Research Article
BibTex RIS Cite
Year 2020, Volume: 42 Issue: 3, 327 - 333, 27.10.2020
https://doi.org/10.7197/cmj.vi.780554

Abstract

Supporting Institution

Yok

Project Number

Yok

References

  • 1. Rampertab SD, Pooran R, Brar P, Singh P, Green PH. Trends in the presentation of celiac disease. Am J Med. 2006;119:355.e9-355.
  • 2. Kneepkens CM, vonBlomberg BM. Clinical practice: celiac disease. Eur J of Pediatr. 2012;171:1011-21.
  • 3. Pietz G, De R, Hedberg M. Immunopathology of chilhood celiac disease-key role of intestinal epithelial cells. PLoS One. 2017;12:e0185025.
  • 4. Gujral N, Freeman HJ, Thomson AB. Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol. 2012;18:6036-59.
  • 5. Ferguson A, Arranz E, O’Mahony S. Clinical and pathological spectrum of celiac disease-active, silent, latent, potential. Gut. 1993;34:150-1.
  • 6. Sollid LM. Molecular basis of celiac disease. Ann Rev Immunol. 2000;18:53-81.
  • 7. Cukrowska B, Sowinska A, Bierla JB, Czarnowska E, Rybak A, Grzybowska-Chlebowczyk U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiata-key players in the pathogenesis of celiac disease. World J Gastroenterol. 2017;23:7505-18.
  • 8. Sollid LM. Celiac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol. 2002;2:647-55.
  • 9. vanBergen J, Mulder CJ, Mearin ML, Koning F. Local communication among mucosal immune cells in patients with celiac disease. Gastroenterology. 2015;148:1187-94.
  • 10. Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics. 2012;64:455-60.
  • 11. Meresse B, Ripoche J, Heyman M, Cerf-Bensussan N. Celiac disease: from oral tolerance to intestinal inflammation, autoimmunity and lymphomagenesis. Mucosal Immunol. 2009;2:8-23.
  • 12. Kupper C. Dietary guidelines and implementation for celiac disease. Gastroenterology. 2005;128:121-7.
  • 13. Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, et al. Structural basis for gluten intolerance in celiac sprue. Science. 2002;297:2275-9.
  • 14. Marsh MN. Gluten, major histocompatibility complex and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (celiac sprue). Gastroenterology. 1992;102:330-54.
  • 15. Oberhuber G, Granditsch G, Vogelsang H. The histopathology of celiac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol. 1999;11:1185-94.
  • 16. dosSantosMartins TG, de AzevedoCosta ALF, Oyamada MK, Schor P, Sipahi AM. Ophthalmologic manifestations of celiac disease. Int J Ophthalmol. 2016;9:159-62.
  • 17. Mollazadegan K, Kugelberg M, Tallstedt L, Ludvigsson JF. Increased risk of uveitis in celiac disease: a nationwide cohort study. Br J Ophthalmol. 2012;96:857-61.
  • 18. Gao Z, Varma DD, Patel S, Lee A, Chen C. Visual loss secondary to bioccipital calcifications associated with celiac disease. Neuro-ophthalmology. 2015;39:277-80.
  • 19. Uzel MM, Citirik M, Kekilli M, Çiçek P. Local ocular surface parameters in patients with systemic celiac disease. Eye (Lond). 2017;31:1093-8.
  • 20. Erbasan F, Çoban T, Karasu U, Çekin Y, Yeşil B, Çekin AH, et al. Primary Sjögren’s syndrome in patients with celiac disease. Turk J Med Sci. 2017;47:430-4.
  • 21. Karatepe Hashas AS, Altunel O, Sevinc E, Duru N, Alabay B, Torun YA. The eyes of children with celiac disease. AAPOS. 2017;21:48-51.
  • 22. Bölükbaşı S, Erden B, Çakır A, Bayat AH, Elçioğlu MN, Yurttaşer Ocak S, et al. Pachychoroid pigment epitheliopathy and choroida thickness changes in celiac disease. J Ophthalmol. 2019;13:6924191.

Ocular parameters quantified by the swept-source optical coherence tomography in celiac disease

Year 2020, Volume: 42 Issue: 3, 327 - 333, 27.10.2020
https://doi.org/10.7197/cmj.vi.780554

Abstract

Objective: To measure anterior and posterior segmental ocular parameters in patients with celiac disease using swept-source optical coherence tomography and compare with those of healthy subjects. 
Method: Fourteen patients with celiac disease referred from the gastroenterology clinic and 14 control subjects selected from the individuals with minor complaints who admitted the ophthalmology outpatient clinic were included in the study. Mean and segmental retinal nerve fiber layer thickness in four quadrant, average and sectoral ganglion cell inner plexiform layer thickness in six quadrant, foveal and parafoveal vessel density in four quadrant, optic nerve head parameters, including rim area, disc area, horizontal cup-to-disc ratio, vertical cup-to-disc ratio, cup volume, and additionally superficial/deep foveal avascular zone areas, choroidal thickness, and central corneal thickness of patients and controls were quantified using swept-source optical coherence tomography.
Results: Among all the measurements, retinal nerve fiber layer in nasal quadrant and subfoveal choroid of patients were significantly thicker than those of controls. Nasal quadrant retinal nerve fiber layer thickness for patients and controls were 91.62±15.27 µm and 79.93±10.43 µm, respectively (P=0.02). Choroidal thickness was 377.69±50.77 µm for patients and 310.93±95.13 µm for controls (P=0.03).
Conclusions: Even though celiac disease is primarily a disease of small intestine, this study demonstrated that the disorder can affect the eye as an extra intestinal involvement.

Project Number

Yok

References

  • 1. Rampertab SD, Pooran R, Brar P, Singh P, Green PH. Trends in the presentation of celiac disease. Am J Med. 2006;119:355.e9-355.
  • 2. Kneepkens CM, vonBlomberg BM. Clinical practice: celiac disease. Eur J of Pediatr. 2012;171:1011-21.
  • 3. Pietz G, De R, Hedberg M. Immunopathology of chilhood celiac disease-key role of intestinal epithelial cells. PLoS One. 2017;12:e0185025.
  • 4. Gujral N, Freeman HJ, Thomson AB. Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol. 2012;18:6036-59.
  • 5. Ferguson A, Arranz E, O’Mahony S. Clinical and pathological spectrum of celiac disease-active, silent, latent, potential. Gut. 1993;34:150-1.
  • 6. Sollid LM. Molecular basis of celiac disease. Ann Rev Immunol. 2000;18:53-81.
  • 7. Cukrowska B, Sowinska A, Bierla JB, Czarnowska E, Rybak A, Grzybowska-Chlebowczyk U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiata-key players in the pathogenesis of celiac disease. World J Gastroenterol. 2017;23:7505-18.
  • 8. Sollid LM. Celiac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol. 2002;2:647-55.
  • 9. vanBergen J, Mulder CJ, Mearin ML, Koning F. Local communication among mucosal immune cells in patients with celiac disease. Gastroenterology. 2015;148:1187-94.
  • 10. Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics. 2012;64:455-60.
  • 11. Meresse B, Ripoche J, Heyman M, Cerf-Bensussan N. Celiac disease: from oral tolerance to intestinal inflammation, autoimmunity and lymphomagenesis. Mucosal Immunol. 2009;2:8-23.
  • 12. Kupper C. Dietary guidelines and implementation for celiac disease. Gastroenterology. 2005;128:121-7.
  • 13. Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, et al. Structural basis for gluten intolerance in celiac sprue. Science. 2002;297:2275-9.
  • 14. Marsh MN. Gluten, major histocompatibility complex and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (celiac sprue). Gastroenterology. 1992;102:330-54.
  • 15. Oberhuber G, Granditsch G, Vogelsang H. The histopathology of celiac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol. 1999;11:1185-94.
  • 16. dosSantosMartins TG, de AzevedoCosta ALF, Oyamada MK, Schor P, Sipahi AM. Ophthalmologic manifestations of celiac disease. Int J Ophthalmol. 2016;9:159-62.
  • 17. Mollazadegan K, Kugelberg M, Tallstedt L, Ludvigsson JF. Increased risk of uveitis in celiac disease: a nationwide cohort study. Br J Ophthalmol. 2012;96:857-61.
  • 18. Gao Z, Varma DD, Patel S, Lee A, Chen C. Visual loss secondary to bioccipital calcifications associated with celiac disease. Neuro-ophthalmology. 2015;39:277-80.
  • 19. Uzel MM, Citirik M, Kekilli M, Çiçek P. Local ocular surface parameters in patients with systemic celiac disease. Eye (Lond). 2017;31:1093-8.
  • 20. Erbasan F, Çoban T, Karasu U, Çekin Y, Yeşil B, Çekin AH, et al. Primary Sjögren’s syndrome in patients with celiac disease. Turk J Med Sci. 2017;47:430-4.
  • 21. Karatepe Hashas AS, Altunel O, Sevinc E, Duru N, Alabay B, Torun YA. The eyes of children with celiac disease. AAPOS. 2017;21:48-51.
  • 22. Bölükbaşı S, Erden B, Çakır A, Bayat AH, Elçioğlu MN, Yurttaşer Ocak S, et al. Pachychoroid pigment epitheliopathy and choroida thickness changes in celiac disease. J Ophthalmol. 2019;13:6924191.
There are 22 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Medical Science Research Articles
Authors

Arif Ülkü Yener 0000-0002-0039-0438

Muhammet Yener Akpınar 0000-0003-0903-4664

Evrim Kahramanoğlu 0000-0001-8887-3428

Ferdane Sapmaz 0000-0003-1278-110X

Yaşar Nazlıgul 0000-0003-1926-4594

Project Number Yok
Publication Date October 27, 2020
Acceptance Date September 21, 2020
Published in Issue Year 2020Volume: 42 Issue: 3

Cite

AMA Yener AÜ, Akpınar MY, Kahramanoğlu E, Sapmaz F, Nazlıgul Y. Ocular parameters quantified by the swept-source optical coherence tomography in celiac disease. CMJ. October 2020;42(3):327-333. doi:10.7197/cmj.vi.780554