papillary Thyroid Cancer. Genes (Basel) 2011; 2: 397-419.
  • Hamatani K, Eguchi H, Ito R, Mukai M, Takahashi K, Taga M, Imai K, Cologne J, Soda M, Arihiro K, Fujihara M, Abe K, Hayashi T, Nakashima M, Sekine I, Yasui W, Hayashi Y, Nakachi K. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res 2008; 68: 7176-82. de Vries MM, Celestino R, Castro P, Eloy C, Máximo V, van der Wal JE, Plukker JT, Links TP, Hofstra RM, Sobrinho-Simões M, Soares P. RET/PTC rearrangement is prevalent in follicular Hürthle cell carcinomas. Histopathology 2012; 61: 833-43.
  • Mathur A, Weng J, Moses W, Steinberg SM, Rahbari R, Kitano M, Khanafshar E, Ljung BM, Duh QY, Clark OH, Kebebew E. A prospective study evaluating the accuracy of using combined clinical factors and candidate diagnostic markers to refine the accuracy of thyroid fine needle aspiration biopsy. Surgery 2010; 148: 1170-6.
  • Soares P, Lima J, Preto A, Castro P, Vinagre J, Celestino R, Couto JP, Prazeres H, Eloy C, Máximo V, Sobrinho-Simões M. Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas. Curr Genomics 2011; 12: 609Bu R, Uddin S, Ahmed M, Hussain AR, Alsobhi S, Amin T, Al-Nuaim A, AlDayel F, Abubaker J, Bavi P, Al-Kuraya KS. c-Met inhibitor synergizes with tumor necrosis factor-related apoptosis-induced ligand to induce papillary thyroid carcinoma cell death. Mol Med 2012; 18: 167-77.
  • Miyake Y, Aratake Y, Sakaguchi T, Kiyoya K, Kuribayashi T, Marutsuka K, Ohno E. Examination of CD26/DPPIV, p53, and PTEN expression in thyroid follicular adenoma. Diagn Cytopathol 2012; 40: 1047-53.
  • Santoro A, Pannone G, Carosi MA, Francesconi A, Pescarmona E, Russo GM, Feola A, Losito S, Franco R, Nappi L, Aquino G, De Rosa G, Di Domenico M, Bufo P. BRAF mutation and RASSF1A expression in thyroid carcinoma of southern Italy. J Cell Biochem 2013; 114: 1174-82.
  • Kajabova V, Smolkova B, Zmetakova I, Sebova K, Krivulcik T, Bella V, Kajo K, Machalekova K, Fridrichova I. RASSF1A Promoter Methylation Levels Positively Correlate with Estrogen Receptor Expression in Breast Cancer Patients. Transl Oncol 2013; 6: 297-304.
  • Brait M, Loyo M, Rosenbaum E, Ostrow KL, Markova A, Papagerakis S, Zahurak M, Goodman SM, Zeiger M, Sidransky D, Umbricht CB, Hoque MO. Correlation between BRAF mutation and promoter methylation of TIMP3, RARβ2 and RASSF1A in thyroid cancer. Epigenetics 2012; 7: 710-9.
  • Koenig RJ. Detection of the PAX8-PPARgamma fusion protein in thyroid tumors. Clin Chem 2010; 56: 331-3.
  • Eberhardt NL, Grebe SK, McIver B, Reddi HV. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol 2010; 321: 50-6.
  • Lee YM, Lee JB. Prognostic value of epidermal growth factor receptor, p53 and galectin-3 expression in papillary thyroid carcinoma. Int Med Res 2013; 41: 825
  • Yilike X, Kuerban G, Yang X, Wu S, Abudula A. Expression of MGMT and its clinopathological significance in thyroid carcinoma. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2010; 35: 1219-24.
  • Liotti F, Visciano C, Melillo RM. Inflammation in thyroid oncogenesis. Am J Cancer Res 2012; 2: 286-97.
  • Kim WG, Zhu X, Kim DW, Zhang L, Kebebew E, Cheng SY. Reactivation of the silenced thyroid hormone receptor β gene expression delays thyroid tumor progression. Endocrinology 2013; 154: 25-35.
  • Lavarone E, Puppin C, Passon N, Filetti S, Russo D, Damante G. The PARP inhibitor PJ34 modifies proliferation, NIS expression and epigenetic marks in thyroid cancer cell lines. Mol Cell Endocrinol 2013; 365: 1-10.
  • Kouniavsky G, Zeiger MA. Thyroid tumorigenesis and molecular markers in thyroid cancer. Curr Opin Oncol 2010; 22: 23-9.
  • Wang S, Liang J, Lin Y, Yao R. Differential expression of the Na(+)/I(-) symporter protein in thyroid cancer and adjacent normal and nodular goiter tissues. Oncol Lett 2013; 5: 368-72.
  • Kondo T, Nakazawa T, Ma D, Niu D, Mochizuki K, Kawasaki T, Nakamura N, Yamane T, Kobayashi M, Katoh R. Epigenetic silencing of TTF-1/NKX2-1 through DNA hypermethylation and histone H3 modulation in thyroid carcinomas. Lab Invest 2009; 89: 791-9.
  • Montanelli L, Tonacchera M. Genetics and phenomics of hypothyroidism and thyroid dys- and agenesis due to PAX8 and TTF1 mutations. Mol Cell Endocrinol 2010; 322: 64-71.
  • Fard-Esfahani P, Fard-Esfahani A, Saidi P, Fayaz S, Mohabati R, Majdi M. An increased risk of differentiated thyroid carcinoma in Iran with the 677C→T homozygous polymorphism in the MTHFR Gene. Cancer Epidemiol 2011; 35: 56Prasad VV, Wilkhoo H. Association of the functional polymorphism C677T in the methylenetetrahydrofolate reductase gene with colorectal, thyroid, breast, ovarian, and cervical cancers. Onkologie 2011; 34: 422-6.
  • Özdemir S, Silan F, Hasbek Z, Uludağ A, Atik S, Erselcan T, Özdemir Ö. Increased T-allele frequency of 677 C>T polymorphism in the methylenetetrahydrofolate reductase gene in differentiated thyroid carcinoma. Genet Test Mol Biomarkers 2012; 16: 780-4.
  • Huang L, Perrault C, Coelho-Martins J, Hu C, Dulong C, Varna M, Liu J, Jin J, Soria C, Cazin L, Janin A, Li H, Varin R, Lu H. Induction of acquired drug resistance in endothelial cells and its involvement in anticancer therapy. J Hematol Oncol 2013; 6: 49.
  • Özdemir S, Uludağ A, Silan F, Atik SY, Turgut B, Özdemir Ö. Possible Roles of the Xenobiotic Transporter P-glycoproteins Encoded by the MDR1 3435 C>T Gene Polymorphism in Differentiated Thyroid Cancers. Asian Pac J Cancer Prev 2013; 14: 3213-7.
  • Pasca di Magliano M, Di Lauro R, Zannini M. Pax8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci U S A 2000; 97: 13144-9.
  • Ruiz-Llorente S, Carrillo Santa de Pau E, Sastre-Perona A, Montero-Conde C, Gómez-López G, Fagin JA, Valencia A, Pisano DG, Santisteban P. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions. BMC Genomics 2012; 13: 147.
  • Fan Y, Ding Z, Yang Z, Deng X, Kang J, Wu B, Zheng Q. Expression and clinical significance of FOXE1 in papillary thyroid carcinoma. Mol Med Rep 2013; 8: 123-7.
  • Bychkov A, Saenko V, Nakashima M, Mitsutake N, Rogounovitch T, Nikitski A, Orim F, Yamashita S. Patterns of FOXE1 Expression in Papillary Thyroid Carcinoma by Immunohistochemistry. Thyroid 2013; 23: 817-28. de la Chapelle A, Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab 2011; 96: 3326-36.
  • Sun Y, Yu S, Liu Y, Wang F, Liu Y, Xiao H. Expression of miRNAs in Papillary Thyroid Carcinomas Is Associated with BRAF Mutation and Clinicopathological Features in Chinese Patients. Int J Endocrinol 2013; 2013: 128735.
  • Zhang X, Li M, Zuo K, Li D, Ye M, Ding L, Cai H, Fu D, Fan Y, Lv Z. Upregulated miR-155 in papillary thyroid carcinoma promotes tumor growth by targeting APC and activating Wnt/β-catenin signaling. J Clin Endocrinol Metab. 2013; 98: E1305-13.
  • Zhang J, Liu Y, Liu Z, Wang XM, Yin DT, Zheng LL, Zhang DY, Lu XB. Differential expression profiling and functional analysis of microRNAs through stage I-III papillary thyroid carcinoma. Int J Med Sci 2013; 10: 585-92.
  • Li X, Abdel-Mageed AB, Mondal D, Kandil E. MicroRNA expression profiles in differentiated thyroid cancer, a review. Int J Clin Exp Med 2013; 6: 74-80.
  • Mincione G, Di Marcantonio MC, Tarantelli C, D'Inzeo S, Nicolussi A, Nardi F, Donini CF, Coppa A. EGF and TGF-β1 Effects on Thyroid Function. J Thyroid Res 2011; 2011: 431718.
  • Hoffmann S, Burchert A, Wunderlich A, Wang Y, Lingelbach S, Hofbauer LC, Rothmund M, Zielke A. Differential effects of cetuximab and AEE 788 on epidermal growth factor receptor (EGF-R) and vascular endothelial growth factor receptor (VEGF-R) in thyroid cancer cell lines. Endocrine 2007; 31: 105-13.
  • Lam AK, Lau KK, Gopalan V, Luk J, Lo CY. Quantitative analysis of the expression of TGF-alpha and EGFR in papillary thyroid carcinoma: clinicopathological relevance. Pathology 2011; 43: 40-7.
  • Karaca Z, Tanrıverdi F, Unluhızarcı K, Öztürk F, Gökahmetoğlu S, Elbüken G, Çakır I, Bayram F, Kelestimur F. VEGFR1 expression is related to lymph node metastasis and serum VEGF may be a marker of progression in the follow-up of patients with differentiated thyroid carcinoma. Eur J Endocrinol 2011; 164: 277
  • Haisa M. The type 1 insulin-like growth factor receptor signalling system and targeted tyrosine kinase inhibition in cancer. J Int Med Res 2013; 41: 253-64.
  • Eloy C, Santos J, Cameselle-Teijeiro J, Soares P, Sobrinho-Simões M. TGFbeta/Smad pathway and BRAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch 2012; 460: 587-600.
  • Pazaitou-Panayiotou K, Tiensuu Janson E, Koletsa T, Kotoula V, Stridsberg M, Karkavelas G, Karayannopoulou G. Somatostatin receptor expression in nonmedullary thyroid carcinomas. Hormones (Athens) 2012; 11: 290-6.
  • Treglia G, Rindi G, Rufini V. Expression of somatostatin receptors may guide the use of somatostatin receptor imaging and therapy in differentiated thyroid cancer. Hormones (Athens) 2012; 11: 230-2.
There are 68 citations in total.

Details

Primary Language Turkish
Journal Section Reviews
Authors

Semra Özdemir

Öztürk Özdemir

Publication Date March 28, 2014
Published in Issue Year 2014

Cite

AMA Özdemir S, Özdemir Ö. Tiroid kanserinde moleküler etyolojik faktörler. CMJ. March 2014;36(1):128-146. doi:10.7197/cmj.v36i1.1008002565