Research Article
BibTex RIS Cite
Year 2019, , 685 - 690, 31.12.2019
https://doi.org/10.7197/cmj.vi.654130

Abstract

Supporting Institution

yok

Project Number

yok

References

  • A. Betts, M.O. Kaltz, M.E. Hochberg, Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1, Evol. Appl. 6 (2013)1054–1063. doi: 10.1111/eva.12085 [2] I. Chopra, The 2012 Garrod lecture: Discovery of antibacterial drugs in the 21st century, J. Antimicrob. Chemother. 68 (2013)496–505. doi: 10.1093/jac/dks436. [3] M. Prudhomme, J. Guyot, G. Jeminet, Semi-synthesis of A23187 (calcimycin) analogs. IV. Cation carrier properties in mitochondria of analogs with modified benzoxazole rings Antimicrobial activity, J. Antibiot. (Tokyo) 39 (1986)934–937. DOI:10.7164/antibiotics.39.934 [4] M. Arisoy, O. Temiz-Arpaci, I. Yildiz, F. Kaynak-Onurdag, E. Aki, I. Yalcin, U. Abbasoglu, Synthesis, antimicrobial activity and QSAR studies of 2,5-disubstituted benzoxazoles, SARQSAR Environ. Res. 19 (2008)589-612. DOI:10.1080/10629360802348738 [5] M. Arisoy, O. Temiz-Arpaci, F. Kaynak-Onurdag, S. Ozgen,Synthesis and antimicrobial activity of novel benzoxazoles, Z. Naturforsch. 67C (2012)466–472. http://www.znaturforsch.com/s67c/s67c0466.pdf [6] O.Temiz-Arpaci, B. E.C. Goztepe, F. Kaynak-Onurdag, S. Ozgen, F.S. Senol, I. Erdogan Orhan, Synthesis and different biological activities of novel benzoxazoles, Acta Biol. Hung. 64 (2013)249–261. doi.org/10.1556/ABiol.64.2013.2.10 [7] M. Arisoy, O. Temız-Arpaci, F. Kaynak-Onurdag, S. Ozgen, Synthesis and antimicrobial evaluation of 2-(p-substituted phenyl)-5-[(4-substituted piperazin-1-yl)acetamido]-benzoxazoles, Z Naturforsch, 69C (2014) 368-374. DOI: 10.5560/ZNC.2014-0024 [8] M.J.Don, C.C.Shen, Y.L.Lin, W.J.Syu, Y.H.Ding, C.M.Sun, Nitrogen containing compounds from salvia militorrhiza, J. Nat. Prod. 68 (2005) 1066-1070. doi.org/10.1021/np0500934 [9] J.Easmon, G.Purstinger, K.S.Thies, G.Heinisch, J.Hofmann, Synthesis, structure activity relationships and antitumor studies of 2-benzoxazolyl hydrazones derived from alpha-(N)-acyl heteroaromatics, J. Med. Chem. 49 (2006) 6343-6350. doi.org/10.1021/jm060232u [10] Y.S.Mary, N.Z.Alzoman, V.V.Menon, E.S.Al-Abdullah, A.A.El-Emam,C.Y.Panicker, O.Temiz-Arpaci, S.Armakovic, S.J.Armakovic, C.Van Alsenoy, Reactive, spectroscopic and antimicrobial assessments of 5-[(4-methylphenyl)acetamido]-2-(4-tert-butylphenyl)benzoxazole: combined experimental and computational study, J. Mol. Struct. 1128 (2017) 694-706. doi.org/10.1016/j.molstruc.2016.09.024 [11] Y.S.Mary, M.M.Al-Shehri, K.Jalaja, F.A.M.Al-Omary, A.A.El-Emam,C.Y.Panicker, S.Armakovic, S.J.Armakovic, O.Temiz-Arpaci, C.Van Alsenoy, Synthesis, vibrational spectroscopic investigations, molecular docking, antibacterial studies and molecular dynamics study of 5-[(4-nitrophenyl)acetamido]-2-(4-tert-butylphenyl)benzoxazole, J. Mol. Struct. 1133 (2017) 557-573. doi.org/10.1016/j.molstruc.2016.12.020 [12] Y.S.Mary, K.Raju, T.E.Bolelli, I.Yildiz, H.I.S.Nogueira, C.M.Granadeiro, C.Van Alsenoy, FT-IR, FT-Raman, surface enhanced Raman scattering and computational study of 2-(p-fluorobenzyl)-6-nitrobenzoxazole, J. Mol. Struct. 1012 (2012) 22-30. doi.org/10.1016/j.molstruc.2011.12.042 [13] V.V.Aswathy, S.Alper-Hayta, G.Yalcin, Y.S.Mary, C.Y.Panicker, PJ.Jojo, F. Kaynak-Ondurg, S.Armakovic, S.J.Armakovic, I.Yildiz, C.Van Alsenoy, Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedure, J. Mol. Struct. 1141 (2017) 495-511. doi.org/10.1016/j.molstruc.2017.04.010
  • [14] K.Jalaja, M.A.Al-Alshaikh, Y.S.Mary, C.Y.Panicker, A.A.El-Emam, O.Temiz- Arpaci, C.Van Alsenoy, Vibrational spectroscopic investigations and molecular docking studies of biologically active 2-[4-(4-phenylbutanamido)phenyl]-5-ethylsulphonyl-benzoxazole, J. Mol. Struct. 1148 (2017) 119-133. doi.org/10.1016/j.molstruc.2017.07.023 [15] S.Beegum, Y.S.Mary, C.Y.Panicker, S.Armakovic, S.J.Armakovic, M.Arisoy, O. Temiz-Arpaci, C.Van Alsenoy, Spectroscopic, antimicrobial and computational study of novel benzoxazole derivative, J. Mol. Struct. 1176 (2019) 881-894. doi.org/10.1016/j.molstruc.2018.09.019 [16] R. Dennington, T. Keith, J. Millam, Semichem Inc., Shawnee Mission KS, GaussView, Version 5, 2009. [17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J.Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J.Cioslowski, D.J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010. [18] N.B. Colthup, L.H. Daly, S.E. Wiberly, Introduction of Infrared and Raman Spectroscopy, Academic Press, New York, 1975. [19] N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, John Wiley and Sons Inc., New York, 1994. [20] M.A.Iramain, A.E.Ledesma, S.A.Brandan, Structural properties and vibrational analysis of Potassium 5-Br-2-isonicotinoyltrifluoroborate salt. Effect of Br on the isonicotinoyl ring, J. Mol. Struct. 1184 (2019) 146-156. doi.org/10.1016/j.molstruc.2019.02.010 [21] M.Minteguiaga, E.Dellacassa, M.A.Iramain, C.A.N.Catalan, S.A.Brandan, FT-IR, FT-Raman, UV-Vis, NMR and structural studies of carquejyl acetate, a distinctive component of the essential oil from Baccharis trimera (less.) DC. (Asteraceae), J. Mol. Struct. 1177 (2019) 499-510. doi.org/10.1016/j.molstruc.2018.10.010 [22] M.Minteguiaga, E.Dellacassa, M.A.Iramain, C.A.N.Catalan, S.A.Brandan, Synthesis, Spectroscopic characterization and structural study of carquejiphenol, a 2-Isopropenyl-3-methylphenol derivative with potential medicinal use, Journal of Molecular Structure 1165 (2018) 332-343. doi.org/10.1016/j.molstruc.2018.04.001 [23] Y.S. Mary, C.Y. Panicker, B. Narayana, S. Samshuddin, B.K. Sarojini, C. Van Alsenoy, FT-IR, molecular structure, HOMO-LUMO, MEP, NBO analysis and first order hyperpolarizability of Methyl 4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-carboxylate, Spectrochim. Acta 133 (2014) 480-488. doi.org/10.1016/j.saa.2014.06.031 [24] R.Thomas, Y.S.Mary, K.S.Resmi, B.Narayana, B.K.Sarojini, G.Vijayakumar, C.Van Alsenoy, Two neotric pyrazole compounds as potential anti-cancer agents: Synthesis, electronic structure, physico-chemical properties and docking analysis, J. Mol. Struct. 1181 (2019) 455-466. doi.org/10.1016/j.molstruc.2019.01.003 [25] R.Hakiri, I.Ameur, N.Derbel, Synthesis, X-ray structural, Hirshfeld surface analysis, FTIR, MEP and NBO analysis using DFT study of a 4-chlorobenzylammonium nitrate (C7ClH9N)+(NO3)-, J. Mol. Struct. 1164 (2018) 486-492. doi.org/10.1016/j.molstruc.2018.03.068 [26] R.Thomas, Y.S.Mary, K.S.Resmi, B.Narayana, B.K.Sarojini, S.Armakovic, S.J.Armakovic, G.Vijayakumar, C.Van Alsenoy,B.J.Mohan, Synthesis and spectroscopic study of two new pyrazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential, J. Mol. Struct. 1181 (2019) 599-612. doi.org/10.1016/j.molstruc.2019.01.014 [27] A.E.Reed, P.V.R.Schleye, The anomeric effect with central atoms other than carbon. 2. Strong interactions between nonbonded substituents in mono- and polyfluorinated first- and second-row amines, FnAHmNH2, Inorg. Chem. 27 (1988) 3969-3987. s://doi.org/10.1021/ic00295a018 [28] A.S.El-Azab, Y.S.Mary, C.Y.Panicker, A.A.M.Abdel-Aziz, M.A.El-Sherbeny, C. Van Alsenoy, DFT and experimental (FT-IR and FT-Raman) invesigation of vibrational spectroscopy and molecular docking studies of 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)acetamide, J. Mol. Struct. 1113 (2016) 133-145. doi.org/10.1016/j.molstruc.2016.02.038 [29] T. Zhang, X.Wei, Y.Zuo, .J. Chao, An efficient measure to improve the NLO performance by point charge electric field, Optik 182 (2019) 295-302. doi.org/10.1016/j.ijleo.2019.01.040 [30] A. Lagunin, A. Stepanchikova, D. Filimonov, V. Poroikov, PASS: prediction of activity spectra for biologically active substances, Bioinformatics 16 (2000) 747-748. DOI: 10.1093/bioinformatics/16.8.747 [31] E.E. Gurdal, E. Buclugan, I. Durmaz, R. Cetin-Atalay, M. Yarim, Synthesis and anticancer activity evaluation of some benzothiazole-piperazine derivatives, Anticancer Agents Med. Chem. 15 (2015) 382-389. DOI: 10.2174/1871520615666141216151101 [32] T. Liu, Z. Weng, X. Dong, L.Chen, L.Mal, N. Zhou, Y. Hu, Design, synthesis and biological evaluation of novel piperazine derivatives as CCR5 antagonists, PLoS One, 8 (2013)e53636. . doi: 10.1371/journal.pone.0053636 [33] D. Bates, J.Morris, Piperazine derivatives for treating disorders US9695160B2, 2017. [34] D. Dang, R. Rao, Calcium-ATPases: Gene disorders and dysregulation in cancer, Biochimica et Biophysica Acta 1863 (2016) 1344-1350. doi.org/10.1016/j.bbamcr.2015.11.016 [35] L.A.A. Wong, J.L. Hirpara, S. Pervaiz, J.Q. Eu, G. Sethi, B.C. Goh, Do STAT3 inhibitors have potential in the future for cancer therapy?, Expert Opinion on Investigational drugs, 2017 doi:10.1080/13543784.2017.1351941. [36] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity, J. Comput. Chem. 16 (2009) 2785-2791. doi: 10.1002/jcc.21256. [37] O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455-461. doi: 10.1002/jcc.21334 [38] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R. Belew, A.J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem. 19 (1998) 1639-1662. doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

Biophysical and computational comparison on the binding affinity of important proteins of folic acid and its metal complexes

Year 2019, , 685 - 690, 31.12.2019
https://doi.org/10.7197/cmj.vi.654130

Abstract

It is important to note that folic acid is an
important molecule in terms of human health. Folic acid that is one of the
important molecules in human body

plays
an important role in the prevention of birth defects of the baby's brain (anencephaly) and spine (spina bifida). This
molecule that is a
form of vitamin B-9 can be easily dissolved in water
media. Besides the molecule have important roles in nucleic acid production.
Folic acid that is a complex type of vitamin B takes charge in the creating
more red blood cells, preventing hearing loss, and preserving the brain health
of infants. Because of the importance of folic acids and its derivatives, in
this study, we analyzed the chemical reactivity of folic acid and its
derivatives using DFT and Molecular Docking Programmes and investigated the
power of the interactions with some well- known target proteins of the
aforementioned molecules. Folic acid and its cadmium, copper and mercury
complexes are performed in molecular docking studies for the activity against
creatine kinase target protein in human brain.

Project Number

yok

References

  • A. Betts, M.O. Kaltz, M.E. Hochberg, Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1, Evol. Appl. 6 (2013)1054–1063. doi: 10.1111/eva.12085 [2] I. Chopra, The 2012 Garrod lecture: Discovery of antibacterial drugs in the 21st century, J. Antimicrob. Chemother. 68 (2013)496–505. doi: 10.1093/jac/dks436. [3] M. Prudhomme, J. Guyot, G. Jeminet, Semi-synthesis of A23187 (calcimycin) analogs. IV. Cation carrier properties in mitochondria of analogs with modified benzoxazole rings Antimicrobial activity, J. Antibiot. (Tokyo) 39 (1986)934–937. DOI:10.7164/antibiotics.39.934 [4] M. Arisoy, O. Temiz-Arpaci, I. Yildiz, F. Kaynak-Onurdag, E. Aki, I. Yalcin, U. Abbasoglu, Synthesis, antimicrobial activity and QSAR studies of 2,5-disubstituted benzoxazoles, SARQSAR Environ. Res. 19 (2008)589-612. DOI:10.1080/10629360802348738 [5] M. Arisoy, O. Temiz-Arpaci, F. Kaynak-Onurdag, S. Ozgen,Synthesis and antimicrobial activity of novel benzoxazoles, Z. Naturforsch. 67C (2012)466–472. http://www.znaturforsch.com/s67c/s67c0466.pdf [6] O.Temiz-Arpaci, B. E.C. Goztepe, F. Kaynak-Onurdag, S. Ozgen, F.S. Senol, I. Erdogan Orhan, Synthesis and different biological activities of novel benzoxazoles, Acta Biol. Hung. 64 (2013)249–261. doi.org/10.1556/ABiol.64.2013.2.10 [7] M. Arisoy, O. Temız-Arpaci, F. Kaynak-Onurdag, S. Ozgen, Synthesis and antimicrobial evaluation of 2-(p-substituted phenyl)-5-[(4-substituted piperazin-1-yl)acetamido]-benzoxazoles, Z Naturforsch, 69C (2014) 368-374. DOI: 10.5560/ZNC.2014-0024 [8] M.J.Don, C.C.Shen, Y.L.Lin, W.J.Syu, Y.H.Ding, C.M.Sun, Nitrogen containing compounds from salvia militorrhiza, J. Nat. Prod. 68 (2005) 1066-1070. doi.org/10.1021/np0500934 [9] J.Easmon, G.Purstinger, K.S.Thies, G.Heinisch, J.Hofmann, Synthesis, structure activity relationships and antitumor studies of 2-benzoxazolyl hydrazones derived from alpha-(N)-acyl heteroaromatics, J. Med. Chem. 49 (2006) 6343-6350. doi.org/10.1021/jm060232u [10] Y.S.Mary, N.Z.Alzoman, V.V.Menon, E.S.Al-Abdullah, A.A.El-Emam,C.Y.Panicker, O.Temiz-Arpaci, S.Armakovic, S.J.Armakovic, C.Van Alsenoy, Reactive, spectroscopic and antimicrobial assessments of 5-[(4-methylphenyl)acetamido]-2-(4-tert-butylphenyl)benzoxazole: combined experimental and computational study, J. Mol. Struct. 1128 (2017) 694-706. doi.org/10.1016/j.molstruc.2016.09.024 [11] Y.S.Mary, M.M.Al-Shehri, K.Jalaja, F.A.M.Al-Omary, A.A.El-Emam,C.Y.Panicker, S.Armakovic, S.J.Armakovic, O.Temiz-Arpaci, C.Van Alsenoy, Synthesis, vibrational spectroscopic investigations, molecular docking, antibacterial studies and molecular dynamics study of 5-[(4-nitrophenyl)acetamido]-2-(4-tert-butylphenyl)benzoxazole, J. Mol. Struct. 1133 (2017) 557-573. doi.org/10.1016/j.molstruc.2016.12.020 [12] Y.S.Mary, K.Raju, T.E.Bolelli, I.Yildiz, H.I.S.Nogueira, C.M.Granadeiro, C.Van Alsenoy, FT-IR, FT-Raman, surface enhanced Raman scattering and computational study of 2-(p-fluorobenzyl)-6-nitrobenzoxazole, J. Mol. Struct. 1012 (2012) 22-30. doi.org/10.1016/j.molstruc.2011.12.042 [13] V.V.Aswathy, S.Alper-Hayta, G.Yalcin, Y.S.Mary, C.Y.Panicker, PJ.Jojo, F. Kaynak-Ondurg, S.Armakovic, S.J.Armakovic, I.Yildiz, C.Van Alsenoy, Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedure, J. Mol. Struct. 1141 (2017) 495-511. doi.org/10.1016/j.molstruc.2017.04.010
  • [14] K.Jalaja, M.A.Al-Alshaikh, Y.S.Mary, C.Y.Panicker, A.A.El-Emam, O.Temiz- Arpaci, C.Van Alsenoy, Vibrational spectroscopic investigations and molecular docking studies of biologically active 2-[4-(4-phenylbutanamido)phenyl]-5-ethylsulphonyl-benzoxazole, J. Mol. Struct. 1148 (2017) 119-133. doi.org/10.1016/j.molstruc.2017.07.023 [15] S.Beegum, Y.S.Mary, C.Y.Panicker, S.Armakovic, S.J.Armakovic, M.Arisoy, O. Temiz-Arpaci, C.Van Alsenoy, Spectroscopic, antimicrobial and computational study of novel benzoxazole derivative, J. Mol. Struct. 1176 (2019) 881-894. doi.org/10.1016/j.molstruc.2018.09.019 [16] R. Dennington, T. Keith, J. Millam, Semichem Inc., Shawnee Mission KS, GaussView, Version 5, 2009. [17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J.Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J.Cioslowski, D.J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010. [18] N.B. Colthup, L.H. Daly, S.E. Wiberly, Introduction of Infrared and Raman Spectroscopy, Academic Press, New York, 1975. [19] N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, John Wiley and Sons Inc., New York, 1994. [20] M.A.Iramain, A.E.Ledesma, S.A.Brandan, Structural properties and vibrational analysis of Potassium 5-Br-2-isonicotinoyltrifluoroborate salt. Effect of Br on the isonicotinoyl ring, J. Mol. Struct. 1184 (2019) 146-156. doi.org/10.1016/j.molstruc.2019.02.010 [21] M.Minteguiaga, E.Dellacassa, M.A.Iramain, C.A.N.Catalan, S.A.Brandan, FT-IR, FT-Raman, UV-Vis, NMR and structural studies of carquejyl acetate, a distinctive component of the essential oil from Baccharis trimera (less.) DC. (Asteraceae), J. Mol. Struct. 1177 (2019) 499-510. doi.org/10.1016/j.molstruc.2018.10.010 [22] M.Minteguiaga, E.Dellacassa, M.A.Iramain, C.A.N.Catalan, S.A.Brandan, Synthesis, Spectroscopic characterization and structural study of carquejiphenol, a 2-Isopropenyl-3-methylphenol derivative with potential medicinal use, Journal of Molecular Structure 1165 (2018) 332-343. doi.org/10.1016/j.molstruc.2018.04.001 [23] Y.S. Mary, C.Y. Panicker, B. Narayana, S. Samshuddin, B.K. Sarojini, C. Van Alsenoy, FT-IR, molecular structure, HOMO-LUMO, MEP, NBO analysis and first order hyperpolarizability of Methyl 4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-carboxylate, Spectrochim. Acta 133 (2014) 480-488. doi.org/10.1016/j.saa.2014.06.031 [24] R.Thomas, Y.S.Mary, K.S.Resmi, B.Narayana, B.K.Sarojini, G.Vijayakumar, C.Van Alsenoy, Two neotric pyrazole compounds as potential anti-cancer agents: Synthesis, electronic structure, physico-chemical properties and docking analysis, J. Mol. Struct. 1181 (2019) 455-466. doi.org/10.1016/j.molstruc.2019.01.003 [25] R.Hakiri, I.Ameur, N.Derbel, Synthesis, X-ray structural, Hirshfeld surface analysis, FTIR, MEP and NBO analysis using DFT study of a 4-chlorobenzylammonium nitrate (C7ClH9N)+(NO3)-, J. Mol. Struct. 1164 (2018) 486-492. doi.org/10.1016/j.molstruc.2018.03.068 [26] R.Thomas, Y.S.Mary, K.S.Resmi, B.Narayana, B.K.Sarojini, S.Armakovic, S.J.Armakovic, G.Vijayakumar, C.Van Alsenoy,B.J.Mohan, Synthesis and spectroscopic study of two new pyrazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential, J. Mol. Struct. 1181 (2019) 599-612. doi.org/10.1016/j.molstruc.2019.01.014 [27] A.E.Reed, P.V.R.Schleye, The anomeric effect with central atoms other than carbon. 2. Strong interactions between nonbonded substituents in mono- and polyfluorinated first- and second-row amines, FnAHmNH2, Inorg. Chem. 27 (1988) 3969-3987. s://doi.org/10.1021/ic00295a018 [28] A.S.El-Azab, Y.S.Mary, C.Y.Panicker, A.A.M.Abdel-Aziz, M.A.El-Sherbeny, C. Van Alsenoy, DFT and experimental (FT-IR and FT-Raman) invesigation of vibrational spectroscopy and molecular docking studies of 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)acetamide, J. Mol. Struct. 1113 (2016) 133-145. doi.org/10.1016/j.molstruc.2016.02.038 [29] T. Zhang, X.Wei, Y.Zuo, .J. Chao, An efficient measure to improve the NLO performance by point charge electric field, Optik 182 (2019) 295-302. doi.org/10.1016/j.ijleo.2019.01.040 [30] A. Lagunin, A. Stepanchikova, D. Filimonov, V. Poroikov, PASS: prediction of activity spectra for biologically active substances, Bioinformatics 16 (2000) 747-748. DOI: 10.1093/bioinformatics/16.8.747 [31] E.E. Gurdal, E. Buclugan, I. Durmaz, R. Cetin-Atalay, M. Yarim, Synthesis and anticancer activity evaluation of some benzothiazole-piperazine derivatives, Anticancer Agents Med. Chem. 15 (2015) 382-389. DOI: 10.2174/1871520615666141216151101 [32] T. Liu, Z. Weng, X. Dong, L.Chen, L.Mal, N. Zhou, Y. Hu, Design, synthesis and biological evaluation of novel piperazine derivatives as CCR5 antagonists, PLoS One, 8 (2013)e53636. . doi: 10.1371/journal.pone.0053636 [33] D. Bates, J.Morris, Piperazine derivatives for treating disorders US9695160B2, 2017. [34] D. Dang, R. Rao, Calcium-ATPases: Gene disorders and dysregulation in cancer, Biochimica et Biophysica Acta 1863 (2016) 1344-1350. doi.org/10.1016/j.bbamcr.2015.11.016 [35] L.A.A. Wong, J.L. Hirpara, S. Pervaiz, J.Q. Eu, G. Sethi, B.C. Goh, Do STAT3 inhibitors have potential in the future for cancer therapy?, Expert Opinion on Investigational drugs, 2017 doi:10.1080/13543784.2017.1351941. [36] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity, J. Comput. Chem. 16 (2009) 2785-2791. doi: 10.1002/jcc.21256. [37] O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455-461. doi: 10.1002/jcc.21334 [38] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R. Belew, A.J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem. 19 (1998) 1639-1662. doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
There are 2 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Basic Science Research Articles
Authors

Recep Akkaya 0000-0002-3477-7198

Project Number yok
Publication Date December 31, 2019
Acceptance Date December 30, 2019
Published in Issue Year 2019

Cite

AMA Akkaya R. Biophysical and computational comparison on the binding affinity of important proteins of folic acid and its metal complexes. CMJ. December 2019;41(4):685-690. doi:10.7197/cmj.vi.654130